
Jalopy - User’s Guide v. 1.9.4

Jalopy - User’s Guide v. 1.9.4
Copyright © 2003-2010 TRIEMAX Software

iii

Contents

Acknowledgments . vii
Introduction . ix

PART I Core . 1

CHAPTER 1 Installation . 3
1.1 System requirements . 3
1.2 Prerequisites . 3
1.3 Wizard Installation . 4

1.3.1 Welcome . 4
1.3.2 License Agreement . 5
1.3.3 Installation Features . 5
1.3.4 Online Help System (optional) . 8
1.3.5 Settings Import (optional) . 9
1.3.6 Configure plug-in Defaults . 10
1.3.7 Confirmation . 11
1.3.8 Installation . 12
1.3.9 Finish . 13

1.4 Silent Installation . 14
1.5 Manual Installation . 16

CHAPTER 2 Configuration . 17
2.1 Overview . 17

2.1.1 Preferences GUI . 18
2.1.2 Settings files . 29

2.2 Global . 29
2.2.1 General . 29
2.2.2 Misc . 32
2.2.3 Auto . 35

2.3 File Types . 36
2.3.1 File types . 36
2.3.2 File extensions . 37

2.4 Environment . 38
2.4.1 Custom variables . 38
2.4.2 System variables . 40
2.4.3 Local variables . 41
2.4.4 Usage . 42
2.4.5 Date/Time . 44

2.5 Exclusions . 44
2.5.1 Exclusion patterns . 45

2.6 Messages . 46
2.6.1 Categories . 47
2.6.2 Logging . 48
2.6.3 Misc . 49

2.7 Repository . 49
2.7.1 Searching the repository . 50
2.7.2 Displaying info about the repository . 50
2.7.3 Adding libraries to the repository . 50
2.7.4 Removing the repository . 50
2.7.5 Initialization . 50

2.8 Java . 51
2.8.1 Source compatibility . 51

iv

2.8.2 Keep on same line . 52
2.8.3 Insert parentheses . 53
2.8.4 Miscellaneous . 54
2.8.5 Code Generation . 56
2.8.6 Braces . 59
2.8.7 Line Wrapping . 79
2.8.8 Indentation . 112
2.8.9 White Space . 132
2.8.10 Separation . 187
2.8.11 Sorting . 201
2.8.12 Imports . 219
2.8.13 Comments . 224
2.8.14 Javadoc . 236
2.8.15 Header . 278
2.8.16 Footer . 283
2.8.17 Annotations . 284
2.8.18 Search & Replace . 286
2.8.19 Code Inspector . 289

CHAPTER 3 Usage . 297

PART II Plug-ins . 299

CHAPTER 4 Ant Task . 301
4.1 Installation . 301

4.1.1 System requirements . 301
4.1.2 Installation . 301

4.2 Configuration . 302
4.3 Usage . 303

4.3.1 Parameters . 304
4.3.2 Parameters specified as nested elements . 306

4.4 Example . 307

CHAPTER 5 Console Application . 309
5.1 Installation . 309

5.1.1 System requirements . 309
5.1.2 Installation . 309

5.2 Configuration . 310
5.3 Usage . 310

5.3.1 Synopsis . 310
5.4 Examples . 313

CHAPTER 6 Eclipse Plug-in . 315
6.1 Installation . 315

6.1.1 System requirements . 315
6.1.2 Setup . 315

6.2 Configuration . 316
6.2.1 Profiles . 316
6.2.2 Messages . 317
6.2.3 Synchronize . 319
6.2.4 Updates . 320
6.2.5 Keyboard accelerator . 322

6.3 Usage . 322
6.3.1 Actions . 322

CHAPTER 7 IntelliJ IDEA Plug-in . 327
7.1 Installation . 327

7.1.1 System requirements . 327

v JALOPY - USER’S GUIDE V 1 9 4

7.1.2 Setup . 327
7.2 Configuration . 327

7.2.1 Profiles . 328
7.2.2 Synchronize . 328
7.2.3 Update . 329
7.2.4 Keyboard Shortcut . 331

7.3 Usage . 331
7.3.1 Actions . 331
7.3.2 Runtime Messages . 333

CHAPTER 8 JDeveloper Extension . 337
8.1 Installation . 337

8.1.1 System requirements . 337
8.1.2 Setup . 337

8.2 Configuration . 337
8.2.1 Profile preferences . 338
8.2.2 Synchronize preferences . 338
8.2.3 Update preferences . 339
8.2.4 Keyboard Accelerator . 340

8.3 Usage . 341
8.3.1 Actions . 341
8.3.2 Runtime Messages . 343

CHAPTER 9 jEdit Plug-in . 347
9.1 Installation . 347

9.1.1 System requirements . 347
9.1.2 Installation . 347

9.2 Integration . 347
9.2.1 Menu bar . 348
9.2.2 Dockable window . 348
9.2.3 Keyboard shortcuts . 350
9.2.4 Context menu . 350
9.2.5 File System Browser Plugins menu . 351

9.3 Configuration . 351

CHAPTER 10 Maven 1 Plug-in . 353
10.1 Installation . 353

10.1.1 System requirements . 353
10.1.2 Setup . 353

10.2 Configuration . 354
10.2.1 Properties . 354

10.3 Usage . 356
10.3.1 Goals . 356

CHAPTER 11 Maven 2 Plug-in . 357
11.1 Installation . 357

11.1.1 System requirements . 357
11.1.2 Setup . 357

11.2 Configuration . 358
11.3 Usage . 358
11.4 Example . 362

CHAPTER 12 NetBeans Module . 365
12.1 Installation . 365

12.1.1 System requirements . 365
12.1.2 Setup . 365

12.2 Configuration . 365
12.2.1 Profiles . 365
12.2.2 Synchronize . 366

vi

12.2.3 Updates . 367
12.2.4 Keyboard shortcuts . 369

12.3 Usage . 369
12.3.1 Actions . 369
12.3.2 Runtime Messages . 371

PART III Appendices . 373
Type resolution . 375
Library Dependencies . 377
Build-in XDoclet tags . 379
ANTLR Software License . 387
Apache License 1.1 . 389
Apache License 2.0 . 391
ASM Software License . 395
Common Public License . 397
Creative Commons Attribution License . 401
JDBM Software License . 405
JDOM Software License . 407
JGoodies Software License . 409
One-JAR Software License . 411
TreeTable Software License . 413
Resources . 415
Bibliography . 417

Index . 419

vii

Acknowledgments

First and foremost we wish to thank the creators of the free software libraries we use. Jalopy includes
source code and artwork developed by

• the ANTLR Project

• the Apache Software Foundation

• Ayman Al-Sairafi

• Bernhard Picher

• the Eclipse Project

• Dr. Heinz M. Kabutz

• the JDBM Project

• the JDOM Project

• Jean-Marie Dautelle

• Karsten Lentzsch

• the Object Web Consortium

• Simon Tuffs

• Oracle, Inc.

Please refer to Appendix B, Library Dependencies for a more detailed list and the individual licensing
terms.

We would like to say a big thanks to those who contributed code during the Open Source days. Thanks
also to all users and customers who provided feedback, submitted bug reports and suggested new fea-
tures.

http://www.antlr.org/
http://www.apache.org/
http://code.google.com/p/jsyntaxpane/
http://www.repher.at/pages/index.php?show=coding
http://www.eclipse.org/
http://www.javaspecialists.eu/
http://jdbm.sourceforge.net/
http://www.jdom.org/
http://javolution.org/
http://www.jgoodies.com/
http://asm.objectweb.org/
http://one-jar.sourceforge.net/
http://java.sun.com/products/jfc/tsc/articles/treetable2/index.html

ix

Introduction

Jalopy is a world-class source code formatter for the Java™ Programming Language. It can automate
all aspects of code layout, like indentation, aligning, line wrapping, brace styling, grouping and sorting.
Without effort you can achieve a consistent coding style across your development team, or present your
code in different shapes for purposes like code review or customer shipment.

Jalopy is written in Java™ and provides many plug-ins to seamlessly integrate the formatting en-
gine into some of the most popular Java applications, including Ant, Eclipse, IntelliJ IDEA, CodeGear
JBuilder, Oracle JDeveloper, jEdit, NetBeans, Maven, MyEclipse, IBM Rational Application Developer
(RAD), IBM Websphere Application Developer (WSAD) and others, but it can be used standalone
as well.

How much is good layout worth?
Our studies support the claim that knowledge of programming plans and rules of pro-
gramming discourse can have a significant impact on programming comprehension. In
their book called [The] Elements of [Programming] Style, Kernighan and Plauger also
identify what we would call discourse rules. Our empirical results put teeth into these
rules: It is not merely a matter of aesthetics that programs should be written in a par-
ticular style. Rather there is a psychological basis for writing programs in a convention-
al manner: programmers have strong expectations that other programmers will follow
these discourse rules. If the rules are violated, then the utility afforded by the expecta-
tions that programmers have built up over time is effectively nullified. The results from
the experiments with novice and advanced student programmers and with professional
programmers described in this paper provide clear support for this claim.

—Elliot Soloway and Kate Ehrlich

What does it do for you?

• Jalopy accurately represents the logical structure of your code. That’s the primary purpose of any
source code formatting. Indentation, white space and line wrapping are used in a sensible way to
show the structure of your code.

• Jalopy consistently represents the logical structure of your code. Nearly impossible to achieve man-
ually. Scope levels are always correctly indented, braces and brackets are always found at the same
places.

• Jalopy improves the readability of your code. Your code layout will always meet the expectations laid
out by your team no matter when a file was written or by whom.

• Jalopy makes your code withstand modifications. A developer don’t have to care anymore whether
modifying one line of code may require modifying several others in order to achieve consistency.

• Jalopy increases the productivity of your developers. They can concentrate on the design and im-
plementation issues, instead of spending time struggling with the code style. Developers may even
write code in whatever style they prefer, formatting it before they submit files to the repository.

HOW CAN IT BE USED? x

How can it be used?

• Jalopy is especially well-suited for client-side use by developers. It tightly integrates with all common
Java IDE applications to serve as an integral part of any source code editing.

• Jalopy can be added into your SCM. Your sources are formatted on the server side before they are
committed to the repository. This can currently be achieved using custom scripting with the Console
plug-in.

• Jalopy supports usage as part of your build process. Your sources may be formatted after every
compilation, or on the checkout/checkin process. Jalopy already provides support for the well-known
Ant and Maven build tools and can be easily integrated with many others.

Part I. Core
This part of the manual covers the core Jalopy engine: generic installation and usage instructions along
with a detailed discussion of the available options to customize application behavior and formatting
output.

• Chapter 1, Installation

• Chapter 2, Configuration

• Chapter 3, Usage

3

Chapter 1. Installation

Describes the steps necessary to install Jalopy.

1.1 System requirements
Jalopy will run on any Pentium-class machine with a minimum of 256 MB RAM. You
may succeed with less, but it’s not recommended for a good user experience. Depending
on the selected options, you need between 10-20 MB free disk space for the installation
files. During runtime, additional space is required for settings, caches and backup, typically
between 5-50 MB, but this again depends on your project size and setup.

The supported operating systems are: Linux, Mac OS X (x86 only), Solaris, Unix, Win-
dows XP or later. Jalopy should run on all platforms that provide a suitable Java VM.

Jalopy requires a properly configured Java JDK version 1.4 or later on your system. It is
recommended to use a more recent version for best performance.

1.2 Prerequisites
Installation should be preferably performed below your user’s home directory, when possi-
ble. If you should need to install into a different directory, please make sure that the setup
wizard is invoked with sufficient user privileges.

If you choose to install any of the provided IDE plug-ins, you must close any running
IDE instances prior to installation. Otherwise setup may fail, because necessary files cannot
be installed or obsolete files cannot be removed.

Download Online Help
During installation you will be asked whether you want to download and install the online
help for the configuration tool. If you’re installing on a machine without Internet access,
you can download the help file separately from http://www.triemax.com/download/jalopy-
help-1.9.4.jar and either place it along the directory where the installer sits—it will then
be picked up and installed automatically by the installer. Or copy the file into the Jalopy
settings directory, e.g. on a typical Windows Vista/7 system to C:\Users\John Doo

\.jalopy\1.9.4\jalopy-help-1.9.4.jar. You can find more information about the
Jalopy settings directory in Section 2.1, “Overview”.

The setup wizard will install the online help always into the Jalopy settings directory as
described above. But when performing a custom installation, because the software should
be available to all developers without requiring them to do any extra work on their client
machines, you can place the file into the same directory where the binaries have been in-
stalled, e.g. if the software was installed into C:\Program Files\jalopy, the binaries can
be found in C:\Program Files\jalopy\lib. Just copy the help file into this directory
and it will be available to all users of the binary.

http://www.triemax.com/download/jalopy-help-1.9.4.jar
http://www.triemax.com/download/jalopy-help-1.9.4.jar

WIZARD INSTALLATION 4

1.3 Wizard Installation
Jalopy comes as a compressed JAR Archive (JAR) that contains all necessary application files.
The JAR is executable and provides a graphical setup wizard that lets you install the software
in a few easy steps. If you’re about to install Jalopy for the first time, wizard installation
is highly recommended. When upgrading, if the target application directories have not
changed, it is usually much simpler to perform a silent install as described in Section 1.4,
“Silent Installation”.

To start the setup wizard, you may open a shell and type

% java -jar jalopy-setup-1.9.4_108.jar

at the command line. But with modern desktop systems, it is usually possible to launch the
installer by just double-clicking the downloaded JAR file from within your file manager.
If your system should not be configured this way, you can always resort to the manual
invocation as described above.

1.3.1 Welcome
After you’ve invoked the setup wizard, the welcome screen will appear shortly.

Figure 1.1. Setup Wizard Welcome Screen

Each wizard page contains a button bar at the bottom that provides the available page ac-
tions. To proceed to the next page, click the Next button. When available, you can press the
Back button to return to the previous page and alter your selections. You can use the Cancel
button at any time to abort the installation. A dialog will appear that asks for confirmation.

5 CHAPTER 1 INSTALLATION

Figure 1.2. Cancel Setup Wizard

Press the Exit button to terminate the setup wizard. Press Continue to close the dialog and
continue with the installation.

1.3.2 License Agreement
Pressing the Next button on the Welcome screen will display the License Agreement. Read
the terms carefully!

Figure 1.3. Setup Wizard License Agreement

You need to accept the license agreement before you can proceed with the installation. Select
the I accept the terms in the license agreement item and press the Next button to proceed.

1.3.3 Installation Features
Pressing the Next button on the License Terms page will bring up the Installation Features
page that lets you select what program features setup should install and how.

INSTALLATION FEATURES 6

Figure 1.4. Setup Wizard Installation Features

Select any of the check boxes to mark a feature for installation. When you first select a
feature, a file chooser pops up that lets you select the target directory for the specific appli-
cation. This is usually the root installation or settings directory of the application.

Figure 1.5. Choose Ant Installation Directory

The wizard verifies your selection and ensures valid target directories. If validation should
fail, a dialog pops up to inform you about the situation.

7 CHAPTER 1 INSTALLATION

Figure 1.6. Installation Directory Verification Failed

Press the Choose Other button if you want to select a different directory. Otherwise, if you
want to skip the feature, you can press the Skip button to terminate the directory chooser
and return to the feature selection screen (or the next directory chooser dialog).

Once a target directory has been set for a feature, it will be displayed below the feature
list. You can change the target directory for a feature at any time. First select the corre-
sponding item in the list and then use the Choose... button at the bottom to specify the
target directory. Please note that when multiple check boxes are selected, multiple directory
choosers will appear one after another. Don’t be confused, just look at the title of each file
chooser to see what application directory is required.

Should you ever run the installer again, your choices from the last session are remem-
bered and the screen configured accordingly. You should always check the target directories,
to make sure to match the desired target applications.

Use plug-in repository
When it comes to deployment within teams, it can be more convenient to leverage the
plug-in manager of the IDE instead of distributing a custom installer. Jalopy therefore lets
you create IDE specific bundles that may be installed using the IDE specific provisions.
To change the installation target to the IDE specific format, click the current target item
behind the installation feature and choose one of the available options.

ONLINE HELP SYSTEM (OPTIONAL) 8

Figure 1.7. Choose Eclipse Installation Target

When the installation target has been set to the application specific plug-in manager format,
the installer will create a setup bundle in the specified directory, but the plug-in itself won’t
be installed into the target application. You will need to use the IDE plug-in manager to
perform plug-in installation after the setup wizard has finished.

1.3.4 Online Help System (optional)
When the installer can connect with the Internet, and no up-to-date help can be found
on your system, you will be presented with the option to download and install the online
help bundle for the GUI.

9 CHAPTER 1 INSTALLATION

Figure 1.8. Setup Wizard Download Online Help

It is recommended to let the installer handle help installation, but when you’re installing on
a machine without Internet access, you can download the help file separately from http://
www.triemax.com/download/jalopy-help-1.9.4.jar and either place it along the directory
where the installer sits—it will then be picked up and installed automatically by the installer
(the Download Online Help screen does not appear in such a case).

Or copy the file into the Jalopy settings directory, e.g. on a typical Windows Vista/7 sys-
tem to C:\Users\John Doo\.jalopy\1.9.4\jalopy-help-1.9.4.jar. General in-
formation about the Jalopy settings directory can be found in Chapter 2, Configuration.

1.3.5 Settings Import (optional)
In case an older Jalopy release could be found on your machine, the wizard lets you choose
whether the settings of the prior version should be imported during installation.

IMPORTANT Please note that the settings of the Jalopy Open Source versions
up to 1.0b11 are always removed during installation. If you want
to keep such settings, make a backup of your settings directory
before you start the setup routine. Detailed information about the
Jalopy settings system can be found in Chapter 2, Configuration

http://www.triemax.com/download/jalopy-help-1.9.4.jar
http://www.triemax.com/download/jalopy-help-1.9.4.jar

CONFIGURE PLUG-IN DEFAULTS 10

Figure 1.9. Setup Wizard Import Settings

Select the Yes, import my settings option to have your settings imported or No, ignore any
prior settings to start with the defaults. Additionally, you can control whether your prior
settings should be deleted or kept. Select Yes, delete any prior settings to delete your existing
settings. Or choose No, keep any prior settings to leave any present settings untouched.

1.3.6 Configure plug-in Defaults
The installer lets you pre-configure some IDE plug-in preferences, to possibly eliminate the
need for client configuration.

When using Jalopy in a team, it is often mandatory to share a common code convention
to achieve a consistent code layout style. There are multiple ways to achieve this goal, but
the best and most convenient approach is to embed this information right into the IDE
plug-ins. This way developers must not know nor care how to configure Jalopy—it will
automatically pick up its settings upon first installation. You can of course adjust the defaults
later using the IDE preferences dialog.

NOTE The specified defaults only apply for the IDE plug-ins (Eclipse, IntelliJ
IDEA, JDevelper, jEdit and NetBeans). You still have to configure the
headless plug-ins explicitly, which is more appropriate for their use cases

11 CHAPTER 1 INSTALLATION

Figure 1.10. plug-in Defaults Screen

To specify a shared code convention, select the Yes, always synchronize with the following code
convention radio button and enter the path of the shared code convention. This can either
be a file system path or a web url.

By default, Jalopy checks the specified settings file for changes each time it is about
to format. This can be prohibitive when the code convention sits on a server without fast
network access. To avoid long delays in such situations, you can enable local caching. Jalopy
then only checks once per day for changes. To enable local caching, select the Yes, enable
the local cache and only synchronize once per day radio button.

In order to keep keep track of updates, the IDE plug-ins can notify about the availability
of new releases. When a new release becomes available, a notification pop-up is displayed
that provides access to the release notes. If you don’t want to be automatically notified about
updates, select the No, don’t check for updates radio button.

1.3.7 Confirmation
When all configuration is done, the installation summary dialog is displayed. Please review
your choices and press the Install button to start the installation.

INSTALLATION 12

Figure 1.11. Ready Screen

Please note that installation cannot be canceled once started. You should make sure that
you’ve selected all desired features and configured the target locations correctly before you
start the installation. You can of course, re-run the installer at any time in case you need to
perform installation with different settings. If you think that you’ve made a wrong choice
during the information gathering, press the Back button to flip through the pages and review
your settings

1.3.8 Installation
Once the installation has started, a progress dialog informs you about the pending instal-
lation steps.

13 CHAPTER 1 INSTALLATION

Figure 1.12. Progress Screen

The installation process might take a while, please be patient until the installer has finished
updating your system. Especially the installation of the Eclipse plug-in can be very time
consuming on big installations and take several minutes.

1.3.9 Finish
When installation has finished, the final screen appears and informs you about the instal-
lation status.

SILENT INSTALLATION 14

Figure 1.13. Finish Screen

You can press the Show Report button to review the installation log. In case something should
have went wrong during the installation, please provide support with this log information.
Press the Finish button to close the setup wizard.

1.4 Silent Installation
The executable JAR file contains built-in support for silent (unattended) installation. A
normal wizard install guides you through different graphical dialog boxes and expects some
input. However, a silent install does not prompt for input. Instead it receives the required
setup data from a configuration driver file that provides the information one would other-
wise enter as responses to dialog boxes.

The setup configuration driver file uses the standard java.util.Properties format. It con-
sists of key/value pairs representing the data entries. Performing a wizard install automat-
ically creates (or updates) a configuration driver file in the Jalopy settings directory that
reflects the information given during the last setup session.

To perform a silent install, open a shell and type

% java -jar jalopy-setup-1.9.4_108.jar --silent

at the command line. This will perform installation with the data gathered from your last
installation session. But the installer supports a few more options to control the setup pro-
cess. These are described below.

http://java.sun.com/javase/6/docs/api/java/util/Properties.html

15 CHAPTER 1 INSTALLATION

Options

Table 1.1. Install Wizard command-line options

Option Long Option Arguments Description Since

-c --config <filepath> Specifies the absolute path to the setup config-
uration driver file to use for the installation, e.g.
/home/John Doo/tools/jalopy-install.ini.
When omitted, the settings of the last installation
run will be used when available

1.4

-h --help Displays a short help 1.4

-l --log Specifies the directory where the log file should
be written. When omitted, the log file is stored
in the Jalopy settings directory (Section 2.1,
“Overview”)

1.4

--plugin-repo Creates an IntelliJ IDEA plugin repository 1.9.3

-s --silent Performs silent installation 1.4

--update-center Creates a NetBeans update center 1.9.2

--update-site Creates an Eclipse update site 1.9.2

Example configuration driver file
Below you find an annotated sample configuration driver file, that explains all available
keys and the possible values.

Example 1.1. Sample configuration driver file

#Jalopy installation data ➊
#Fri Dec 03 09:14:37 CET 2004

delete.settings=false ➋

import.settings=false ➌

install.ant=true ➍

install.ant.dir=/Home/John Doo/Applications/ant-1.7.1 ➎
install.console=true
install.console.dir=/Home/John Doo/Applications/jalopy
install.eclipse=true
install.eclipse.dir=/Home/John Doo/Applications/eclipse-3.4.2
install.idea=true
install.idea.dir=/Home/John Doo/Applications/idea-8.0
install.jdeveloper=true
install.jdeveloper.dir=/Home/John Doo/Applications/jdeveloper-11g
install.jedit=true
install.jedit.dir=/Home/John Doo/Applications/jedit-4.3
install.maven=true
install.maven.dir=/Home/John Doo/.m2
install.netbeans=true
install.netbeans.dir=/Home/John Doo/Applications/netbeans-6.5

sync.cacheConvention=false ➏

sync.convention= ➐

update.enabled=true ➑

➊ Header comment that contains the last modification date of the file
➋ Indicates whether the settings of a prior version should be removed. Possible values:

true|false. “true” to remove the settings, “false” to keep them
➌ Indicates whether the settings of a prior version should be imported. Possible values:

true|false. “true” to import prior settings, “false” to ignore them

MANUAL INSTALLATION 16

➍ Indicates whether the specified application plug-in should be installed. The different
target applications are specified via separate install.[appKey] = [boolean] entries. Valid
appKeys are ant, console, eclipse, idea, jbuilder, jdeveloper, jedit, netbeans, maven.
Valid values: true|false. “true” installs the plug-in, “false” means that the plug-in won’t
be installed

➎ Specifies the absolute file path of the root application directory of the target ap-
plication. The different target application directories are specified via separate in-
stall.[appKey].dir = [PATH] entries. For the valid appKeys see “install.[appKey]”. The
file path is stored in platform notation

➏ Indicates whether the IDE plug-ins should perform settings synchronization on-
ly once per day. Possible values: true|false. “true” to perform synchronization only
once per day, “false” to perform synchronization on each formatting run. Requires a
sync.convention to be specified in order to take affect

➐ Specifies the path to the exported code convention the IDE plug-ins should synchro-
nize with. Possible values: file path or empty. A valid file path to have the IDE plug-
ins synchronize their settings, left empty if no synchronization should be performed

➑ Indicates whether the IDE plug-ins should check for updated releases. Possible values:
true|false. “true” to enable automatic update checking, “false” if no update checking
should be performed

1.5 Manual Installation
It is often possible to install Jalopy manually yourself, but this might require certain non-
trivial tasks, especially for the IDE plug-ins. It is therefore recommended to at least initially
use the installer to perform installation on a test system and extract the necessary informa-
tion for your custom deployment procedure. Please contact support if you need any specific
assistance.

IMPORTANT Wizard installation is mandatory with the trial version

17

Chapter 2. Configuration

Provides a detailed discussion of the Jalopy settings system and all available options to con-
figure formatting output.

2.1 Overview
Jalopy stores all settings below its own settings directory. This directory is normally located
under the user home directory and shared by all provided plug-ins. The table below shows
the typical locations for the common operating systems.

Table 2.1. Typical settings directories for user “John Doo”

Operating System Jalopy Settings Directory

Linux /home/John Doo/.jalopy/

Mac OS X /Users/John Doo/.jalopy/

Solaris /export/home/John Doo/.jalopy/

Windows Vista/7 C:\Users\John Doo\.jalopy\

Windows XP C:\Documents and Settings\John Doo\.jalopy\

Substitute “John Doo” with your user name. Please consult your operating system docu-
mentation if your system uses different paths for the user directories.

In order to provide version interoperability between releases, the settings of each release
are stored in subdirectories named after the version number of an individual release, e.g. C:
\Users\John Doo\.jalopy\1.9.4\. Each settings configuration uses a distinct folder,
e.g. the default settings for user John Doo (on Windows Vista/7) are stored in C:\Users
\John Doo\.jalopy\1.9.4\default\.

A settings configuration is called a profile and stores the actual code convention as well
as user-specific data like file and dialog histories. See Section 2.1.1.1, “Main window” for
more information. Please note that you can always use settings of prior versions with the
most recent release, but it is generally not recommended nor supported to try vice-versa,
as there is no guarantee that it will work this way round. Wizard installation will let you
update your settings automatically when upgrading, see Section 1.3, “Wizard Installation”.
Code convention related settings are usually shared using a textual XML format, see Sec-
tion 2.1.1.11, “Export code convention” for more information.

If need be, you can reconfigure the root directory to your own liking by pointing the
Java system property “triemax.jalopy.home” to the folder name where settings should be
stored. The Java launcher provides the standard -D option to define system properties. If
the path is a string that contains spaces, you must enclose it with double quotes:

% java -Dtriemax.jalopy.home="/Users/John/Library/Application Support/Jalopy" [...]

When using an IDE or build tool, you might be required to use a different mechanism
to define system properties. Please refer to the user documentation of the tool vendor for
specific instructions.

PREFERENCES GUI 18

2.1.1 Preferences GUI
Settings are stored in binary files, that are not directly editable. Instead, a graphical user in-
terface with a preview facility is provided to let you easily explore and configure the settings.
The GUI consists of several individual windows that can be freely arranged on your desk-
top. The Main window provides profile management and is the only window that appears
after program start. From there you can access all other windows, namely the Configuration
window to edit all formatting options, the Preview window that gives you immediate feed-
back reflecting the current settings, and the Help window that assists you at any time with
complete documentation. The GUI may be either invoked directly on the command-line
or from within your IDE. Please refer to the individual plug-in chapters in Part II, “Plug-
ins” for information on how to display it from the application you’re using.

2.1.1.1 Main window
The Main window is the first window that appears and provides the means to manage several
code convention profiles. Please note that when using one of the IDE plug-ins, the contents
of the Main window will be integrated into the IDE preferences dialog and therefore the
appearance somewhat differs from application to application. The Main window always
appears centered on the same monitor where it was invoked from.

Figure 2.1. Main window

As explained in Section 2.1, “Overview”, Jalopy stores code convention settings in profiles.
The list component displays all currently known profiles. Click an entry to see what actions
are available. Depending on the state and type of a profile, not all actions might be available
all the time.

In Figure 2.1, “Main window” above, the active profile is selected and therefore the
removal and activation buttons are deactivated. Editing, adding, importing and exporting
is always possible.

19 CHAPTER 2 CONFIGURATION

Button bar
The Main window provides a button bar at the bottom that lets you perform different
actions.

Help
The Help button displays the online help window. The keyboard shortcut for this action is
F1. Please note that the help button is only available if the online help has been installed
as outlined in the “Installation instructions”.

Save
The Save button lets you persist any unsaved changes made during a configuration session
and closes the Main window.

Cancel
The Cancel button closes the Main window but any unsaved settings changes made during
a configuration session are ignored.

Apply
The Apply button persists any unsaved changes made during a configuration session.

2.1.1.2 Configuration window
The Configuration window provides a tree view on the left that lets you navigate between
the different preferences screens; and the current preference screen displayed on the right
that provides the actual options to configure the current profile. As a hint, the name of
the current profile is displayed at the top left, above the tree. The Configuration window
is invoked from the Main window by pressing the Edit.. button and automatically restores
its position from the last session.

PREFERENCES GUI 20

Figure 2.2. Configuration window

To navigate between the different available screens, you can use the tree view on the left
that provides access to all screens or you can cycle between the different screens by pressing
Ctrl+Left (previous screen) or Ctrl+Right (next screen). On Mac OS X you use Cmd+Left
and Cmd+Right instead.

NOTE Closing the Configuration window does not alter your profile. Any
changes you might have made are not immediately saved, but temporar-
ily recorded until you explicitly save or apply them from within the Main
window

2.1.1.3 Preview window
The Preview window provides a sneak preview of the formatting ouput using the currently
chosen preferences.

The Preview window normally displays a short sample file that changes with each pref-
erence page and only contains elements that would be affected by the options of the active
preferences page. But you can display a file of your choice by selecting File > Open... and
type or browse the file you wish to be used in the preview. Alternatively, you can simply drag
& drop a file to the preview text area. The custom file will then be used for all preferences
pages until you explicitly close it via File > Close (which would restore the system preview
file), or choose another custom file. It’s also possible to automatically have the currently
opened file picked up when using an IDE plug-in. Please refer to Section 2.2.1.1, “Use
current file in preview” for more information about this feature.

21 CHAPTER 2 CONFIGURATION

Figure 2.3. Preview window

To visualize the indentation behavior you can control the display of the usually hidden
whitespace characters TAB and SPACE and EOL by selecting View > Show Whitespace
Characters and/or View > Show EOL Characters. Please note that on Mac OS X the menu
actions are available through the global menu bar, while on other platforms the menu is
attached to the Preview window.

The build-in examples assume a specific maximum column width of 70 columns as
indicated by the gray wrap guide, to illustrate some wrapping behavior. But in order to
get a better understanding of the different options and their behavior, you might want to
experiment with different wrapping offsets and study their impact. To make this as easy as
possible, the Preview window contains a little slider on the bottom right side of the status
bar that you can use to adjust the wrapping offset. The wrap guide is also directly draggable.

2.1.1.4 Help window
The Help window lets you browse, search, and print system documentation. Please remem-
ber that you might need to install support files manually if the software was not installed
using the Setup Wizard. Please refer to Chapter 1, Installation for more information about
the installation options.

You invoke the Help window by either pressing the F1 key at any time or by clicking
the help button in a window or dialog. Please be aware that the Help window is the most
prominent application window and always sits on top of all other windows.

PREFERENCES GUI 22

Figure 2.4. Help window

The Help window is directly connected with the current application window or dialog and
changes its contents whenever you move the mouse over a widget in the application window
or dialog. This way, you are always presented with the most relevant information when
working with the application. But the Help window also provides different navigation views
to access all available help topics in a more traditional manner. To display or switch views,
you can choose one of the available options in the pop-up menu at the bottom left of the
Help window.

Content view
The Content view provides a hierarchal tree view of all available help topics. Explore the
topic tree to find the information you are looking for. To view a topic, click the link in the
topic tree. You can use the Forward and Back buttons in the button bar at the top of the
Help window to go to topics you have already visited. They behave the same way back and
forward buttons work in an web browser.

Index view
The Index view provides a searchable index of the help contents. Enter a keyword in the
search field and successively press the Enter key to display the topics that match the given
search term. Directly selecting an entry in the index will display the associated topic.

23 CHAPTER 2 CONFIGURATION

Favorites view
The Favorites view lets you add and organize bookmarks for topics. You might want to add
bookmarks for frequently accessed topics. To add a bookmark you select a help topic in
the content view, then switch to the favorites view, open the context menu (right-click the
mouse) and select the Add menu item.

2.1.1.5 Editing profiles
To edit an existing profile, select the profile in the list and press the Edit... button. If the
selected profile is not the currently active one, the selected profile will be automatically
activated. If the settings of the priorly activated profile have been altered, you will be asked
whether you want to have your changes persisted before switching.

Figure 2.5. Save Profile Changes

Press the Save button, if your settings should be saved. Otherwise press Don’t save to ignore
any chances that were made to the profile. The Configuration window appears along with
the Preview window, and here you can alter all available options to configure formatting
output. Any changes you make are directly reflected in the Preview window, but you must
explicitly save your changes in the Main window. The Configuration window is explained
in detail in Section 2.1.1.2, “Configuration window” below.

2.1.1.6 Adding profiles
To add a new profile click the Add... button. A dialog will appear that lets you create the
new profile.

Figure 2.6. Add new Profile Dialog

You need to enter the profile name, might add an optional informative description and if a
profile is currently selected in the profiles view, you can choose whether you want to create

PREFERENCES GUI 24

a nested profile by selecting the parent profile. A nested profile will automatically adapt any
changes made to its parent profile(s).

Name
The profile name needs to be unique and will be used as the name of the disk folder where
all profile information will be stored. Therefore, you should avoid characters that your
platform does not allow to be used in file paths.

As a convenience, when invoked from within one of the supported IDEs, the dialog
provides a combo box with the names of all projects currently available in the IDE that
have no corresponding Jalopy profile.

Figure 2.7. Add new Profile from within IDE plug-in

Description
The optional description must be no longer than 256 characters and can be freely chosen.
It will be displayed in a tool tip when the mouse is moved over an entry. Name and de-
scription are available for inclusion in templates. See Section 2.4.3, “Local variables” for
more information.

Parent Profile
In order to provide the ability to easily manage profiles that largely share the same settings,
you can create nested profiles. A nested profile will automatically adapt any changes made
to its parent profile(s). This feature is only available with Jalopy 1.7 or later.

The typical example would be a number of different projects that should receive the
same formatting style, but require different headers. In order to setup such a scenario, you
would create a master profile where you configure all shared settings, and afterwards create
different nested profiles for each project where you define the individual headers. Later on,
if you want to apply any changes to the formatting style of all projects, you would only alter
the master profile and the changes will be propagated to the nested profiles automatically.

In order to create a nested profile, simply choose the parent profile here. If you choose
“None”, the new profile will be created as a root profile. Please note that this option is only
available when a profile is currently selected in the list view. When you add a new profile,
the settings of the currently selected profile will be used to create the new profile. If you
create a nested profile, the selected profile will be the parent profile. For every profile you
define, a new subdirectory is created below the main settings directory where all related
files will be stored.

25 CHAPTER 2 CONFIGURATION

2.1.1.7 Removing profiles
To remove an existing profile, select an entry or multiple entries in the list and press the Re-
move button. The profile folders will be removed on disk and the selected entries disappear.
A profile may only be removed if it is not active. The default profile cannot be removed.
Please note that if a selected profile contains any nested profiles, removing the profile will
cause all nested profiles to be removed as well!

2.1.1.8 Activating profiles
To activate an existing profile, select an entry in the list and press the Activate button. The
stored settings will become active and the preferences dialog updated accordingly.

2.1.1.9 Defining aliases
Depending on the type and size of your projects and the provisions of your IDE, it might
be necessary to create several project modules in order to manage your codebase efficiently.
In such a case all related modules should still receive the same code style.

To achieve and manage such a uniform style easily, you can map modules to one (logical)
Jalopy profile that defines the code style. Make sure that the Auto-switch feature (see below)
is enabled and Jalopy will automatically use the correct settings for each module. Say you
have a project “foo” which consists of three modules.

Figure 2.8. Sample Project With 3 Modules

To map these modules to one Jalopy profile, choose the target profile in the list and press
the Aliases... button. A dialog will be displayed that shows all defined aliases for the profile
and lets you alter the alias definitions.

Figure 2.9. Profile Aliases Dialog

Press the Add... button to add a new alias for the profile.

PREFERENCES GUI 26

Figure 2.10. Add new Profile Alias

You can either add the names of all modules as new aliases or when the modules share a
common prefix—like in our example—use a wildcard alias to point to all modules in just
one step. Simply put the * wildcard after the prefix and press the Add button. The alias is
then displayed on the list, but has not yet been created. You need to explicitly press the Save
button to have your changes applied and any new aliases created or existing aliases removed.

Figure 2.11. Profile Aliases

Press the Save button to save your changes or Cancel if you want to ignore any changes.
Please note that the alias information of a profile is displayed as part of the tooltip (in square
brackets). Move the mouse over a list entry, and the tooltip will appear shortly.

Since 1.2

2.1.1.10 Import code convention
Use the Import... button to import an already-saved code convention. Since version 1.6,
Jalopy also supports importing of Checkstyle configurations (version 3.5 or later). Jalopy
is able to import code conventions from both local and distributed locations. Just specify a
valid Internet address (either starting with http://, https:// or www.) for the latter.

Since Jalopy 1.7, exported code conventions store the names of their profile. During
import it is therefore possible to recreate the profile structure. When importing a single
convention, if the associated profile does not already exist, you will be asked whether it
should be created and the settings imported into this profile. Otherwise, settings will be
imported into the currently active profile. Checkstyle configurations will always be import-
ed into the currently active profile. Importing a file that contains several code conventions,
will always recreate the original profiles if they should not already exist.

27 CHAPTER 2 CONFIGURATION

Versions prior to 1.0b8 stored the backup directory always as an absolute file. Therefore
after importing a very old code convention, you should check whether this directory points
to your preferred backup directory. This advice holds true even for later versions in case
you’ve changed any of the default directories (backup, history, message log).

Import Checkstyle configurations
Importing Checkstyle configurations only means a best effort. There is no guarantee that
the resulting Jalopy code convention exactly matches your style preferences because some
Checkstyle modules might be ambiguous or missing at all. E.g. take the following ParenPad
module configuration:
<module name="ParenPad">
 <property name="tokens" value="METHOD_CALL" />
 <property name="option" value="nospace" />
</module>

It only defines a white space check for method call parentheses, but does not express the
preference for other parentheses. It could be “space” or “nospace”. In such a case, Jalopy
will assume the default value Checkstyle uses when no token is defined (“nospace” in the
example).

Another common case is the <whitespaceAfter> module. Without any tokens defined,
it will check for white space after three tokens (comma, semicolon, type cast parenthesis).
But what if you limit the check to only two tokens (comma, semicolon)? Does it mean
that no white space should appear after the right parenthesis of type casts? Or should it be
allowed? Checkstyle accepts both, but Jalopy will assume that you don’t want white space
after the token in such a case.

The same problem appears when a Checkstyle module is not contained in your config-
uration. Jalopy can’t interfere any preferences in such a case and assumes the default set-
tings of an empty module config. In general, importing works better the more Checkstyle
modules are defined. It is recommended that you test the resulting Jalopy code convention
against the Checkstyle configuration after importing. Just format some source files into a
temporary directory and run Checkstyle to check for any style violations. This way you can
be sure that the import covered all your preferences.

To import a Checkstyle configuration, press the Import... button and enter or select the
Checkstyle configuration that should be imported. The file dialog provides a file filter for
Checkstyle configurations, but because all configuration files use the .xml extension, it
actually doesn’t matter what file filter is selected.

PREFERENCES GUI 28

Figure 2.12. Choose Checkstyle Configuration

After the import has finished, a confirmation dialog appears that lets you display a report
of the imported modules.

Figure 2.13. Import Checkstyle Configuration Confirmation

2.1.1.11 Export code convention
Use the Export... button to save your settings as a new code convention. Select the profiles
that should be exported in the list, and press the Export... button to choose a file to export
to. You may select multiple profiles that should be exported into just one file.

If a nested profile is selected, by default all parent and child profiles will be exported as
well. If you really only want to export the profiles that have been selected in the list, hold
down the Ctrl key when pressing the Export... button.

In order to be able to share settings across different systems and users, file paths should
be stored relative to make the code convention portable. Jalopy therefore exports all file
paths below its settings directory as relative file paths. History, backup and message log
directories are by default set to paths below the Jalopy settings directory and are therefore
correctly handled by the export. If you should have specified custom file paths here, you
should check these paths and adjust them when necessary, after a code convention has been
imported.

29 CHAPTER 2 CONFIGURATION

Please note that exporting only covers the actual code convention settings. All other
profile data (history, backup, logs, reports) is ignored. If you really need to share all profile
data, just copy the whole settings directory or selected profile folders over.

2.1.2 Settings files
A synopsis of the used files is given in the table below.

Table 2.2. Settings files

Name Purpose

alias.dat Stores the alias names of a profile

export.dat Stores the file history of the last ten exported code conventions

history.dat Stores the history information of all processed files

import.dat Stores the file history of the last ten imported code conventions

log.dat Stores the file history of the last ten log files

page.dat Stores the information of the last displayed settings page

project.dat Stores the information of a profile

settings.dat Stores the current code convention settings

The group of settings stored in settings.dat that describe the style of a source file is
called a code convention. You can share code conventions using a textual XML format. See
Section 2.1.1.10, “Import code convention” and Section 2.1.1.11, “Export code conven-
tion” for more information.

2.2 Global
Lets you configure the global settings that apply to all supported languages.

2.2.1 General
Lets you control some general preferences.

GENERAL 30

Figure 2.14. General preferences page

Name
The name of the code convention. This should be a short and unique name that easily
identifies a code convention.

Description
Stores a short description for the code convention. The optional description may be used
to provide a more detailed explanation of a code convention.

Name and description may be inserted into source files during formatting. See Section 2.4,
“Environment” for more information.

2.2.1.1 Miscellaneous
Lets you control miscellaneous options that doesn’t fit elsewhere.

Force formatting
Jalopy can keep track of which files have been formatted previously (Refer to Sec-
tion 2.2.2.1, “History” for more information about this feature). If the history is enabled,
Jalopy won’t format files that have not changed since the last formatting. However, you can
disable this check to force a reformat. For example, you might need to update the copyright
notice for the whole code base. Enabling this switch ensures that all source files are always
formatted.

31 CHAPTER 2 CONFIGURATION

Test formatting
When enabled, formatting output is not written to disk and/or opened editors are not
updated. This may be worthwhile when you want to determine what files cause warnings
or errors during formatting. This way Jalopy can be used somewhat similar to a coding style
checker (see Section 2.8.19, “Code Inspector” for the available style checks). This option is
mostly useful for batch mode processing, therefore it can be enabled from the Console, Ant
or Maven plug-ins directly, and should be normally left disabled here. Refer to Section 2.6.2,
“Logging” for more information about the possible logging options.

Since 1.0

Insert trailing newline
When enabled, Jalopy inserts an empty line at the end of every file. This may help to avoid
problems with certain text formatters and processors. Note that Jalopy always inserts at least
one empty line after footers, so there is no real need (but it doesn’t hurt) to check the mark
in case footers are used. See Section 2.8.16, “Footer” for more information on footers.

Example 2.1. Trimmed EOF
package foo;¶
¶
class Foo {¶
}¶

Example 2.2. Trailing newline EOF
package foo;¶
¶
class Foo {¶
}¶
¶

Checkout read-only files
When enabled, Jalopy tries to checkout read-only files when it detects that a file is under
source control. Such behavior should be the default with most SCM providers anyway, but
if you happen to use a SCM system that does not work this way, this option might come
to the rescue. Please note that this feature is currently only available with the Eclipse and
IntelliJ IDEA plug-ins.

Since 1.9.2

Keep editor state
When enabled, Jalopy will keep the current editor state when formatting editor contents. If
an editor is currently dirty, i.e. contains unsaved changes, Jalopy will only update the editor.
Otherwise the file is changed on disk as well. Please note that depending on your IDE an
undo might not be possible when this option has been enabled.

Since 1.9

Use current file in preview
When enabled, Jalopy will use the source file that is currently opened in the editor as the
preview file for the configuration dialog. Otherwise custom code snippets are used instead.

MISC 32

The preview uses the actual editor file, not the current editor contents. One therefore needs
to persist any changes before they show up in the preview. Please note that you need to close
and re-open the configuration dialog before an option change will take effect.

Since 1.9

2.2.2 Misc
Lets you control miscellaneous settings.

Figure 2.15. General Misc settings page

2.2.2.1 History
In order to efficiently use formatting of projects with several developers, it is important to
be able to only format files which have changed. Jalopy provides a simple way to accomplish
this by calculating checksums. This stops formatting files that have just been updated from
source control from having being formatted (and time stamps updated) and thus prevents
checking-in files that actually weren’t touched by the developer later on.

To enable the history feature, select your preferred checksum method from the combo
box on the left. Adler32 is faster, CRC32 is slightly more accurate. The history information
of previous formatting runs will be saved in a file “history.dat”. Since Jalopy 1.0.3, you
can specify the directory where the file is actually stored. The default is to store the history
file in the current profile directory. The history file will grow over time, especially if one
manages several big projects which share the same profile. As all history entries are read
into memory at startup, it could eat up quite a bit of resources. Therefore a simple history
viewer is provided which enables you to selectively remove obsolete entries if need be.

33 CHAPTER 2 CONFIGURATION

View
You can use the View button to display the history viewer. Entries can be selectively removed
via the pop-up menu.

Directory
To change the directory where the history data is stored, press the Choose... button. A dialog
appears that lets you enter a new directory. If the history directory has been already changed
earlier, you can select from the last ten locations.

Figure 2.16. Choose history directory

Either enter a directory in the text field directly, or press the Browse... button to invoke a
directory browser that lets you search the file system for an existing folder or create a new
one.

Since 1.0.3

2.2.2.2 Backup
For security reasons, Jalopy creates a backup copy before it overwrites a file so the file may
be restored in case a severe error occurred during the write process. The original file is
stored in the backup directory and normally removed after the newly formatted file has
been successfully written.

Level
The backup level defines how many numbered backups should be retained (up to 30). The
default is to never keep any backups (i.e. the backup level is set to '0'). Use the slider to set
the number of backups you want to keep.

Directory
Specifies the directory where file backups are stored. You should leave this setting untouched
in order to make your code convention portable across different systems and platforms (See
Section 2.1.1.11, “Export code convention” for more information about possible portability
issues).

To change the backup directory, click on the Choose... button. A dialog appears that lets
you enter a new directory. If the backup directory has been already changed earlier, you can
select from the last ten locations.

MISC 34

Figure 2.17. Choose backup directory

2.2.2.3 Threads
During batch-formatting, Jalopy can divide the work onto several processors and/or cores
to speed up processing. If you run Jalopy on a multi-processor or multi-core system, use
the slider to set the number of processors or cores Jalopy should utilize.

2.2.2.4 Force separator
Lets you specify whether and what line ending character(s) should be forced. Enabling the
check box causes the selected line separator to be forced for newly formatted files. You can
choose from one of the two common platform styles (Unix, Windows) to enforce a specific
line terminator. Or select Platform default if you want to obey the line terminator of your
platform. Choosing Preserve original keeps the style of the source files, but please note that
Jalopy does not support mixed line separators. It will use the style of the first line separator
found in a source file for the complete file!

When left disabled, the default behavior depends on the used plug-in: The Ant, Console
and Maven plug-ins preserve the original line separator by default (this may be overridden
via the “fileformat” attribute, the “format” command-line option, or the “fileFormat” pa-
rameter). The Eclipse 2.x and NetBeans plug-ins preserve the original format, too. All other
plug-ins use the corresponding IDE setting (sometimes called line terminator or end-of-
line characters).

Since 1.2.1

2.2.2.5 Force Encoding
Lets you specify a specific output encoding to be used to write files. Enabling the check box
causes the selected encoding to be forced for newly formatted files. You can either choose
from one of the platform supported encodings or specify a specific encoding yourself.

When left disabled, the behavior depends on the used plug-in. When using one of the
IDE plug-ins, the file encoding as specified in the IDE would be used. But the Ant, Console
or Maven plug-ins would use the platform default encoding instead.

Since 1.9.1

TIP The Non-IDE plug-ins allow you to control input and output encoding
via configuration attributes/options. Please refer to the documentation
of the individual plug-ins for more information

35 CHAPTER 2 CONFIGURATION

2.2.3 Auto
Lets you control the auto-format settings.

Figure 2.18. Auto format settings page

On save
When enabled, formatting is performed whenever a dirty file is saved.

Since 1.0.3

On commit
When enabled, files are formatted prior to be committed back to the source code manage-
ment system (SCM). This feature is currently only available with IDEA 5.1 or later.

Since 1.8

On code generation
When enabled, source files are automatically formatted after they were generated from the
model. This feature is currently only available with IBM Rational Systems Developer.

Since 1.9.1

With project
When enabled, Jalopy tries to activate the profile with either the same name as or aliased by
the current IDE project before a file gets formatted. If no corresponding profile exists for the
current IDE project, formatting uses the settings of the active Jalopy profile. Please note that
for this feature to work efficiently, all profiles should have their auto-switch option enabled!

FILE TYPES 36

Since 1.0.2

2.3 File Types
Jalopy provides formatting support for different file types. On the File Types settings page
you can specify what file types should be supported and what files belong to a specific file
type.

Figure 2.19. File types settings page

2.3.1 File types
Lets you enable/disable support for specific file types. Formatting is enabled by adding a file
type to the list and disabled by removing it from the list. After a file type has been added,
all associated files are formatted by the corresponding formatting module.

Add...
Lets you add new file types. Pressing the button will invoke a dialog where you can select
from a fixed list of available file types to add.

37 CHAPTER 2 CONFIGURATION

Figure 2.20. Add file type

Select one or several file types and press the Add button to add them to the list. Please note
that Jalopy will automatically register some well known file extensions for each file type you
add. You might want to review these mappings and adjust them at your wish. Please refer
to Section 2.3.2, “File extensions” below.

Remove
Lets you remove an already defined file type and thus disable formatting for the file type.
Select one or several file types and press the Remove button to alter the list. Please note that
the button is only available if at least one file type is selected.

2.3.2 File extensions
Lets you associate specific file extensions with file types. For each file type you need to define
at least one unique file extension. During a run, Jalopy will determine the file extension of
a file and checks whether it is associated with a file type. If a file type can be found, Jalopy
will use the corresponding formatting module to format the file. Otherwise, the file will be
skipped and no formatting applied.

Add...
Lets you add new file extensions. Pressing the button will invoke a dialog where you can
enter a new file extension. Please note that the button is only available if a file type is selected
in the file types list.

Figure 2.21. Add file extension

Enter a file extension and press the Add button to add it to the list. File extensions can be
either specified by simply typing the bare name like “cpp” or prepending a dot or the “*.”
pattern before the name, e.g. “*.php”.

ENVIRONMENT 38

Remove
Lets you remove an already defined file extension. Select one or several file extensions and
press the Remove button to alter the list. Each file type must have at least one associated file
extension in order to enable formatting for the file type. If no file extension is associated
with a file type, no formatting will be applied for the file type! Please note that the button is
only available if both a file type is selected in the file types list and at least one file extension
in the file extensions list.

2.4 Environment
Lets you specify, view and adjust environment variables. Environment variables are simple
key/value pairs and can be used in header, footer and Javadoc templates to form expressions
that will be resolved during formatting. Embedded strings of the form $variable$ are
replaced with their corresponding value. This process is called variable interpolation.

Valid keys take the form [a-zA-Z_][a-zA-Z0-9_.-]* and are case-sensitive. Values
can be freely chosen.

Example 2.3. Header template with environment variables expressions
//--
// file : $file.name$
// project: $project$
//
// create: date: $date$
// by: $author$
//
//--
// copyright: BSJT Software License (see class documentation)
//--

Example 2.4. Sample environment variables
author = John Doo
project.description = Nukes: The OpenSource CMS

Jalopy lets you define custom variables, but also provides access to the Java environment
variables as well as some Jalopy-specific variables that are generally useful for common
source formatting needs.

2.4.1 Custom environment variables
Lets you view and/or modify the custom environment variables.

39 CHAPTER 2 CONFIGURATION

Figure 2.22. Custom Environment settings page

Use the Add... and Remove buttons to add or remove items to and from the list.

Figure 2.23. Add Custom Environment Variable

Select a variable and press the Edit... button if you want to adjust an existing environment
variable.

SYSTEM VARIABLES 40

Figure 2.24. Change Custom Environment Variable

Local Overrides
Custom user variables are stored as part of your code convention and are therefore shared
across a whole team. If you need to define user-specific information, e.g. to automatically
add the name of the developer who creates a class, this is possible via the local overrides
file “.user.properties”.

When found in the Jalopy settings directory, the specified variables will override any
other custom or system variables. The overrides file uses the common java.util.Properties
format.

Table 2.3. Typical .overrides locations for user “John Doo”

Operating System Jalopy .overrides Location

Linux /home/John Doo/.jalopy/.user.properties

Mac OS X /Users/John Doo/.jalopy/.user.properties

Solaris /export/home/John Doo/.jalopy/.user.properties

Windows Vista C:\Users\John Doo\AppData\Roaming\.jalopy\.user.properties

Windows XP C:\Documents and Settings\John Doo\.jalopy\.user.properties

Please consult your operating system documentation if your system uses different paths for
the user directories. Detailed information about the Jalopy settings directory can be found
in Chapter 2, Configuration.

Since 1.6

Example 2.5. Local Overrides File
author=John Doo
division=IT_DEV_AR

The above example would define/override the variables “author” and “division”. Please note
that the environment may be overwritten manually using the Console and Ant plug-ins as
well. Please refer to the corresponding plug-in documentation.

2.4.2 System environment variables
Lets you view your Java system environment variables. All system environment variables are
automatically available as well, but cannot be changed from within Jalopy.

http://java.sun.com/javase/6/docs/api/java/util/Properties.html

41 CHAPTER 2 CONFIGURATION

Figure 2.25. System environment variables

2.4.3 Local environment variables
Additionally, Jalopy provides some local variables that are automatically set depending on
the execution context. The current list of valid local variables reads as follows:

Table 2.4. Local environment variables

Name Description Scope Since

file The absolute path of the currently processed source file
(e.g. /usr/projects/test/MyFile.java)

global 1.0

file.name The name of the currently processed source file (e.g.
MyFile.java)

global 1.0

file.format A string representation of the line ending character(s)
used to write a file (UNIX, DOS or MAC)

global 1.0

convention The name of the currently active code convention (as
specified in the settings)

global 1.0

convention.desc The description of the currently active code convention
(as specified in the settings)

global 1.0

project The name of the currently active project/profile. For IDE
plug-ins this resolves to the current IDE project, other-
wise the active Jalopy profile name is used

global 1.0.1

project.desc The description of the currently active Jalopy profile global 1.0.1

tab.size The current indentation setting (as specified in the set-
tings)

global 1.0

date The current date, formatted in the style specified in the
Date/Time settings (see Section 2.4.5, “Date/Time” be-
low)

global 1.0

date.year The current year global 1.0

USAGE 42

Name Description Scope Since

date.long The current date, formatted as java.text.DateFormat
LONG style

global 1.0

date.full The current date, formatted as java.text.DateFormat
FULL style

global 1.0

time The current time, formatted in the style specified in the
Date/Time settings (see Section 2.4.5, “Date/Time” be-
low)

global 1.0

time.long The current time, formatted as java.text.DateFormat
LONG style

global 1.0

time.full The current time, formatted as java.text.DateFormat
FULL style

global 1.0

package.name The package name of the currently processed source file
(e.g. com.foo.mypackage)

global 1.0

class.name Holds the name of the currently processed class, inter-
face or enum

Javadoc class, in-
terface, field, con-
structor, method,
getter, setter

1.0

field.name Holds the name of the currently processed field Javadoc field 1.0

field.type Holds the type name of the currently processed field Javadoc field 1.0

method.name Holds the name of the currently processed method Javadoc method 1.0

param.name Holds the name of the currently processed Javadoc pa-
rameter tag

Javadoc construc-
tor, method

1.0

param.type Holds the type of the currently processed Javadoc pa-
rameter tag

Javadoc construc-
tor, method

1.0

exception.type Holds the type of the currently processed throws clause
member

Javadoc construc-
tor, method

1.0

return.type Holds the return type of the currently processed method Javadoc method 1.0

 property.name Holds the property name of the currently processed get-
ter/setter method. You can control the behavior during
variable interpolation with the “Format bean property”
option

Javadoc getter/set-
ter

1.1

 Property.Name Holds the capitalized property name of the currently pro-
cessed getter/setter method

Javadoc getter/set-
ter

1.9.3

2.4.4 Usage
Once defined, variables can be enclosed with dollar signs to form variable expressions and
embedded in comment templates. Variable expressions take the form $[a-zA-Z_][a-zA-
Z0-9_.-]*$.

Example 2.6. Sample variable expressions
$author$
$project$

During emitting, these expressions will be interpolated and the value of the variable inserted
into the source file.

http://java.sun.com/javase/6/docs/api/java/text/DateFormat.html#getDateInstance(int)
http://java.sun.com/javase/6/docs/api/java/text/DateFormat.html#getDateInstance(int)
http://java.sun.com/javase/6/docs/api/java/text/DateFormat.html#getDateInstance(int)
http://java.sun.com/javase/6/docs/api/java/text/DateFormat.html#getDateInstance(int)

43 CHAPTER 2 CONFIGURATION

Example 2.7. Header template with environment variable expressions
//--
// file : $file.name$
// project: $project$
//
// last change: date: $Date$
// by: $author$
// revision: $Revision$
//---
// copyright: BSJT Software License (see class documentation)
//--

Example 2.8. Header after interpolation
//--
// file : Byte.java
// project: bsjt-rt
//
// last change: date: $Date$
// by: John Doo
// revision: $Revision$
//---
// copyright: BSJT Software License (see class documentation)
//--

As you can see in the above example, if a variable is not defined, Jalopy won’t touch the
expression and simply preserves the original content. This way, the formatter works nicely
with other source code tools and SCM products.

The available user and local environment variables are provided from within the context
menu of the text component when customizing the different templates.

Figure 2.26. Insert variables via context menu

Please see Section 2.4.1, “Custom variables”, Section 2.4.2, “System variables” and Sec-
tion 2.4.3, “Local variables” for descriptions of the different available variable types.

DATE/TIME 44

2.4.5 Date & Time settings

Lets you define the patterns that should be used for the $date$ and $time$ expressions
(see Section 2.4.3, “Local variables”).

Figure 2.27. Environment Date & Time settings page

For a detailed description, the list of available patterns and further examples, please refer to
the Javadoc for the java.text.SimpleDateFormat class.

Date pattern
Lets you define the pattern that is used for the $date$ variable expression. The default
pattern is M/d/yy, which translates to something like 07/23/09.

Since 1.2

Time pattern
Lets you define the pattern that is used for the $time$ variable expression. The default
pattern is h:mm a, which translates to something like 02:56 PM.

Since 1.2

2.5 Exclusions
Lets you configure exclusion patterns that can be used to omit certain directories or indi-
vidual files from formatting.

Since 1.9.1

http://java.sun.com/javase/6/docs/api/java/text/SimpleDateFormat.html

45 CHAPTER 2 CONFIGURATION

Figure 2.28. Exclusions settings page

2.5.1 Exclusion patterns
Lets you define exclusion patterns that should be used for resource matching. You can spec-
ify an arbitrary amount of exclusion patterns. The patterns will be checked in sequence and
a file will only be formatted if none of the patterns matches the absolute file or parent di-
rectory path. The list component displays all patterns currently defined. Use the button bar
on the right to add, remove or change patterns and define the order in which the patterns
should be checked.

Add...
Lets you add new exclusion patterns. Pressing the button will invoke a new dialog where
you can enter the pattern. The used pattern syntax looks very much like the patterns used in
UNIX: * matches zero or more characters, ? matches one character. For example: to match
all Java files in a specific directory, you could use /test/foo/*.java. To match all files whose
name starts with “Foo”, you could use /test/foo/Foo.*.

To make things a bit more flexible, there is one extra feature which makes it possible to
match multiple directory levels. This can be used to match a complete directory tree, or a file
anywhere in the directory tree. To do this, ** must be used as the name of a directory. When
** is used as the name of a directory in the pattern, it matches zero or more directories. For
example: /test/** matches all files and directories under /test/, such as /test/Foo.java or /
test/foo/bar/Bar.java, but not /Foo.java.

Most often you probably want to exclude whole directories from being formatted, e.g. to
exclude some test data from being processed. This might be achieved by defining a pattern
like **/test/** to exclude everything below directories named “test”. If you only want to
exclude something in the project foo it might look like this: **/foo/**/testdata/**.

MESSAGES 46

Please note that patterns only allow forward slashes. Any backslashes will be automati-
cally replaced. The pattern matching itself is platform-agnostic and patterns match even on
platforms that don’t use the forward slash as the file separator.

Edit...
Lets you alter an already defined exclusion pattern. The button is only available if an item
is currently selected in the pattern list. Pressing the button will invoke a new dialog where
you can change the exclusion pattern for the currently selected item in the pattern list.

Remove
Lets you remove an already defined exclusion pattern. The button is only available if an
item is currently selected in the pattern list.

Up
Lets you change the position of an already defined exclusion pattern in the pattern list. The
button is only available if an item is currently selected in the pattern list and this is not
the topmost item.

Down
Lets you change the position of an already defined exclusion pattern in the pattern list.
The button is only available if an item is currently selected in the pattern list and this is
not the last item.

2.6 Messages
Controls the Jalopy message output. Given the sensitive nature of automatic source code
processing, it is quite important to keep informed about what is going on during the for-
matting process. The default configuration should be sufficient for most users, so there
should seldom arise the need to change anything here.

47 CHAPTER 2 CONFIGURATION

Figure 2.29. Messages settings page

2.6.1 Categories
Jalopy provides different message categories for setting the logging verbosity level. Changing
the threshold from ERROR to DEBUG successively displays more (albeit not necessarily
more useful) messages.

1. General

General purpose chain for I/O activity and all sorts of stuff that doesn’t fit elsewhere.

2. Parsing

Message chain for messages related to the language parsing.

3. Javadoc parsing

Message chain for messages related to the parsing of Javadoc comments.

4. Transforming

Message chain for messages related to the post-processing of the generated parse tree.

5. Printing

Message chain for the main printing engine.

6. Javadoc Printing

Message chain for Javadoc printing related messages.

LOGGING 48

2.6.2 Logging

Use logfile
Normally, messages are only printed to the console or the message view of your IDE, here
you can define that all messages should be written to a log file as well. This is most useful
when you use Jalopy as part of an automated build process. Press the Choose... button to
select the file you wish to write logging output to.

Figure 2.30. Choose Log File

You can either directly enter a location into the combo box, choose one from the history,
or press the Choose... button to display a file chooser that lets you interactively select a file.

Jalopy supports three different log file formats. A custom text format (.log), an HTML
format (.html) and a flat XML format (.xml). These formats can only be selected via the
file chooser.

Figure 2.31. Choose Log File format

Both the custom text format and the XML output are simple flat file formats, but the
HTML option produces an hierarchical report similar to that generated by the Javadoc tool.
Please note that this feature can be enabled from the Ant, Console and Maven plug-ins
directly, so it should be normally left disabled here.

49 CHAPTER 2 CONFIGURATION

Since 1.0

2.6.3 Misc

Show stacktrace
Enables or disables the inclusion of the current execution stack trace with error messages.
This proves useful in case you need to file a bug report as it reveals the source of the error.

Automatically show messages
When enabled, messages are automatically displayed when a formatting run finished. Oth-
erwise you manually need to activate the corresponding view in order to access messages.
This option only applies for the IDE plug-ins.

2.7 Repository
For certain features, Jalopy needs to know about the referenced types. When used inside
an IDE, Jalopy uses the provided infrastructure to access this information. But when run
standalone, such information in maintained in a simple database, called the type repository.
The repository page provides the means to maintain the database. But as an end user you
usually don’t have to deal with the repository directly and the provided functionality is
purely for forensic purposes.

Figure 2.32. Repository settings page

The type repository is only necessary for the Ant, Console and Maven plug-ins and used
for features that require type resolution like the import optimization. Unlike all other func-
tionality which works purely on the source code level, type information is extracted by an-

SEARCHING THE REPOSITORY 50

alyzing the binary files of a project. It is therefore a necessity that the class path is correctly
configured in order to be able to process all needed files.

Since 1.0.2

2.7.1 Searching the repository
To query the type repository for a specific type or package name, enter the information in
the text field and press the Search button. This is mostly useful only during developing of
the application and might never be used by end users. You can either search for a single
type name (e.g. “String”), a qualified type name (e.g. "java.lang.String") or a package name
(e.g. "java.lang").

2.7.2 Displaying info about the repository
To display some statistics about the type repository, press the Info button.

2.7.3 Adding libraries to the repository
To manually add a class library or directory to the repository, click on the Add... button,
select the library to add and click Add. This is most useful only during testing and debug-
ging, and does not provide much pratical need for the casual end-user.

2.7.4 Removing the repository
To remove the type repository from disk, press the Remove button. The database will be
closed if it is currently open and all stored information will be erased.

2.7.5 Initialization
During the initialization of the type repository all project class files are analyzed. Jalopy uses
a byte code reader (ASM) and attempts to gather both the class name and all its referenced
super class names for a given file. For 3rd party libraries, it can be possible that not all
super classes can be loaded (i.e. are defined or even be part of the project). In most cases
this should not be problematic, but it still potentially could hinder the successful execution
of the services that rely on the type repository later on. Therefore, users can control the
behavior of the repository here and specify how problems should be handled.

Log errors during loading
When enabled, Jalopy logs a warning when a class could not be fully analyzed. By default,
this option is enabled as it is recommended that you manually verify that none of the
mentioned files might pose problems later on. The type repository will be initialized despite
the problems. All dependent features will be available.

Since 1.0.3

Fail on errors during loading
When enabled, the type repository will not be initialized when an error occurs. All depen-
dent features will be disabled.

51 CHAPTER 2 CONFIGURATION

Since 1.0.3

2.8 Java
Lets you control all Java related settings.

Figure 2.33. Java settings page

2.8.1 Source compatibility
Lets you specify the Java platform compliance level.

Table 2.5. Compliance levels

Level Description

Java SE 6 assert and enum are recognized as reserved keywords. Section 2.8.5, “Insert @Override
annotation” may be enabled to have missing annotations inserted for overridden and imple-
mented methods

J2SE 5.0 assert and enum are recognized as reserved keywords. Section 2.8.5, “Insert @Override
annotation” may be enabled to have missing annotations inserted for overridden methods

J2SE 1.4 assert is recognized as a reserved keyword

J2SE 1.3 assert and enum are valid identifiers that can be used to name variables and/or methods

It is highly recommended to avoid strings that have become reserved keywords when tar-
geting older Java releases. It’s therefore probably a good idea to stick with at least J2SE 5.0
compliance.

KEEP ON SAME LINE 52

2.8.2 Keep on same line
Lets you print certain statements on just one line when possible, i.e. if they don’t exceed
the maximal line length.

Single if
When enabled, prints single if statements in one line when possible.

Since 1.2

Example 2.9. Standard single if block
if (cond) |
 return getMagicNumber(); |
 |
... |

Example 2.10. Compact single if block
if (cond) return getMagicNumber(); |
 |
... |

if
When enabled, prints the if part of if/else statements in one line when possible.

Since 1.2

Example 2.11. Standard if/else block
if (cond) |
 return getMagicNumber(); |
else |
 return -1 |

Example 2.12. Compact if of if/else block
if (cond) return getMagicNumber(); |
else |
 return -1; |

Please note that when the if part has been printed on one line, the following else if or
else part always starts on a new line.

else if
When enabled, prints the else if part of if/else statements in one line when possible.

Example 2.13. Standard else of if/else block
if (cond1) |
 return getMagicNumber(); |
else if (cond2) |
 throw new IllegalStateException(); |

Example 2.14. Compact else if block
if (cond1) |
 return getMagicNumber(); |
else if (cond2) throw new IllegalStateException(); |

53 CHAPTER 2 CONFIGURATION

Please note that when the else if part has been printed on one line, the following else
part always starts on a new line.

Since 1.2

Example 2.15. Compact if block
if (cond1) |
 return getMagicNumber(); |
else if (cond2) throw new IllegalStateException(); |
else |
 return 0; |

else
When enabled, prints the else part of if/else statements on one line when possible.

Since 1.2

Example 2.16. Standard else block
if (cond1) |
 return getMagicNumber(); |
else if (cond2) |
 throw new IllegalStateException(); |
else |
 return 0 |

Example 2.17. Compact else block
if (cond1) |
 return getMagicNumber(); |
else if (cond2) |
 throw new IllegalStateException(); |
else return 0; |

Enable for
You can narrow the scope for the above mentioned options by selecting whether all state-
ments should be printed on one line when possible or only throw or return statements.

Since 1.2

Example 2.18. All statements on same line
if (true) return result;
else if (false) System.out.println("unexpected condition");
else throw new Error();

Example 2.19. Only throw and return statements on same line
if (true) return result;
else if (false)
 System.out.println("unexpected condition");
else throw new Error();

2.8.3 Insert parentheses
Lets you insert superfluous parentheses automatically to avoid any doubts about how an
expression is evaluated.

MISCELLANEOUS 54

Multiple expressions
When enabled, Jalopy inserts parentheses around expressions that involve more than two
terms in order to clarify their precedence. It is always good advise to use more parentheses
than you think you need. They may not be required, but they add clarity and don’t cost
anything.

Example 2.20. How is this expression evaluated?
int result = 12 + 4 % 3 * 7 / 8;

Example 2.21. How is this expression evaluated? (continued)
int result = 12 + (4 % 3 * 7 / 8);

throw expression
Lets you insert parentheses around the throw expression to treat the statement like a func-
tion call.

Since 1.6

Example 2.22. Throw statement
if (condition)
 throw new IllegalStateException();

Example 2.23. Throw statement with parentheses
if (condition)
 throw (new IllegalStateException());

return expression
Lets you insert parentheses around the return expression to treat the statement like a func-
tion call.

Since 1.6

Example 2.24. return statement
if (condition)
 return true;

Example 2.25. return statement with parentheses
if (condition)
 return (true);

2.8.4 Miscellaneous

Only format Javadoc comments
When enabled, only Javadoc comments are formatted according to the current Javadoc
settings. Any surrounding source code is left untouched. When you enable this option, the
GUI switches its mode and hides all non-Javadoc related options. In order to display the
full set of options again, you have to disable the Javadoc-only option. You can control the
style of Javadoc comments through the Javadoc settings pages.

Since 1.8

55 CHAPTER 2 CONFIGURATION

Array brackets after identifier
Lets you choose where the brackets of array types should be placed. By default, Jalopy prints
the square brackets right after the array type.

Example 2.26. Array brackets after type
int[] a;

But C/C++ programmers may expect them to appear after the identifier instead.

Example 2.27. Array brackets after identifier
int a[];

Note that Java allows some strange freedom in the way arrays can be defined. Array brackets
may not only appear after either the type or an identifier, but a mixed style is also allowed
(though not recommended). Jalopy handles all styles well, but is only able to move the
brackets if the dimension of all array declarators is equal.

Example 2.28. Mixed array notation with equal dimensions
float[] f[][], g[][], h[][];

Jalopy would print the above example as

Example 2.29. Mixed array notation with equal dimensions after formatting
float[][][] f, g, h; // print brackets after type

float f[][][], g[][][], h[][][]; // print brackets after identifier

Mixed array declarators with different dimensions will be printed as-is.

Example 2.30. Mixed array notation with different dimensions
float[][] f[][], g[][][], h[];

Split multi-variables
When enabled, multi-variables are split into several variable declarations. Otherwise mul-
ti-variables are kept and printed according to the current settings.

Since 1.0.1

Example 2.31. Multi-variable
BigInteger q = null, p = null, g = null;

Example 2.32. Splitted multi-variable
BigInteger q = null;
BigInteger p = null;
BigInteger g = null;

Remove redundant modifiers
The Java Language specification allows certain modifiers that are redundant and should be
avoided. Enabling this option will ensure that these modifiers are removed where present.
The modifiers that will be removed are:

CODE GENERATION 56

• the abstract modifier of interface declarations (see Java Language specification, section
9.1.1).
public abstract interface Fooable { }

• the abstract and public modifiers of method declarations in interfaces (see the Java
Language specification, section 9.4).
public interface Fooable {
 public abstract reportFoo();
}

• the final modifier of method declarations that are either declared private or members
of class or enum declarations that are declared final (see the Java Language specification,
section 8.4.3.3).
public class Foo {
 private final performFooOperation() { }
}

public final class AnotherFoo {
 public final performAnotherFooOperation() { }
}

• the public, static and final modifiers of field declarations in interfaces (see the Java
Language specification, section 9.3).
public interface Foo {
 public static final int FOO_CONSTANT = 1;
}

Since 1.5

2.8.5 Code Generation

Insert serial version UID
Common sense dictates to declare an explicit serial version UID in every serializable class to
eliminate the serial version UID as a potential source of incompatibility (with the additional
benefit of a small performance gain). When this option is enabled and the class directly de-
rives from either java.io.Serializable or java.io.Externalizable, Jalopy inserts
a serial version UID for the class.

Example 2.33. Serial version UID
import java.io.Serializable;

public class Coordinate implements Serializable {
 private final static long serialVersionUID = -8973068452784520619L;

 ...
}

You can choose whether you want to have a default serial version UID added or whether the
serial version id should be generated from the actual class content. Please note that when
choosing the latter, you need to make sure that the source file has been compiled before
formatting is applied, because here the serial version UID is computed from the byte code.

http://java.sun.com/docs/books/jls/second_edition/html/interfaces.doc.html#30820
http://java.sun.com/docs/books/jls/second_edition/html/interfaces.doc.html#78651
http://java.sun.com/docs/books/jls/second_edition/html/classes.doc.html#11246
http://java.sun.com/docs/books/jls/second_edition/html/interfaces.doc.html#78642

57 CHAPTER 2 CONFIGURATION

Insert @Override annotation
When enabled, formatting automatically adds the @Override marker annotation for meth-
ods that override a method from a superclass. The @Override annotation (introduced with
J2SE 5.0) greatly reduces the chance of accidentally overloading when you really want to
override. The @Override annotation tells the compiler that you intend to override a method
from a superclass. If you don’t get the parameter list quite right so that you’re really overload-
ing the method name, the compiler emits a compile-time error. It’s therefore good practice
to always use the annotation when you override a method to eliminate potential bugs.

Since 1.8

Example 2.34. @Override annotation
public class Parent {
 int i = 0;
 void doSomething (int k) {
 i = k;
 }
}

class Child extends Parent {
 @Override
 void doSomething (long k) {
 i = 2 * k;
 }
}

This option is only available if the Java compliance level is set to J2SE 5.0 or higher. The
chosen compliance level affects the scope of the annotation. With J2SE 5.0, annotations
may only be inserted for methods that override a method in a super class. But since Java
SE 6.0, the override annotation is also allowed to annotate methods that implement an
interface. Depending on the chosen compliance level, Jalopy therefore performs the corre-
sponding action.

Insert final modifier to parameters
To prevent accidental changes to method parameters, it’s often considered good practice
to add the final modifier to the parameters. This way no insidious bugs that erroneously
changes the value of your parameters may happen.

Since 1.9.4

Example 2.35. Parameter declaration
public void doSomething(int i, int j) {
 ...
}

Example 2.36. Finalized parameter declaration
public void doSomething(final int i, final int j) {
 ...
}

Please note that the final modifier is only inserted if a parameter value is not already reas-
signed. So apart from using a specialized tool, this might actually be a handy way to detect
such cases. Also, for method prototypes in interfaces or abstract methods nothing gets in-
serted.

CODE GENERATION 58

Insert final modifier to local variables
Similar as with method parameters, reassigning variables is often considered a code smell,
because then the method does at least two different things, though every method should
ideally only do exactly one thing.

Since 1.9.4

Example 2.37. Local variable
public void doSomething(Data input) {
 Value result = calc(input);
 ...
}

Example 2.38. Finalized local variable
public void doSomething(Data input) {
 final Value result = calc(input);
 ...
}

Please note that the final modifier is only inserted if a variable is not already reassigned. So
this might actually be a handy way to detect such cases apart from using a specialized tool.

Insert logging conditional
Typically, logging systems have a method that submits a logging message like
logger.debug("some message: " + someVar);

This is fine, but if the debug level is set such that this message will NOT display, then time
is wasted doing the string marshalling. Thus, the preferred way to do this is
if (logger.isDebugEnabled()) {
 logger.debug("some message: " + someVar);
}

which will only use CPU time if the log message is needed. Enabling this switch will en-
sure that every logging call with the debug level set will be enclosed with the conditional
expression.

Use this feature with care! The current implementation only supports the Jakarta Log4J
toolkit and is somewhat weak in that every method call named debug is treated as a logging
call which could be incorrect in your application. However, it works fine for the l7dlog calls.

Insert implicit constructor
If you don’t define a constructor for a class, a default parameterless constructor is automat-
ically created by the compiler. To make this provision more visible, you can let Jalopy insert
the implicit constructor automatically for top-level classes.

Since 1.9.3

Example 2.39. Class without constructor
public class Watch {
}

59 CHAPTER 2 CONFIGURATION

Example 2.40. Class with default constructor
public class Watch {
 public Watch() {
 }
}

2.8.6 Braces
Controls the handling of curly braces (the Java block delimiters).

2.8.6.1 Layout
Lets you define how the enclosing block delimiters—open and closing curly brace—are
printed. You can either choose from a predefined set of common styles or build one on your
own. The brace style can either be configured individually for each block construct (details
view) or one global style used (global view).

Figure 2.34. Braces Layout settings page (Global view)

Use global style
Defines whether one brace style should be used for all block elements. When disabled,
a combo box appears that lets you define the desired brace style for the different block
elements individually.

Since 1.6

BRACES 60

Figure 2.35. Braces Layout settings page (Details view)

Configure style for
Lets you choose the block construct whose brace style should be configured. Select an item
to display the available brace style options for the chosen block construct. This option is
only available when the “Use global brace style” is disabled.

Since 1.6

Choose from common style
Lets you choose a pre-configured brace style. Choosing a style will adjust all individual
brace style options accordingly. The available styles are:

• C style.

Activates the C brace style. This style is sometimes called "Allman style" or "BSD style"
named for Eric Allman, a Berkeley hacker who wrote a lot of the BSD utilities in it.
The style puts the brace associated with a control statement on the next line, indented
to the same level as the control statement. Statements within the braces are indented to
the next level.

61 CHAPTER 2 CONFIGURATION

Example 2.41. C style
private void routine()
{
 if (!done)
 {
 doSomething();
 }
 else
 {
 System.out.println("Finished");
 }
}

Advantages of this style are that the indented code is clearly set apart from the containing
statement by lines that are almost completely whitespace, improving readability and the
ending brace lines up in the same column as the beginning brace, making it easy to find
the matching brace. Additionally, the blocking style delineates the actual block of code
associated from the control statement itself. Commenting out the control statement,
removing the control statement entirely, refactoring, or removing of the block of code is
less apt to introduce syntax errors because of dangling or missing brackets. Proponents of
this style often cite its use by ANSI and in other standards as justification for its adoption.
The motivation of this style is to promote code readability through visually separating
blocks from their control statements, deeming screen real estate a secondary concern.

• Sun Java style.

Activates the Sun brace style, a variant of the so called "K&R style" named after
Kernighan & Ritchie, because the examples in their famous "The C Programming Lan-
guage" [Kernighan88] reference are formatted this way. It keeps the first opening brace
on the same line as the control statement, indents the statements within the braces, and
puts the closing brace on the same indentation level as the control statement (on a line
of its own). Most of the standard source code for the Java API is written in this style.

Example 2.42. Sun style
private void routine() {
 if (!done) {
 doSomething();
 } else {
 System.out.println("Finished");
 }
}

Advantages of this style are that the beginning brace does not require an extra line by
itself, and the ending brace lines up with the statement it conceptually belongs to. The big
drawback here is that for block statements wrapped expressions require extra indentation
because otherwise the block body is difficult to gather which violates symmetry.

• GNU style.

Activates the GNU brace style. A brace style used throughout GNU EMACS and the
Free Software Foundation code. Braces are put on a line by themselves. The braces are
indented by 2 spaces, and the contained code is indented by a further 2 spaces.

BRACES 62

Example 2.43. GNU style
private void routine()
 {
 if (!done)
 {
 doSomething();
 }
 else
 {
 System.out.println("Finished");
 }
 }

Synchronize with
Lets you synchronize the brace style of the currently selected block construct with the brace
style of another one. Select an item in the list to have the brace style options updated
accordingly. This option is only available when the global brace style check box is disabled.

Since 1.6

Line Wrapping
Lets you manually adjust the line wrapping behavior for braces. If one of the common brace
styles does not satisfy your needs, you can manually adjust the appearance here.

Line break before left brace
Controls the line break behavior before the left curly brace. When enabled, a line break gets
printed before the left curly brace.

Example 2.44. No line break before left brace
if(true){
 doSomething();
}

Example 2.45. Line break before left brace
if(true)
{
 doSomething();
}

Line break after right brace
Controls the line break behavior after the left curly brace. When enabled, a line break gets
printed after the left curly brace whenever possible.

Example 2.46. No line break after right brace
try{
 doSomething();
}catch (Exception ex){
}

63 CHAPTER 2 CONFIGURATION

Example 2.47. Line break after right brace
try{
 doSomething();
}
catch (Exception ex){
}

Treat class/method blocks different
It is common in the Java developer community to have the opening brace at the end of
the line of the keyword for all types of blocks (Sun brace style). One may find the C++
convention of treating class/interface and method/constructor blocks different from other
blocks useful (K&R style). With this option you can achieve exactly that: if enabled, class/
interface and method/constructor blocks are then always printed in C brace style (line break
before left brace).

Example 2.48. Sun brace style
class VolkswagenBeetle extends AbstractAutomobile {
 public void tootHorn() {
 if (isNull) {
 throwConstraintViolated();
 } else {
 updateValue();
 }
 }
}

Example 2.49. Sun brace style, but class/method block treat different
class VolkswagenBeetle extends AbstractAutomobile
{
 public void tootHorn()
 {
 if (isNull) {
 throwConstraintViolated();
 } else {
 updateValue();
 }
 }
}

This option is only available when “Use global brace style” is enabled.

Treat class/method blocks different if wrapped
Enabling this option forces a line break before the left brace for class/interface or method/
constructor blocks (C style), if either the parameter list spawns several lines and a throws
clause follows, or one of the possible clauses (extends, implements, throws) was
wrapped.

This option is only available when “Use global brace style” is enabled.

Treat statement blocks different if wrapped
Using the Sun brace style can make it hard to identify the start of the block body. The
recommended workaround is to increase indentation for the expression statements during
line wrap (see “Block continuation indentation”). But it may be easier to change the style of
the block brace for such cases. Enabling this option does exactly that: It forces a line break

BRACES 64

before the opening brace for block statements (if/for/while etc.), if the statement expression
could not be printed in just one line.

Since 1.7

Example 2.50. Wrapped block statement (Sun brace style)
if (((x > 0) && (y > 0)) || ((x < 0) && (y < 0))
 && ((x > y) || (x < -y))) {
 reverseCourse();
}

Example 2.51. Wrapped block statement - left curly brace treated different
if (((x > 0) && (y > 0)) || ((x < 0) && (y < 0))
 && ((x > y) || (x < -y)))
{
 reverseCourse();
}

This option is only available when “Use global brace style” is enabled or the style for State-
ments is currently configured.

Strictly obey brace style
When “Prefer wrap after assignments” and “Wrap before left curly brace” are enabled, a line
break may be printed before the left curly brace of array initializers if the initializer does
not fit into one line. But one might prefer to leave the curly brace in the same line as the
variable declaration to obey the general brace style. With this option you can decide what
you favor most: consistent brace style or consistent wrapping after assignments.

The option is only available, if line breaks should be printed before left curly braces (see
“Wrap before left curly brace”) and either a global brace style (see “Use global brace style”)
used or the brace style for arrays (see “Configure brace style”) is configured.

Since 1.8

Example 2.52. Favor consistent brace style
private String[] data = {
 "aaaaaaaaaaaaaaaaassssssssssssssssssssss",
 "bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb",
 "cc",
 "dddddddddddddddddddddddddddddddddd",
 "eeeeeeeeeeeeeeeeeeeeeeeeeeee", "ffffffffffffffffffffffffffff"
 };

Example 2.53. Favor wrap after assignment
private String[] data =
 {
 "aaaaaaaaaaaaaaaaassssssssssssssssssssss",
 "bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb",
 "cc",
 "dddddddddddddddddddddddddddddddddd",
 "eeeeeeeeeeeeeeeeeeeeeeeeeeee", "ffffffffffffffffffffffffffff"
 };

White Space
Lets you adjust the indentation white space for curly braces individually.

65 CHAPTER 2 CONFIGURATION

Before left brace
Defines the amount of blank space that should be printed before the left curly brace.

Example 2.54. No white space before left brace
if(true){
 doSomething();
}

Example 2.55. One space before left brace
if(true) {
 doSomething();
}

Before right brace
Defines the amount of blank space that should be printed before the right curly brace.

Example 2.56. No white space before right brace
if(true){
 doSomething();
}else{
 quit()();
}

Example 2.57. One space before right brace
if(true){
 doSomething();
}else {
 quit()();
}

After right brace
Defines the amount of blank space that should be printed after the right curly brace.

Example 2.58. No white space after right brace
if(true){
 doSomething();
}else{
 quit()();
}

Example 2.59. One space after right brace
if(true){
 doSomething();
} else{
 quit()();
}

2.8.6.2 Misc
Controls miscellaneous brace options.

BRACES 66

Figure 2.36. Braces Misc settings page

Insert braces for
Per definition braces are superfluous on single statements, but it is a common recommen-
dation that braces should be always used in such cases. With this option, you can specify
whether missing braces for single statements should be inserted for the control statements
if, for, while and do-while and labeled statements inside switch blocks. Inserting and
removing braces is mutually exclusive.

Single if
When enabled, braces are inserted around the body of single if statements when necessary.

Since 1.9.1

Example 2.60. Brace insertion for if statement
if (condition)
 break;

would become
if (condition) {
 break;
}

if...else
When enabled, braces are inserted around the body of if...else statements when nec-
essary.

67 CHAPTER 2 CONFIGURATION

Example 2.61. Brace insertion for if-else statement
if (true)
 break;
else
 return;

would become
if (true) {
 break;
} else {
 return;
}

for
When enabled, braces are inserted around the body of for statements when necessary.

Example 2.62. Brace insertion of for statements
for (int i = 0; i < count; i++)
 System.out.println(i);

would become
for (int i = 0; i < count; i++) {
 System.out.println(i);
}

while
When enabled, braces are inserted around the body of while statements when necessary.

Example 2.63. Brace insertion for while statements
while (!isDone)
 doSomething();

would become
while (!isDone) {
 doSomething();
}

do...while
When enabled, braces are inserted around the body of do...while statements when nec-
essary.

Example 2.64. Brace insertion for do...while statements
do
 something();
while (condition);

would become
do {
 something();
} while (condition);

switch
When enabled, braces are inserted around the body of labeled statements inside switch
blocks when necessary. Braces are only inserted if the statement is not empty.

BRACES 68

Since 1.4

Example 2.65. Brace insertion for labeled statements
switch (c) {
 case 'a':
 case 'b':
 System.out.println();
 break;
}

would become
switch (c) {
 case 'a':
 case 'b': {
 System.out.println();
 break;
 }
}

Only insert when statement takes more than one line
When enabled, brace insertion only happens when the block statement takes more than
just one line to print.

Since 1.8

Example 2.66. Missing braces
if (arg == null)
 for (int i = 0; i < 10; i++)
 System.out.println("arg " + i);

Above you see an example with two block statements. Enabling brace insertion for if and
for statements would yield:

Example 2.67. Inserted braces
if (arg == null) {
 for (int i = 0; i < 10; i++) {
 System.out.println("arg " + i);
 }
}

You see braces inserted for both block statements. But when you’ve enabled the multi-line
option, you will get:

Example 2.68. Inserted braces limited to multi-line statements
if (arg == null) {
 for (int i = 0; i < 10; i++)
 System.out.println("arg " + i);
}

The statement of the if-block happens to be another block statement which is printed in
two lines here, therefore the braces are inserted for the if-statement. The for-statement on
the other hand does not have any braces inserted, because here the block can be printed
in just one line.

69 CHAPTER 2 CONFIGURATION

Remove braces
It is permissible to remove braces in case they are superfluous. This not only applies to
the control statements if, for, while and do-while, but also to every block in general
(remember a block is just a sequence of statements, local class declarations and local variable
declaration statements within braces). Inserting and removing braces is mutually exclusive.

Single if
When enabled, braces around the body of single if statements are removed when possible.

Since 1.9.1

Example 2.69. Brace removal for single if statements
if (true) {
 break;
}

would become
if (true)
 break;

if..else
When enabled, braces around the body of if...else statements are removed when pos-
sible.

Example 2.70. Brace removal for if statements
if (true) {
 break;
} else {
 return;
}

would become
if (true)
 break;
else
 return;

for
When enabled, braces around the body of for statements are removed when possible.

Example 2.71. Brace removal of for statements
for (int i = 0; i < count; i++) {
 System.out.println(i);
}

would become
for (int i = 0; i < count; i++)
 System.out.println(i);

while
When enabled, braces around the body of while statements are removed when possible.

BRACES 70

Example 2.72. Brace removal for while statements
while (!isDone) {
 doSomething();
}

would become
while (!isDone)
 doSomething();

do...while
When enabled, braces around the body of do...while statements are removed when pos-
sible.

Example 2.73. Brace removal for do...while statements
do {
 something();
} while (condition);

would become
do
 something();
while (condition);

switch
When enabled, braces are removed around the body of labeled statements inside switch
blocks when possible.

Since 1.8

Example 2.74. Brace removal for switch
switch (c) {
 case 'a':
 case 'b': {
 System.out.println();
 break;
 }
}

would become
switch (c) {
 case 'a':
 case 'b':
 System.out.println();
 break;
}

Blocks
When enabled, arbitrary block braces are removed when possible.

Example 2.75. Brace removal for blocks
{
 System.out.println();
}

would become

71 CHAPTER 2 CONFIGURATION

System.out.println();

Compact braces
Allows you to print statement blocks in just one line when possible, i.e. when the block
only contains one statement and does not exceed the maximal line length. Please note that
white space before a compacted block is not controlled by your general brace settings, but
with the "Space before braces" option.

Methods
When enabled, method and constructor bodies will be printed in one line when possible.

Since 1.2

Example 2.76. Standard method declaration
public int getMagicNumber() { |
 return 23; |
} |

Example 2.77. Compact method declaration
public int getMagicNumber() { return 23; } |

Single if
When enabled, single if statement bodies will be printed in one line when possible.

Since 1.2

Example 2.78. Standard if block
if (cond) { |
 return getMagicNumber(); |
} |

Example 2.79. Compact if block
if (cond) { return getMagicNumber(); } |

if
When enabled, statement bodies of the if the part of if/else statement will be printed in
one line when possible.

Since 1.2

Example 2.80. Standard if/else block
if (cond) { |
 return getMagicNumber(); |
} else { |
 return -1 |
}

Example 2.81. Compact if of if/else block
if (cond) { return getMagicNumber(); } |
else { |
 return -1; |
} |

BRACES 72

Please note that when the if block has been compacted, the following else if or else
statement always starts on a new line.

else if
When enabled, prints else if statement bodies of if/else statements in one line when
possible.

Example 2.82. Standard else of if/else block
if (cond1) { |
 return getMagicNumber(); |
} else if (cond2) { |
 throw new IllegalStateException(); |
} |

Example 2.83. Compact else if block
if (cond1) { |
 return getMagicNumber(); |
} else if (cond2) { throw new IllegalStateException(); } |

Please note that when the else if block has been compacted, the following else statement
always starts on a new line.

Since 1.2

Example 2.84. Compact if block
if (cond1) { |
 return getMagicNumber(); |
} else if (cond2) { throw new IllegalStateException(); } |
else { |
 return 0; |
} |

else
When enabled, prints else statement bodies in one line when possible.

Since 1.2

Example 2.85. Standard else block
if (cond1) { |
 return getMagicNumber(); |
} else if (cond2) { |
 throw new IllegalStateException(); |
} else { |
 return 0 |
} |

Example 2.86. Compact else block
if (cond1) { |
 return getMagicNumber(); |
} else if (cond2) { |
 throw new IllegalStateException(); |
} else { return 0; } |

Arrays
When enabled, array initializers will be printed in one line when possible.

73 CHAPTER 2 CONFIGURATION

Since 1.7

Example 2.87. Array initializer
String[] s = { |
 "First" |
 }; |

Example 2.88. Compact array initializer
String[] s = { "First" }; |

Enums
When enabled, enum declaration bodies will be printed in one line when possible.

Since 1.4

Example 2.89. Enum declaration
public enum Mode { |
 OPEN, CLOSE |
} |

Example 2.90. Compact enum declaration
public enum Mode { OPEN, CLOSE } |

Enum constants
When enabled, enum constants will be printed in one line when possible. This option is
only useful if you use constant-specific methods in your enums.

Since 1.4

Example 2.91. Enum constants with constant specific methods
public enum Operation { |
 PLUS { |
 double eval(double x, double y) { |
 return x + y; |
 } |
 }, |
 MINUS { |
 double eval(double x, double y) { |
 return x - y; } |
 }, |
 TIMES { |
 double eval(double x, double y) { |
 return x * y; |
 } |
 }, |
 |
 // Do arithmetic op represented by this constant |
 abstract double eval(double x, double y); |
} |

BRACES 74

Example 2.92. Compact enum constants with constant specific methods
public enum Operation { |
 PLUS { double eval(double x, double y) { return x + y; } }, |
 MINUS { double eval(double x, double y) { return x - y; } }, |
 TIMES { double eval(double x, double y) { return x * y; } }, |
 |
 // Do arithmetic op represented by this constant |
 abstract double eval(double x, double y); |
} |

Enable for
You can narrow the scope for the above mentioned options by selecting whether all state-
ments should be printed on one line when possible or only throw and return statements.

Since 1.2

All statements
When enabled, all statements are compacted when possible.

Example 2.93. All statements on same line
if (true) { return result; }
else if (false) { System.out.println("unexpected condition"); }
else { throw new Error(); }

Only throw and return
When enabled, only throw and return statements are compacted when possible. All other
statements are printed in normal block style.

Example 2.94. Only throw and return statements on same line
if (true) { return result; }
else if (false) {
 System.out.println("unexpected condition");
} else { throw new Error(); }

Empty braces
Controls how empty braces should be printed.

Cuddle braces
Prints both braces on one line right after the declaration or statement.

Example 2.95. Cuddled empty braces
class Foo {

 public void foo() { }
}

You can control the amount of white space that is printed before the left curly brace. See
“Cuddled braces indent” for more information.

Obey brace style
Causes the left curly brace of the empty brace block to be positioned according to the
current brace style settings. Depending on the style, the left brace is either printed directly

75 CHAPTER 2 CONFIGURATION

after an element or will have a line break printed before. This option is only available when
Section 2.8.6.2.4, “Cuddle braces” is enabled.

Since 1.7

Example 2.96. Cuddled braces, C brace style
class Foo
{

 public void foo() { }
}

Example 2.97. Cuddled braces, C brace style, obey brace style
class Foo
{

 public void foo()
 { }
}

Insert empty statement
Inserts an empty statement to make it obvious for the reader that the empty braces are
intentional. Please note that this option does not apply for class/interface and method/
constructor bodies, but is only used for control statements and blocks.

Example 2.98. Empty braces with empty statement
class Foo {

 public void foo() {
 ;
 }
}

2.8.6.3 Comments
Lets you control the insertion of trailing comments after a closing brace to assist matching
corresponding braces. Such comments are called identifying comments.

BRACES 76

Figure 2.37. Braces Comments settings page

Insert identifying comments for

Class
Lets you insert identifying comments for class declarations.

Since 1.3

Example 2.99. Identifying class comment
public class Foo {

 public String getName() {
 return ...;
 }

 ...
} // end class Foo

Interface
Lets you enable the insertion of identifying comments for interface declarations.

Since 1.3

Example 2.100. Identifying interface comment
public interface Fooable {

 public String getName();

 ...
} // end interface Fooable

77 CHAPTER 2 CONFIGURATION

Constructor
Lets you enable the insertion of identifying comments for constructor declarations.

Since 1.3

Example 2.101. Identifying constructor comment
public class Foo {

 public Foo() {
 super();
 } // end ctor Foo

 ...
}

Method
Lets you enable the insertion of identifying comments for method declarations.

Since 1.3

Example 2.102. Identifying method comment
public class Foo {

 public void getName() {
 return _name;
 } // end method getName

 ...
}

if...else
Lets you enable the insertion of identifying comments for if/else statement blocks.

Since 1.3

Example 2.103. Identifying if-else comment
if (true) {
 ...
} // end if

if (true) {
 ...
} else if (false) {
 ...
} // end if-else

if (true) {
 ...
} else if (false) {
 ...
} else {
 ...
} // end if-else

while
Lets you enable the insertion of identifying comments for while statement blocks.

BRACES 78

Since 1.3

Example 2.104. Identifying while comment
while (true) {
 ...
} // end while

for
Lets you enable the insertion of identifying comments for for statement blocks.

Since 1.3

Example 2.105. Identifying for comment
for (int i = 0; object.length; i++) {
 ...
} // end for

switch
Lets you enable the insertion of identifying comments for switch statement blocks.

Since 1.8

Example 2.106. Identifying switch comment
switch (state) {
 ...
} // end switch

try...catch...finally
Lets you enable the insertion of identifying comments for try/catch/finally blocks.

Since 1.3

Example 2.107. Identifying try-catch comment
try {
 ...
} catch (Throwable ex) {
 ...
} // end try-catch

try {
 ...
} catch (IOException ex) {
 ...
} finally {
 ...
} // end try-catch-finally

try {
 ...
} finally {
 ...
} // end try-finally

synchronized
Lets you enable the insertion of identifying comments for synchronized statement blocks.

79 CHAPTER 2 CONFIGURATION

Since 1.3

Example 2.108. Identifying synchronized comment
synchronized (this) {
 ...
} // end synchronized

Only add when brace body greater/equal than n lines
Lets you specify the size of a brace body that is necessary in order to see identifying com-
ments inserted. For example, you might want to require identifying comments only on
brace bodies that have at least 30 lines.

Since 1.3

2.8.7 Line Wrapping
Controls when and how lines are wrapped.

2.8.7.1 General
Lets you control the general line wrapping options.

Figure 2.38. Wrapping settings page

Wrap lines
Enables or disables automatic line wrapping. When enabled, Jalopy tries to keep lines within
the maximal line length and breaks statements across lines when necessary.

LINE WRAPPING 80

NOTE Disabling line wrapping does not mean that existing line breaks are kept,
but rather that no effort is taken to keep lines in between the maximal
line length upon reformatting

Line length
Lets you specify the maximal line length. Jalopy tries (more or less—depending on the used
indentation scheme) to limit each line within the given length.

Policy
Lets you define the wrapping policy for operators. Line wrapping will often occur with
statements that consist of several (possibly long) expressions. Here you specify whether line
wrapping should occur before or after the expression operator.

Wrap before operators
When enabled, line breaks will be inserted before operators.

Example 2.109. Wrap before operators (Standard indented)
if ((condition1 && condition2)
 || (condition3 && condition4)
 || !(condition5 && condition6)) {
 doSomethingAboutIt();
}

Wrap after operators
When enabled, line breaks will be inserted after operators.

Example 2.110. Wrap after operators (Standard indented)
if ((condition1 && condition2) ||
 (condition3 && condition4) ||
 !(condition5 && condition6)) {
 doSomethingAboutIt();
}

Please note that wrapping for the comma and dot operator is currently always performed
after the operators! If you happen to use Sun Brace styling, you might want to enable con-
tinuation indentation for blocks to let the statement body stand out. See “Block continua-
tion indentation” for more information.

Keep line breaks
Lets you specify for which code elements line breaks should be kept.

Declaration parameters
When enabled, existing line breaks after the commas of declaration parameters are kept.
Otherwise line wrapping is performed according to the current settings.

Since 1.6

Example 2.111. Nicely laid out method declaration
void test(String rName,
 boolean rPendandic) {
 ...
}

81 CHAPTER 2 CONFIGURATION

After formatting this code could look like this (because everything fits in one line):

Example 2.112. Method call after formatting
void test(String rName, boolean rPendandic) {
 ...
}

But with the "Keep line breaks" option enabled, it may look like this:

Example 2.113. Method declaration after formatting with kept line breaks (Endline
indented)

void test(String rName,
 boolean rPendandic) {
 ...
}

Alternatively, you might want to use the //J:KEEP+ pragma comment to keep line breaks
on a case by case basis.

Call arguments
When enabled, existing line breaks after the commas of call arguments are kept. Otherwise
line wrapping is performed according to the current settings.

Since 1.6

Example 2.114. Nicely laid out method call
obj.method1(test,
 test2,
 test3);

After formatting this code could look like this (because everything fits in one line):

Example 2.115. Method call after formatting
obj.method1(test, test2, test3);

But with the "Keep line breaks" option enabled, it may look like this:

Example 2.116. Method call after formatting with kept line breaks (Endline indented)
obj.method1(test,
 test2,
 test3);

Alternatively, you might want to use the //J:KEEP+ pragma comment to keep line breaks
on a case by case basis.

Operators
When enabled, existing line breaks before or after infix operators and the comma operator of
method declaration parameters or method call arguments are kept. Otherwise line wrapping
is performed according to the current settings.

Since 1.0

LINE WRAPPING 82

Example 2.117. Operators with forced line breaks
if ((condition1 && condition2)
 || (condition3 && condition4)
 || !(condition5 && condition6))
{
 ...
}

After formatting this code could look like this (because not everything fits in one line and
not line breaks are forced):

Example 2.118. Operators after formatting (wrapping is done on-demand)
if ((condition1 && condition2) || (condition3 && condition4) ||
 !(condition5 && condition6))
{
 ...
}

But with the "Keep line breaks" option enabled, it may look like this:

Example 2.119. Operators after formatting with kept line breaks
if ((condition1 && condition2) ||
 (condition3 && condition4) ||
 !(condition5 && condition6))
{
 ...
}

Please note that it does not matter what wrapping policy for operators you choose. Jalopy
will keep line breaks even if the operators move!

String concats
When enabled, existing line breaks before or after the plus operator of concatenated string
literals are kept. Otherwise line wrapping is performed according to the current settings.

Since 1.0.1

Example 2.120. Nicely laid out string constant
query = "select a.prop_text, "
 + " a.contest_title, "
 + " from contest a "
 + " where a.language_code = b.language_code "
 + " and b.bob = c.bob "
 + " and a.x = ? "
 + " order by a.bob, "
 + " c.language";

After formatting this code could look like this:

Example 2.121. String constant after formatting
query = "select a.prop_text, " + " a.contest_title, " +
 " from contest a " + " where a.language_code = b.language_code " +
 " and b.bob = c.bob " + " and a.x = ? " + " order by a.bob, " +
 " c.language";

But with the "Keep string concats" option enabled, it may look like this:

83 CHAPTER 2 CONFIGURATION

Example 2.122. String constant after formatting with �Keep line breaks� (Standard
indented)

query = "select a.prop_text, " +
 " a.contest_title, " +
 " from contest a " +
 " where a.language_code = b.language_code " +
 " and b.bob = c.bob " +
 " and a.x = ? " +
 " order by a.bob, " +
 " c.language";

Please note that it does not matter what wrapping policy for operators you choose. Jalopy
will keep line breaks even if the operators move!

Array elements
When enabled, existing line breaks after the separator comma between individual array
elements are kept. Otherwise line wrapping is performed according to the current settings
if there can be no pragma comment found that indicates otherwise.

Since 1.5

Example 2.123. Array declarations
String[] foo = new String[]
 {
 "foo",
 };

String[] bar = new String[]
 {
 "bar",
 "car",
 };

Example 2.124. Array declarations after reformat
String[] foo = new String[] { "foo", };

String[] bar = new String[] { "bar", "car", };

Example 2.125. Array declarations after reformat with �Keep line breaks�
String[] foo = new String[]
 {
 "foo",
 };

String[] bar = new String[]
 {
 "bar",
 "car",
 };

Example 2.126. Array declarations with pragma comment to keep line breaks
String[] foo = new String[] { "foo", };

String[] bar = new String[]
 { //J:KEEP
 "bar",
 "car",
 };

LINE WRAPPING 84

Alternatively, you might want to use the //J:KEEP+ pragma comment to keep line breaks
on a case by case basis.

Strictly obey �Keep line breaks�
When using endline indentation, line breaks may not always be kept because doing so would
break the endline indent contract and lead to inconsistent indentation behavior. Enabling
this option will cause Jalopy to keep existing line breaks even in such cases. Please note that
this option is only available when endline indentation is enabled and any of the "Keep line
breaks" options selected!

Since 1.8

Example 2.127. Method call
String firstSymbol = eraseNonBreakingSpaceFromSymbol(
 symbol1, symbol2);

When the option is disabled, Jalopy won’t keep the line break before the first call argument
because it goes against the endline indentation rules.

Example 2.128. Method call - endline indented
String firstSymbol = eraseNonBreakingSpaceFromSymbol(symbol1,
 symbol2);

But if you really favor keeping the line break, enabling the option would yield:

Example 2.129. Method call - line break kept
String firstSymbol = eraseNonBreakingSpaceFromSymbol(
 symbol1, symbol2);

Treat two string literals as string concatenation
This option lets you control what is considered a string concatenation. By default, Jalopy
treats the plus (+) operator as a string concatenation when either one of the operands is a
string literal. But you might want to narrow this behavior to only treat two string literals as
a string concatenation. Please note that this option is only available when any of the "Keep
line breaks" options is selected!

Since 1.8

Example 2.130. String concatenations
String query = "select a.prop_text, "
 + " a.contest_title, "
 + " from contest a "
 + " where a.language_code = b.language_code ";

String name = "Walther"
 + getNick();

When this option is disabled, all operators in the example above are considered string con-
catenations and therefore line breaks are kept.

85 CHAPTER 2 CONFIGURATION

Example 2.131. String concatenations
String query = "select a.prop_text, "
 + " a.contest_title, "
 + " from contest a "
 + " where a.language_code = b.language_code ";

String name = "Walther" + getNick();

When enabled, only those plus operators with two string literals on either side would retain
any line breaks like in the example above.

Miscellaneous

Disable wrapping for complex expressions
For complex expressions a common technique to enhance readability is to break the expres-
sion into several sub-expressions that can be stored in temporary variables that are placed
on different lines.

Example 2.132. Complex expression
if (conditionOne && |
 ("foo".equals(aStr) || "bar".equals(aStr)) |
 doSomething(); |

Example 2.133. Refactored expression
boolean conditionTwo = "foo".equals(aStr); |
boolean conditionThree = "bar".equals(aStr); |
 |
if (conditionOne && |
 (conditionTwo || conditionThree)) |
 doSomething(); |

In order to determine occurrences of complex expressions, enabling this option will cause
automatic line wrapping to be disabled when a complex expression gets printed. A warning
message will be logged in the Printer category that informs you about the location of the
expression.

Since 1.5

Example 2.134. Flagged complex expression
 |
if (conditionOne && (conditionTwo || conditionThree))
 doSomething(); |

Avoid bare left parenthesis
With Endline indentation and "Wrap on-demand after left parenthesis" or "Keep line break
for operators" enabled, line breaks after left parentheses may look ugly. If this option is
enabled, such line breaks are avoided. This option was mainly introduced to fix some un-
wanted behavior of earlier releases without breaking compatibility. It is recommended to
have it enabled.

Since 1.4

LINE WRAPPING 86

Example 2.135. Bare left parenthesis
this.customerNumber = new CustomerNumber(
 ServiceManager.createService());

Example 2.136. Avoided bare left parenthesis
this.customerNumber = new CustomerNumber(ServiceManager.createService());

Prefer within call after assignment
This option lets you define where a line wrap should preferably occur for call statements
after assignments that don’t fit into the maximal line length. The option is only meant to
let you adjust behavior when “Prefer wrap after assignments” has been enabled. Please see
explanation there.

Since 1.7

Example 2.137. Wrapping assignment expression
nuMBeans =
 NuvegaPropertiesHandler.getNNuvegaArrayProperty(
 NuvegaProperties.PROPERTIES_FILE_NUVEGA_BEAN_NAME);

Example 2.138. Prefer wrapping within call
nuMBeans = NuvegaPropertiesHandler.getNNuvegaArrayProperty(
 NuvegaProperties.PROPERTIES_FILE_NUVEGA_BEAN_NAME);

Prefer within call arguments
This option lets you define where a line wrap should preferably occur for call arguments
that does not fit into the maximal line length. Normally a line gets wrapped before a call
argument that don’t fit into the maximal line length. Enabling this option will cause a
line break inserted within the call argument for operator expressions when the operator
expression is not immediately preceded with or followed by another operator expression.

Since 1.5

Example 2.139. Wrapping method call (default behavior)
failed(output, "a" + "b", null, |
 "Failed to open prefs: " + e.getMessage()); |
 |

As you can see from the above example a line break is inserted before the third argument
as it would exceed the maximal line length when printed in the same line.

Example 2.140. Prefer wrapping within call argument
failed(output, "a" + "b", null, "Failed to open prefs: " |
 + e.getMessage()); |
 |

When the option is enabled, the line break happens within along the operator of the third
argument.

Example 2.141. Standard wrapping when two operator expressions
failed(output, "a" + "b", |
 "Failed to open prefs: " + e.getMessage()); |
 |

87 CHAPTER 2 CONFIGURATION

But if two operator expressions follow immediately, the standard behavior applies in order
to enhance readability.

2.8.7.2 Options
Lets you configure the line wrapping behavior for individual elements.

Figure 2.39. Wrapping options

Jalopy supports different wrapping strategies that can be applied to individual elements
as required. To configure wrapping for a specific element, locate the element in the tree
and select the current strategy. A pop-up menu will open that lets you change the strategy.
The preview instantly reflects any change so you can easily recognize what the impact of a
different strategy would be. The current available strategies are:

Never wrap
Disables wrapping for a specific element altogether. Please note that disabling wrapping
might lead to long lines that exceed the maximal line length and should therefore preferably
only be used with certain elements to avoid line wrapping at specific positions.

Example 2.142. Wrapping disabled for import declaration
 |
import com.mycompanyname.myprojectname.mypackagename.MyClassName;
 |

Example 2.143. Wrapping enabled for import declaration
import com.mycompanyname.myprojectname.mypackagename |
 .MyClassName; |

LINE WRAPPING 88

Wrap when necessary
Only wraps when otherwise the maximal line length limit would be exceeded. One could
refer to this policy as lower level or late line wrapping. This strategy favors the use of hor-
izontal space and leads to compact code, but might make certain constructs difficult to
read because there is sometimes no clear visual boundary between elements when used ex-
clusively.

Example 2.144. Wrap only when necessary after assignment
String value = "xxxxxxxxxxxxxxxxxxxxxxx" + "xxxxxxxxxxxxx" |
 + "xxxxxxxxxxxxx"; |

Example 2.145. Wrap when exceed after assignment
String value = |
 "xxxxxxxxxxxxxxxxxxxxxxx" + "xxxxxxxxxxxxx" + "xxxxxxxxxxxxx"; |

Wrap when exceed
Wraps if an element would not fit completely into the current line. Think of it as higher
level or early line wrapping. This is probably the most balanced strategy when available that
combines very readable results with moderate vertical space requirements.

Example 2.146. Wrapped within extends clause when necessary
interface Testable extends Transferable, Recordable, |
 Playable, Immutable, Serializable { |
} |

Example 2.147. Wrapped before extends keyword when exceed
interface Testable |
 extends Transferable, Recordable, Playable, |
 Immutable, Serializable { |
} |

Wrap all when first wrapped
Forces a line break for all related elements (like declaration parameters) if the first element
has been wrapped. This leads to very uniform and readable code at the expense of higher
vertical space requirements.

Example 2.148. Wrapped expression when necessary
while (|
 "picker".equals(xxxxxxxxxxxxxxxxxxxxxxxxxx.getName()) |
 && m.isStatic() && m.isPublic() && m.isFinal()) { |
 ... |
} |

Example 2.149. Wrapped all operators as first operand wrapped
while (|
 "picker".equals(xxxxxxxxxxxxxxxxxxxxxxxxxx.getName()) |
 && m.isStatic() |
 && m.isPublic() |
 && m.isFinal()) { |
 ... |
} |

89 CHAPTER 2 CONFIGURATION

Wrap all when exceed
Similar to Wrap all when first wrapped, but forces a line break for all related elements (like
declaration parameters), if the whole element would not fit into the current line.

Example 2.150. Wrapped expression when necessary
_userDatabase.addUser(|
 "John", "Doo", encryptPassword("password", secretKey), |
 "123 Nashville", "Surgrass"); |

Example 2.151. Wrapped all operators as first operand wrapped
_userDatabase.addUser(|
 "John", |
 "Doo", |
 encryptPassword("password", secretKey), |
 "123 Nashville", |
 "Surgrass"); |

Force wrap
Always wraps a specific element or elements (like call arguments). This can be useful to
ensure a consistent style e.g. for chained calls or parameter lists, but also to force line breaks
at unusual positions that would normally not be considered during line wrapping.

Example 2.152. Method declaration
public static int foo() {
 ...
}

Example 2.153. Force line break before method name
public static int
foo() {
 ...
}

Please note that not all strategies apply to all elements, and therefore you might be pre-
sented with a different set of strategies for each element. Below you find all currently avail-
able elements listed along with some short examples of the output with different wrapping
strategies.

Import declaration
For import declarations you can choose whether they should be wrapped along the dots if
otherwise the maximal line length would be exceeded or not at all.

Since 1.4

Example 2.154. Very long import declaration
 |
import com.mycompanyname.myprojectname.mypackagename.MyClassName;
 |

Example 2.155. Wrapped import declaration
import com.mycompanyname.myprojectname.mypackagename |
 .MyClassName; |

LINE WRAPPING 90

For general information about the available wrapping strategies, please refer to the wrapping
strategies overview.

Before declaration keyword
Lets you choose to force a line break before class, interface enum and @interface
keywords or disable line wrapping completely.

Since 1.4

Example 2.156. Class declaration
public class FooBar {
 ...
}

Example 2.157. Wrapped class declaration
public
class FooBar {
 ...
}

For general information about the available wrapping strategies, please refer to the wrapping
strategies overview.

After class keyword
Lets you force a line break after the class keyword or disable line wrapping altogether.

Since 1.3

Example 2.158. Class declaration
public class FooBar {
 ...
}

Example 2.159. Wrapped class declaration
public class
FooBar {
 ...
}

For general information about the available wrapping strategies, please refer to the wrapping
strategies overview.

Before extends keyword
Lets you either force a line break before the extends keyword of class/interface/enum dec-
larations, only print a line break if the extends clause would not completely fit into one
line, or print a line break only if the extends clause would otherwise exceed the maximal
line length. Only wrapping when absolutely necessary will require the least vertical space
and yield the most compact code, but readability might be affected.

91 CHAPTER 2 CONFIGURATION

Example 2.160. Wrapping necessary
interface InterfaceWithAHugeAndSillyName |
 extends Amicable, Adorable { |
 ... |
} |

Enforcing a line break before the keyword if the complete clause would not fit into one
line, provides a good balance between readability and space requirements.

Example 2.161. Extends clause does not fit into one line
 |
interface Testable extends Transferable, Recordable,
 Playable { |
 ... |
} |

Example 2.162. Line break because extends clause would not fit into one line
interface Testable |
 extends Transferable, Recordable, Playable { |
 ... |
} |

Always enforcing a line break before the keyword might be a viable strategy to achieve the
most consistent behavior at the expense of slightly higher vertical space requirements.

Example 2.163. No line wrapping necessary
interface Enyoyable extends Amicable, Adorable { |
 ... |
} |

Example 2.164. Wrapping forced
interface Enyoyable |
 extends Amicable, Adorable { |
 ... |
} |

You can control the space printed before the keyword via the indentation settings. See “Ex-
tends indent size” for more information. For general information about the available wrap-
ping strategies, please refer to the wrapping strategies overview.

After extends types
Lets you configure the wrapping behavior for the type names of extended classes.

Example 2.165. Class/interface extends types
public interface Channel extends Puttable, Takable {
 ...
}

Example 2.166. Wrapped class/interface extends types (Endline indented)
public interface Channel extends Puttable,
 Takable {
 ...
}

LINE WRAPPING 92

For general information about the available wrapping strategies, please refer to the wrapping
strategies overview.

Before implements keyword
Forces a line break before the implements keyword of a class declaration.

Example 2.167. implements keyword
public class SynchronizedBoolean implements Comparable, Cloneable {
 ...
}

Example 2.168. Wrapped implements keyword (Standard indented)
public class SynchronizedBoolean
 implements Comparable, Cloneable {
 ...
}

You can control the space printed before the keyword via the indentation settings. See “Im-
plements indent size” for more information. For general information about the available
wrapping strategies, please refer to the wrapping strategies overview.

After implements types
Forces a line wrap after each type name of the implemented classes.

Example 2.169. Class implements types
public class SynchronizedBoolean implements Comparable, Cloneable {
 ...
}

Example 2.170. Wrapped class implements types (Endline indented)
public class SynchronizedBoolean implements Comparable,
 Cloneable {
 ...
}

For general information about the available wrapping strategies, please refer to the wrapping
strategies overview.

Before throws keyword
Forces a line break before the throws keyword of a method/constructor declaration.

Example 2.171. throws keyword
private File getDestinationFile(File dest, String packageName,
 String filename) throws IOException {
 ...
}

Example 2.172. Wrapped throws keyword (Endline indented)
private File getDestinationFile(File dest, String packageName,
 String filename)
 throws IOException {
 ...
}

93 CHAPTER 2 CONFIGURATION

You can control the space printed before the keyword via the indentation settings. See
“Throws indent size” for more information. For general information about the available
wrapping strategies, please refer to the wrapping strategies overview.

After throws keyword
Forces a line break after the throws keyword.

Since 1.3

Example 2.173. Throws signature
public void foo()
 throws FooException,
 BarException {
 ...
}

Example 2.174. Throws signature (wrapped)
public void foo()
 throws
 FooException,
 BarException {
 ...
}

For general information about the available wrapping strategies, please refer to the wrapping
strategies overview.

After throws types
Forces a line wrap after each type name of the throws clause of a method/constructor dec-
laration.

Example 2.175. throws types
private File getDestinationFile(File dest, String packageName,
 String filename)
 throws IOException, FooException {
 ...
}

Example 2.176. Wrapped throws types (Standard indented)
private static final File getDestinationFile(File dest, String packageName,
 String filename)
 throws IOException,
 FooException {
 ...
}

Example 2.177. Wrapped throws types (Endline indented)
private File getDestinationFile(File dest, String packageName,
 String filename)
 throws IOException,
 FooException {
 ...
}

For general information about the available wrapping strategies, please refer to the wrapping
strategies overview.

LINE WRAPPING 94

After enum constant
When enabled, forces a line break after each enum constant of an enum declaration.

Since 1.2

Example 2.178. Enum constants
public enum Season {
 WINTER, SPRING, SUMMER, FALL
}

Example 2.179. Forced line break after enum constants
public enum Season {
 WINTER,
 SPRING,
 SUMMER,
 FALL
}

For general information about the available wrapping strategies, please refer to the wrapping
strategies overview.

Before field name
Forces a line wrap before the name of an instance field declaration. Please note that this
option does not apply for multi-variables.

Since 1.2

Example 2.180. Field declaration
private int _count = 0

Example 2.181. Field declaration with line break between before the name
private int
_count = 0

For general information about the available wrapping strategies, please refer to the wrapping
strategies overview.

After multi variable type
When enabled, a line break will be printed after the type identifier of the declaration.

Since 1.0

Example 2.182. Standard multi-variable
BigInteger q = null, p = null, g = null;

Example 2.183. Force wrap after type of multi-variables (Standard indented)
BigInteger
 q = null, p = null, g = null;

For general information about the available wrapping strategies, please refer to the wrapping
strategies overview.

95 CHAPTER 2 CONFIGURATION

After multi variable declarator
When enabled, each declaration of a multi-variable declaration gets always printed on a
new line. Otherwise, wrapping only occurs when necessary.

Since 1.0

Example 2.184. Standard multi-variable
BigInteger q = null, p = null, g = null;

Example 2.185. Force wrap after each declarator of multi-variables (Endline indented)
BigInteger q = null,
 p = null,
 g = null;

For general information about the available wrapping strategies, please refer to the wrapping
strategies overview.

Before method name
Forces a line wrap before the name of a method or constructor declaration.

Since 1.0.3

Example 2.186. Method declaration
public static int foo()
{
 ...
}

Example 2.187. Method declaration with line break between return type and name
public static int
foo()
{
 ...
}

For general information about the available wrapping strategies, please refer to the wrapping
strategies overview.

Parameters
Forces a line break after each parameter of a method or constructor declaration.

Example 2.188. Method declaration parameters
public static File create(File file, File directory, int backupLevel)
 throws IOException {
 ...
}

LINE WRAPPING 96

Example 2.189. Wrapped method declaration parameters (Endline indented)
public static File create(File file,
 File directory,
 int backupLevel)
 throws IOException {
 ...
}

For general information about the available wrapping strategies, please refer to the wrapping
strategies overview.

Chained method call
Lets you either force a line break before each call chain, preferably print a line break before
a call chain if the whole call cannot be printed in just one line, only print a line break before
a call chain when absolutely necessary to avoid breaking the line length limit, or disable
line wrapping before call chains altoghether.

TIP You can (and probably should) have the individual call chains aligned
for enhanced readability. See below for instructions how to achieve such
a style

Strictly enforcing a line break before each call chain is the simplest strategy, and leads to
very uniform and easy to read code, but has the highest vertical space requirements.

Example 2.190. Wrap always
buf.append("xxxxxxxxxxxxxxx")
 .append("xxxxx")
 .insert(0, "xxxxxxxxxxxxxx")
 .append("xxx")
 .insert(0, "xxx");

Wrapping all chains when the whole expression would not fit into one line, provides the
best compromise between enhanced readability and vertical space requirements.

Example 2.191. Wrap all when exceed
method("setName").withParameterTypes(String.class) |
 .in(person) |
 .invoke("Luke"); |
 |
field("name").ofType(String.class).in(person).set("Anakin"); |

Preferably wrapping before the call chain if the whole chain cannot be printed in one line,
is the most sensible approach if you want a more compact, yet readable result.

Example 2.192. Wrap when exceed
buf.append("xxxxxxxxxxxxxxx").append("xxxxx")
 .insert(0, "xxxxxxxxxxxxxx").append("xxx").insert(0, "xxx");

Simply wrapping when necessary is not recommended as it favors wrapping on the lower
level. Code is often even more compact, but readability might be compromised.

Example 2.193. Wrap when necessary
buf.append("xxxxxxxxxxxxxxx").append("xxxxx").insert(0,
 "xxxxxxxxxxxxxx").append("xxx").insert(0, "xxx");

97 CHAPTER 2 CONFIGURATION

Disable wrapping for chained calls might lead to code lines crossing the line length limit,
but naturally requires the least vertical space.

Example 2.194. Wrap never
 |
message.format(ERROR_SOURCE_ADDRESS).param(m_session.getAimName()).send();
 |
buf.append("xxxxxxxxxxxxxxx").append("xxxxx").insert(0, |
 "xxxxxxxxxxxxxx").append("AAA").insert(0, "xxx"); |

Disabling wrapping before call chains altogether, only makes a difference for calls without
arguments. Otherwise, wrapping may still happen within the argument list, as you can see
in the above example.

You can control the indentation for chained method calls with either “Indent dotted
expressions” or “Align chained method calls”. For enhanced readability, it’s probably best
to have chained calls aligned. Otherwise wrapped calls will be indented with the current
indentation strategy.

Example 2.195. Standard indented chained method call
buf.append("xxxxxxxxxxxxxxx")
 .append("xxxxx")
 .insert(0, "xxxxxxxxxxxxxx")
 .append("xxx")
 .insert(0, "xxx");

For general information about the available wrapping strategies, please refer to the wrapping
strategies overview.

Nested chained method call
Lets you either force a line break before each nested call chain, preferably print a line break
before a call chain if the whole call cannot be printed in just one line, only print a line
break before a call chain when absolutely necessary to avoid breaking the line length limit,
or disable line wrapping before nested call chains altogether.

Since 1.6

TIP You can (and probably should) have the individual call chains aligned
for enhanced readability. See below for instructions how to enable chain
alignment

Strictly enforcing a line break before each nested call chain is the simplest strategy, and leads
to very uniform and easy to read code, but has the highest vertical space requirements.

Example 2.196. Wrap always
mix(new DrinkBuilder().add("tequila")
 .withRocks()
 .withSalt()
 .drink());

Wrapping all chains when the whole expression would not fit into one line, provides the
best compromise between enhanced readability and vertical space requirements.

LINE WRAPPING 98

Example 2.197. Wrap all when exceed
mix(new DrinkBuilder().add("tequila") |
 .withRocks() |
 .withSalt() |
 .drink()); |
 |
mix(new DrinkBuilder().add("juice").withRocks().drink()); |

Preferably wrapping before a call chain if the whole chain cannot be printed in one line, is
the most sensible approach if you want a more compact, yet readable result.

Example 2.198. Wrap when exceed
mix(new DrinkBuilder().withIce()
 .drink("special flavored spiced rum",
 50));

Simply wrapping when necessary is not recommended as it favors wrapping on the lower
level. Code is often even more compact, but readability might be compromised.

Example 2.199. Wrap when necessary
mix(new DrinkBuilder().withIce().drink(
 "special flavored spiced rum", 50));

Disable wrapping for chained calls might lead to lines crossing the line length limit, but
naturally requires the least vertical space. Wrapping may still happen within the argument
list.

Example 2.200. Wrap never
 |
mix(new DrinkBuilder().add("juice").withRocks().drink());
 |

You can control the indentation for chained method calls with either “Indent dotted ex-
pressions” or Section 2.8.8.2.3, “Nested chained method calls”. For enhanced readability,
it’s probably best to have chained calls aligned. Otherwise wrapped calls will be indented
with the current indentation strategy.

Please note that you can control the alignment for chained method calls with the Sec-
tion 2.8.8.2.3, “Nested chained method calls” option. For general information about the
available wrapping strategies, please refer to the wrapping strategies overview.

Example 2.201. Chained method call
message.format(ERROR_SOURCE_ADDRESS).param (m_session.getAimName()).send();

Example 2.202. Wrapped chained method call (aligned)
message.format(ERROR_SOURCE_ADDRESS)

 .param (m_session.getAimName())
 .send();

Call arguments
Forces a line break after each argument of a method call.

99 CHAPTER 2 CONFIGURATION

Example 2.203. Method call
doSomething();
_userDatabase.addUser("Name", encryptPassword("password", _secretKey),
 "123 fake address");
doSomethingElse();

Example 2.204. Wrapped method call (Endline indented)
doSomething();
_userDatabase.addUser("Name",
 encryptPassword("password",
 _secretKey),
 "123 fake address");
doSomethingElse();

For general information about the available wrapping strategies, please refer to the wrapping
strategies overview.

Nested call arguments
Forces a line wrap after each argument of a method call if at least one argument is a method
call itself. This option can prove especially useful if one prefers to nest method calls as
arguments rather than adding local variables just to hold those arguments.

Example 2.205. Wrapped nested method call (Endline indented)
doSomething();
_userDatabase.addUser("Name",
 encryptPassword("password", _secretKey),
 "123 fake address");
doSomethingElse();

For general information about the available wrapping strategies, please refer to the wrapping
strategies overview.

Marker annotation
Lets you control the wrapping behavior of marker annotations. Marker annotations are
annotations with no elements, e.g. @Preliminary. There are four strategies you can choose
from:

Wrap when necessary Only issue a line break after a marker annotation if otherwise the maximal line
length limit would be exceeded

Wrap when exceed Issue a line break after a marker annotation if the declaration does not fit within
the maximal line length. Requires all marker annotations to appear before all
other modifiers

Wrap last Issue a line break after the last marker annotation. Requires all marker anno-
tations to appear before all other modifiers

Wrap always Issue a line break after each marker annotation. Requires all marker annotations
to appear before all other modifiers

NOTE You can ensure that marker annotations appear before other Java modi-
fiers via the modifier sorting settings, see Section 2.8.11.2, “Modifiers”
for more information

For general information about the available wrapping strategies, please refer to the wrapping
strategies overview.

Since 1.1

LINE WRAPPING 100

Example 2.206. Wrap when necessary
@Preliminary public class TimeTravel {
 ...
}

Example 2.207. Wrap after last
@Preliminary
public class TimeTravel {
 ...
}

Example 2.208. No line break after marker annotation when modifier(s) before
public @Preliminary class TimeTravel {
 ...
}

Parameter marker annotation
Lets you control the wrapping behavior of marker annotations that appear within declara-
tion parameters. There are two strategies you can choose from:

Wrap never Never issue a line break after a marker annotation

Wrap when necessary Only issue a line break after a marker annotation if otherwise the maximal line
length limit would be exceeded

The second strategy only makes sense when using one of the endline indentation strategies.
Otherwise line wrapping will preferably happen after the left parenthesis when necessary.

Since 1.9.3

Example 2.209. Wrap never
public Result find(@Name String rName) {
 ...
}

Example 2.210. Wrap when necessary
 |
public Result find(@Name |
 String rName) { |
 ... |
} |

For general information about the available wrapping strategies, please refer to the wrapping
strategies overview.

After left parenthesis
Lets you control the wrapping behavior of the left parenthesis of normal and single-member
annotations. You can avoid a line break altogether, only print a line break if the annotation
would otherwise exceed the maximal line length, or print a line break whenever an anno-
tation takes more than just one line.

Never wrapping is the best choice when using Section 2.8.8.1.1, “Strict Endline”, but
with the other indentation strategies it depends on your preference and the annotations you
use whether a line break is desirable. If you don’t want to disable wrapping for annotations
altogether, it is recommended to allow a line break after the left parenthesis.

101 CHAPTER 2 CONFIGURATION

Since 1.9.2

Example 2.211. Never wrap, endline indent
@WebService(name = "com.company.FooDemoService", |
 targetNamespace = "com.foo.demo") |
public interface Foo { |
 @WebResult(targetNamespace = "com.company.jaxws.space.order")
 public Receipt placeOrder(Order order); |
} |

Example 2.212. Never wrap, standard indent
@WebService(name = "com.company.FooDemoService", |
 targetNamespace = "com.foo.demo") |
public interface Foo { |
 @WebResult(targetNamespace = "com.company.jaxws.space.order")
 public Receipt placeOrder(Order order); |
} |

Wrapping after the left parenthesis often provides more horizontal space and therefore can
keep your annotations within the maximal line limit. When using anything other than
Section 2.8.8.1.1, “Strict Endline” you probably want to at least enable this strategy if the
line length limit is important.

Example 2.213. Wrap when necessary
@WebService(name = "com.company.FooDemoService", |
 targetNamespace = "com.foo.demo") |
public interface Foo { |
 @WebResult(|
 targetNamespace = "com.company.jaxws.space.order") |
 public Receipt placeOrder(Order order); |
} |

Wrap when exceed is the most aggressive strategy that will preferably issue a line break after
the left parentheses whenever the annotation will take more than one line. This works best
when using “Standard indentation”, but might be desirable otherwise as well. But please
note that because of backward compatibility constraints “Wrap before right parenthesis”
must be enabled then.

Example 2.214. Wrap when exceed, standard indent
@WebService(|
 name = "com.company.FooDemoService", |
 targetNamespace = "com.foo.demo") |
public interface Foo { |
 @WebResult(|
 targetNamespace = "com.company.jaxws.space.order") |
 public Receipt placeOrder(Order order); |
} |

Example 2.215. Wrap when necessary, mixed endline
@WebService(|
 name = "com.company.FooDemoService", |
 targetNamespace = "com.foo.demo") |
public interface Foo { |
 @WebResult(|
 targetNamespace = "com.company.jaxws.space.order") |
 public Receipt placeOrder(Order order); |
} |

LINE WRAPPING 102

Annotation members
Lets you control the wrapping behavior of the member expressions of normal annotations.
You can disable wrapping altogether, only wrap after a member element when really neces-
sary, or force line wrapping after each element. Never wrapping can easily lead to long lines
which exceeded the maximal line length, but this might be acceptable.

Since 1.5

Example 2.216. No line break after members
 |
@WebService(name="FooDemoService", targetNamespace="com.foo.Namespace")
public class BitTwiddle { |
} |

Please note that for nested annotations, wrapping might still happen depending on your
parentheses preferences. If you want to disable wrapping for annotations altogether, you
need to set the parentheses options to "Never wrap" as well.

Example 2.217. No line break after members
@Author(|
 @Name(first = "Joe", last = "Hacker", location = "Redmond") |
) |
public class BitTwiddle { ... } |

If the line length limit it important, you should at least enable "Wrap when necessary".
This ensures that a line break will occur after an annotation member whenever the next
annotation would exceed the maximal line length.

Example 2.218. Wrap when necessary
@WebService(name = "FooDemoService", |
 targetNamespace = "com.foo.demo.Namespace") |
 |
public class BitTwiddle { ... } |

Taking to the extreme, you can enforce a line break after each annotation member. This
takes more vertical space, but leads to very unified and readable code. Probably best to allow
wrapping after the left parentheses when not using Section 2.8.8.1.1, “Strict Endline”.

Example 2.219. Force wrap
@WebService(|
 name = "FooService", |
 namespace = "com.foo.Namespace") |
public class BitTwiddle { ... } |

Example 2.220. Force wrap
@Author(
 @Name(
 first = "Joe",
 last = "Hacker"
)
)
public class BitTwiddle { }

For general information about the available wrapping strategies, please refer to the wrapping
strategies overview.

103 CHAPTER 2 CONFIGURATION

Before right parenthesis
Lets you control the wrapping behavior of the right parenthesis of normal and single-mem-
ber annotations. You can avoid a line break altogether, only print a line break if the anno-
tation would otherwise exceed the maximal line length, or print a line break whenever an
annotation takes more than just one line.

Never wrapping is a good choice from an aesthetical point of view and should suffice
for most needs. Only if you are anal about the maximal line length limit, you really should
select another strategy.

Since 1.9.2

Example 2.221. Never wrap, endline indent
@WebService(name = "com.company.FooDemoService", |
 targetNamespace = "com.foo.demo") |
public interface Foo { |
 @WebResult(targetNamespace = "com.company.jaxws.space.order")
 public Receipt placeOrder(Order order); |
}

Example 2.222. Never wrap, standard indent
@WebService(name = "com.company.FooDemoService", |
 targetNamespace = "com.foo.demo") |
public interface Foo { |
 @WebResult(targetNamespace = "com.company.jaxws.space.order")
 public Receipt placeOrder(Order order); |
}

Wrapping before the right parenthesis should be required only on very rare occasions, be-
cause preferably a line break should happen after the left parenthesis. But if you absolutely
strive to keep lines within the maximal line length limit, you should enable this strategy.

Example 2.223. Wrap when necessary
@WebResult(targetNamespace = "com.company.project.as.jaxws.space.order"|
) |
public interface Foo { } |

In case you prefer to let annotation members stand out, you can enable "Wrap when ex-
ceed". This way, a line break will be printed before the right parenthesis whenever the an-
notation list takes more than just one line to print and a line break has been printed after
the left parenthesis. You might want to enable the corresponding strategy for the left paren-
thesis option if you like such a style.

Example 2.224. Wrap when exceed, standard indent
@WebService(
 name = "com.company.FooDemoService",
 targetNamespace = "com.foo.demo"
)

Operators
For general information about the available wrapping strategies, please refer to the wrapping
strategies overview.

LINE WRAPPING 104

Chained index operator
Lets you specify whether wrapping along the dots of chained index operators should be
disabled.

Since 1.0

Example 2.225. Wrapped index operator
String value = objects[i].names[j]
 .first[k];

Example 2.226. Index operator (wrapping disabled)
String value =
 objects[i].names[j].first[k];

Note how in the above example wrapping does not occur along the dots of the index oper-
ator, but right after the assignment! For general information about the available wrapping
strategies, please refer to the wrapping strategies overview.

Ternary question
Forces a line wrap after the first operand.

Example 2.227. Wrapped ternary expression question mark (Endline indented)
String comma = spaceAfterComma
 ? COMMA_SPACE : COMMA;

Indentation for consecutive lines depends on the used indentation scheme. See Sec-
tion 2.8.8.1.1, “Strategies” for more information. You may further want to use continua-
tion indentation. For general information about the available wrapping strategies, please
refer to the wrapping strategies overview.

Ternary colon
Forces a line wrap after the second operand.

Example 2.228. Wrapped ternary expression colon (Endline indented)
String comma = spaceAfterComma ? COMMA_SPACE
 : COMMA;

If both switches are disabled, ternary expressions are printed in one line (if everything fits
in one line, that is).

Example 2.229. Ternary expressions
String comma = spaceAfterComma ? COMMA_SPACE : COMMA;

If both switches are enabled, you can force a style like the following:

Example 2.230. Wrapped ternary expressions (Standard indented)
String comma = spaceAfterComma
 ? COMMA_SPACE
 : COMMA;

105 CHAPTER 2 CONFIGURATION

For general information about the available wrapping strategies, please refer to the wrapping
strategies overview.

Qualifiers
Lets you specify whether wrapping along the dots of qualifiers should be disabled.

Since 1.0

Example 2.231. Wrapped qualifier
com.company.project
.MethodName.methodCall();

Example 2.232. Qualifier (wrapping disabled)
com.company.project.MethodName
.methodCall();

Note how in the above example, wrapping does not occur along the dots of the qualifier,
but before the method call! For general information about the available wrapping strategies,
please refer to the wrapping strategies overview.

Dotted expression
Lets you specify whether wrapping along dotted expressions should be disabled. This op-
tion covers all dotted expressions not handled by the more specific options for chained
method calls, index operators or qualifiers (see above). The option is enabled by default for
compatibility reasons. If you’re serious about the maximal line length limit, we recommend
to disable the option.

Since 1.5

Example 2.233. Wrapped dotted expression
boolean test = ((com.foo.highfly.test.internal.Foo) container) |
 .transportDebugFlag; |
 |

Example 2.234. Dotted expression (wrapping disabled)
boolean test = |
 ((com.foo.highfly.test.internal.Foo) container).transportDebugFlag;
 |

For general information about the available wrapping strategies, please refer to the wrapping
strategies overview.

After assignment
Lets you control the way wrapping takes action for assignments. If left disabled, line wrap-
ping preferably occurs as part of the expression printing. Otherwise wrapping will be per-
formed right after the assignment whenever the expression cannot be printed in just one
line.

LINE WRAPPING 106

Example 2.235. Prefer wrap along the expression
this.interessentenNr = new InteressentenNr(
 Fachschluesselerzeugung.createService()
 .getNeuerFachschluessel(
 FachschluesselerzeugungService.FACHSCHLUESSEL_KZ_INTERESSENT
)
);

Example 2.236. Prefer wrap after assignment
this.interessentenNr =
 new InteressentenNr(
 Fachschluesselerzeugung.createService()
 .getNeuerFachschluessel(
 FachschluesselerzeugungService.FACHSCHLUESSEL_KZ_INTERESSENT
)
);

For general information about the available wrapping strategies, please refer to the wrapping
strategies overview.

After return
Lets you control the wrapping behavior for return statements. When enabled, a line break
is inserted after the return statement when the expression would exceed the maximal line
length.

Since 1.2.1

Example 2.237. return statement
return ((getKey() == null) ? (other.getKey() == null) |
 : getKey().equals(other.getKey())); |

Example 2.238. Prefer wrapping after return statement
return |
 ((getKey() == null) ? (other.getKey() == null) |
 : getKey().equals(other.getKey())); |

For general information about the available wrapping strategies, please refer to the wrapping
strategies overview.

After left parenthesis
Lets you control the wrapping behavior for parameter, statement and expression lists. When
left disabled, the first line break will be preferably inserted behind the first parameter or
expression and only occurs after the left parenthesis if the maximal line length would be
otherwise exceeded.

Example 2.239. Wrap after left parenthesis (disabled)
appServerReferencesVector.add(new AppServerReference(
 "RemoteApplicationManager",
 poa.create_reference_with_id(
 "RemoteApplicationManager".getBytes(),
 RemoteApplicationManagerHelper.id())));

When enabled, the line break will always occur behind the left parenthesis when the list
parameters, arguments or expressions cannot be printed in just one line.

107 CHAPTER 2 CONFIGURATION

Example 2.240. Wrap after left parenthesis (enabled)
appServerReferencesVector.add(
 new AppServerReference(
 "RemoteApplicationManager",
 poa.create_reference_with_id(
 "RemoteApplicationManager".getBytes(),
 RemoteApplicationManagerHelper.id())));

This option affects the output style of method/constructor declarations and calls, creator
calls and if-else, for, while and do-while blocks. As per default, the wrapped lines will
be indented using standard indentation, but you may want to apply another indentation
scheme. See Section 2.8.8.1.1, “Strategies” for more information. For general information
about the available wrapping strategies, please refer to the wrapping strategies overview.

Before right parenthesis
Prints a line break before the right parenthesis of parameter or expression lists when at
least one parameter/expression was wrapped. The parenthesis will be intended according
to the current indentation level. This switch affects the output style of method/constructor
declarations and calls, creator calls and if-else, for, while and do-while blocks.

Example 2.241. Right parenthesis (disabled)
public void severalParameters(String one,
 int two,
 String three,
 StringObject four,
 AnotherObject five) {
}

Example 2.242. Right parenthesis (enabled)
public void severalParameters(String one,
 int two,
 String three,
 StringObject four,
 AnotherObject five
) {
}

Both switches combined, looks like the following example:

Example 2.243. Left and right parenthesis
appServerReferencesVector.add(
 new AppServerReference(
 "RemoteApplicationManager",
 poa.create_reference_with_id(
 "RemoteApplicationManager".getBytes(),
 RemoteApplicationManagerHelper.id()
)
)
);

For blocks the output may go like this:

LINE WRAPPING 108

Example 2.244. Left and right parenthesis (wrapped)
if (
 "pick".equals(m.getName()) && m.isStatic() && m.isPublic()
) {
 pickFound = true;
} else if (
 "pick".equals(m.getName()) && m.isStatic() && m.isPublic()
) {
 pickFound = true;
}

For general information about the available wrapping strategies, please refer to the wrapping
strategies overview.

Grouping parentheses
Lets you control the wrapping behavior for grouping parentheses. When enabled, line
breaks are inserted after left and before right parentheses of grouped expressions to let the
expression(s) stand out.

Example 2.245. Grouping parentheses (standard indented)
if (
 !((bankverbindung instanceof ObjectValue)
 || (bankverbindung instanceof PrimitiveValue))
) {
 throw new RuntimeException();
}

Example 2.246. Wrapped grouping parentheses (standard indented)
if (
 !(
 (bankverbindung instanceof ObjectValue)
 || (bankverbindung instanceof TkPrimitiveValue)
)
) {
 throw new RuntimeException();
}

For general information about the available wrapping strategies, please refer to the wrapping
strategies overview.

Type parameter
When enabled, type parameters of parametrized (generic) types are wrapped, when neces-
sary.

Since 1.4

Example 2.247. Parameterized type that lead to exceeded maximal line length
 |
private final Map<Short, String> example = new HashMap<Short, String>();
 |

Example 2.248. Wrapped parameterized type (endline indented)
 |
private final Map<Short, String> example = new HashMap<Short, |
 String>(); |
 |

109 CHAPTER 2 CONFIGURATION

Please note that with Endline indentation enabled, wrapping only happens if both type
parameter names are either not single-lettered or contain one ore more bounds.

Example 2.249. Exceptions when using endline indentation
 |
public class Test<A, B extends Comparable & Cloneable> {
} |

For general information about the available wrapping strategies, please refer to the wrapping
strategies overview.

Labels
Forces a line wrap after labels.

Example 2.250. Label
// advance to the first CLASS_DEF or INTERFACE_DEF
LOOP: for (AST child = tree.getFirstChild();
 child != null;
 child = child.getNextSibling()) {
 switch (child.getType()) {
 case JavaTokenTypes.CLASS_DEF :
 case JavaTokenTypes.INTERFACE_DEF :
 next = child;
 break LOOP;

 default :
 break;
 }
 }

Example 2.251. Wrapped label (Standard indented)
// advance to the first CLASS_DEF or INTERFACE_DEF
LOOP:
 for (AST child = tree.getFirstChild();
 child != null;
 child = child.getNextSibling()) {
 switch (child.getType()) {
 case JavaTokenTypes.CLASS_DEF :
 case JavaTokenTypes.INTERFACE_DEF :
 next = child;
 break LOOP;

 default :
 break;
 }
 }

For general information about the available wrapping strategies, please refer to the wrapping
strategies overview.

Registry Keys
Forces line wrapping after assignments of public constants that are defined in a class whose
name ends with the “Registry” suffix.

Since 1.7

LINE WRAPPING 110

Example 2.252. Registry keys
class FooRegistry {
 public final static boolean ALLOW_FAKE_FOOS = "com.company.layer.Foo";
}

Example 2.253. Registry keys (wrapping forced)
class FooRegistry {
 public final static boolean ALLOW_FAKE_FOOS =
 "com.company.layer.Foo";
}

For general information about the available wrapping strategies, please refer to the wrapping
strategies overview.

After parameters/expressions
When enabled, this switch will cause all parameters/expressions to be wrapped, if and only
if the first parameter/expression of the list has been wrapped.

Example 2.254. Expression list (all wrapped)
if (
 "pick".equals(m.getName()) &&
 m.isStatic() &&
 m.isPublic()
) {
 pickFound = true;
} else if (
 "pick".equals(m.getName()) &&
 m.isStatic() &&
 m.isPublic()
) {
 pickFound = true;
}

For general information about the available wrapping strategies, please refer to the wrapping
strategies overview.

2.8.7.3 Arrays
Contains options to control the wrapping behavior for arrays.

111 CHAPTER 2 CONFIGURATION

Figure 2.40. Arrays settings page

Wrap as needed
Enabling this option means cause line breaks to be inserted, whenever an element would
otherwise exceed the maximal line length limit.

Example 2.255. Wrap as needed
String[] s = new String[] { |
 "first", "second", "third", "fourth",|
 "fifth", "sixth", "seventh", |
 "eighth", "ninth", "tenth", |
}; |

Wrap all when exceed
Forces a line break after every array element when all elements would not fit into the current
line limit.

Since 1.7

Example 2.256. All elements fit into line
String[] s = new String[] { |
 "first", "second", "third", "fourth", "fifth", "sixth", "seventh",|
}; |

INDENTATION 112

Example 2.257. Wrap all elements when line would get exceeded
String[] s = new String[] { |
 "first", |
 "second", |
 "third", |
 "fourth", |
 "fifth", |
 "sixth", |
 "seventh", |
 "eighth", |
}; |

Wrap after element
Forces a line break after every n-th element.

Example 2.258. Wrap after element 1
String[] s = new String[] { |
 "first", |
 "second", |
 "third", |
 "fourth", |
 "fifth", |
 "sixth", |
 "seventh", |
 "eighth", |
 "ninth", |
 "tenth", |
};

Please note that no checking is done regarding the maximal line length limit which might
easily lead to lines exceeding the maximal line length when you set n to something bigger
than '1'.

Example 2.259. Wrap after element 3
String[] s = new String[] { |
 "first", "second", "third",|
 "fourth", "fifth", "sixth",|
 "seventh", "eighth", "ninth",
 "tenth", |
} |

If neither option is enabled, the array elements will be printed in one line, right after the
left curly brace, i.e. automatic line wrapping will be disabled.

Please note that you can further customize the wrapping behavior for arrays with the
following options:

• Section 2.8.6.2.3, “Arrays”

• Section 2.8.7.1.2, “Array elements”

2.8.8 Indentation
Controls the indentation settings. Indentation is core to readability and describes the way
white space is used to emphasize the logical structure of a program—logically subordinated
elements are printed with increased indentation.

113 CHAPTER 2 CONFIGURATION

2.8.8.1 General
Lets you change the general indentation settings.

Figure 2.41. Indentation settings page

Strategies

Lets you choose the general strategy how lines should be indented. Jalopy supports several
indentation strategies with different characteristics. You can even use different strategies for
different elements, if you can’t decide on one global policy.

Changing the general indentation strategy in the tree widget will adjust all subordinated
elements that are configured to use the prior general indentation strategy as well.

Standard
With standard indentation, lines will be always indented according to the current inden-
tation level. The indentation level changes as the block or parentheses level changes. Stan-
dard indentation gives you great consistency: Because indentation always uses the same sizes
(multiples of the defined “Indent size”), source code is very uniformly layed out and the
white space gaps tend to be small.

When standard indentation is enabled, line wrapping will always try to keep lines within
the maximal line length.

Example 2.260. Method declaration
public void severalParameters(String one, int two,
 String three, StringObject four, AnotherObject five)
{
}

INDENTATION 114

Example 2.261. Method call
vector.add(new AppServer(
 "RemoteApplicationManager",
 poa.create_reference_with_id(
 "RemoteApplicationManager".getBytes(),
 RemoteApplicationManager.id())));

Example 2.262. Assignment
doublette[PflegeController.GEBURTSDATUM] =
 resultSetRow[i].field[0].substring(0, 2) + "." +
 resultSetRow[i].field[0].substring(2, 4) + "." +
 resultSetRow[i].field[0].substring(4, 6);

Mixed Endline
Mixed endline indentation preferably lays out code relative to the most recent left paren-
thesis, assignment or curly brace offset (the hotspots). Whenever rigorously orienting on
only the current hotspot would lead to a crossing of the maximal line length, the preceding
hotspot is checked. This process is done recursively, therefore in rare cases, this strategy
produces the exact same result as standard indentation. Mixed endline indentation uses
bigger white space gaps than standard indentation as code tends to move towards the right
edge—but this keeps related code more closely together. The downside is that indentation
is not so uniformly distributed and more vertical space might be occupied.

When mixed endline indentation is enabled, line wrapping will always try to keep lines
within the maximal line length.

Example 2.263. Method declaration
public void severalParameters(String one, int two,
 String three,
 StringObject four,
 AnotherObject five)
{
}

Example 2.264. Method call
vector.add(new AppServer(
 "RemoteApplicationManager",
 poa.create_reference_with_id(
 "RemoteApplicationManager"
 .getBytes(),
 RemoteApplicationManager
 .id())));

Example 2.265. Assignment
doublette[PflegeController.GEBURTSDATUM] =
 resultSetRow[i].field[0].substring(0, 2) + "." +
 resultSetRow[i].field[0].substring(2, 4) + "." +
 resultSetRow[i].field[0].substring(4, 6);

Strict Endline
Strict endline indentation always lays out code relative to the most recent left parenthe-
sis, assignment or curly brace offset (the hotspots). This way consecutive code sections are
somewhat easier to recognize at the possible downside of consuming more vertical and/or
horizontal space.

115 CHAPTER 2 CONFIGURATION

Strict endline indentation generally tries to keep lines within the maximal line length,
but favors aligning over wrapping, and thus will often lead to code crossing the maximal
line length.

NOTE It is recommend to avoid this strategy when possible, because depending
on your wrapping settings it can produce quite scary results. It’s mostly
available for historic reasons in order to provide backwards compatibility
and allow for a smooth transition phase

Example 2.266. Method declaration
public void severalParameters(String one, int two,
 String three,
 StringObject four,
 AnotherObject five)
{
}

Example 2.267. Method call
vector.add(new AppServer("RemoteApplicationManager",
 poa
 .create_reference_with_id("RemoteApplicationManager"
 .getBytes(),
 RemoteApplicationManager
 .id())));

Example 2.268. Assignment
doublette[PflegeController.GEBURTSDATUM] = resultSetRow[i]
 .field[0]
 .substring(0,
 2) +
 "." +
 resultSetRow[i]
 .field[0]
 .substring(2,
 4) +
 "." +
 resultSetRow[i]
 .field[0]
 .substring(4,
 6);

Regarding array initializers, any of the endline indentation strategies will cause the initializer
to be printed right after the assignment. But when enabled, standard indentation might
cause the initializer to be printed on a line of its own (but only when the initializer takes
more than one line to print).

Example 2.269. Array initializer (Endline indented)
String[] s = { "first" }; |
 |
String[] s = { |
 "first", |
 "second" |
 }; |

INDENTATION 116

Example 2.270. Array initializer (Standard indented)
String[] s = { "first" }; |
 |
String[] s = |
 { |
 "first", |
 "second" |
 }; |

If you want to enforce a line break before all array initializers, you need to disable the com-
pact brace printing for array initializers. See Section 2.8.6.2.3, “Arrays” for more informa-
tion.

Always increase indentation on hotspots
By default, Jalopy always increases indentation after certain code elements to emphasize
scope and nesting level. Depending on your settings, hotspots might be left curly braces,
left parentheses, operators and certain keywords like return and assert. Now, it can be that
indentation is increased in a way that could be seen as superfluous, because already one level
of indentation would be enough to indicate the basic logical structure of a code statement.

Example 2.271. Always increase indentation on hotspots
Object value = calculateValue(getFirstNumber(),
» » getSecondNumber(), getThirdNumber());

As you can see from the above example, if the option is enabled, indentation will be in-
creased on every hotspot (here the assignment and left parentheses), which for deeply nest-
ed code can easily take up quite some horizontal space. The second increase does not add
significant information. If you prefer a more dense layout, disabling the option will cause
indentation to be increased only when really necessary. The result often takes considerably
less horizontal space without loosing significant information.

Example 2.272. Only increase indentation when absolutely necessary
Object value = calculateValue(getFirstNumber(),
» getSecondNumber(), getThirdNumber());

Here, the indentation is only increased once within the statement and thus upon wrapping
the remaining call arguments are indented only one level.

Since 1.7

Sizes
Lets you set different indentation sizes.

Original Tab indent
For documents that contain real tabs, specifies the number of spaces per tab stop. Look in
your IDE editor or formatting settings for the “Tab Size” or “Tab Width” option and set
the Jalopy option to the value found there.

IMPORTANT Please be aware that it is essential to set the correct tab size. Oth-
erwise some indentations or alignments may fail

117 CHAPTER 2 CONFIGURATION

General indent
Specifies the number of spaces to use for general indentation (studies have found that 2 to
4 spaces for indentation is optimal).

Example 2.273. 2 space general indent
public class Preferences {
->private Preferences()
->{
->}

->public static void main(String[] argv) {
->->com.triemax.jalopy.swing.PreferencesDialog.main(argv);
->}
}

Example 2.274. 4 space general indent
public class Preferences {
--->private Preferences() {
--->}

--->public static void main(String[] argv) {
--->--->com.triemax.jalopy.swing.PreferencesDialog.main(argv);
--->}
}

Leading indent
Specifies the number of spaces to prepend before every line printed.

Example 2.275. 6 space leading indent
----->public class Preferences {
-----> private Preferences() {
-----> }

-----> public static void main(String[] argv) {
-----> com.triemax.jalopy.swing.PreferencesDialog.main(argv);
-----> }
----->}

Continuation indent
Specifies the number of spaces that should be inserted in front of continuation lines, i.e.
the consecutive lines in case of a line wrap. Please note that this option only takes effect if
continuation indentation is enabled. Refer to Section 2.8.8.2.2, “Continuation indent” for
information on how to enable continuation indentation.

Example 2.276. 2 space continuation indent
if ((condition1 && condition2)
 ->|| (condition3 && condition4)
 ->|| !(condition5 && condition6)) {
 doSomethingAboutIt();
}

INDENTATION 118

Example 2.277. 4 space continuation indent
if ((condition1 && condition2)
 --->|| (condition3 && condition4)
 --->|| !(condition5 && condition6)) {
 doSomethingAboutIt();
}

Comment indent
Specifies the number of spaces to insert between trailing comments and the preceding state-
ment.

Example 2.278. 3 space trailing comment indent
new String[] {
 "Sunday",-->// Sunday
 "Monday",-->// Monday
 "Tuesday",-->// Tuesday
 "Wednesday",-->// Wednesday
 "Thursday",-->// Thursday
 "Friday",-->// Friday
 "Saturday"-->// Saturday
}

Cuddled braces indent
Specifies the number of spaces to print before the left curly brace of cuddled empty braces.

Example 2.279. 3 space cuddled braces indent
try {
 in.close();
} catch (IOException ignored)-->{}

See Section 2.8.6.2.4, “Cuddle braces” for more information about the empty braces han-
dling.

Extends indent
When enabled, specifies the white space to print before the extends keyword in case it
was printed on a new line.

Example 2.280. extends indentation with 6 spaces
public interface Channel
------>extends Puttable, Takable {
 ...
}

Implements indent
Specifies the white space to print before the implements keyword in case it was printed
on a new line.

Example 2.281. implements indentation with 8 spaces
public class SynchronizedBoolean
------->implements Comparable, Cloneable {
 ...
}

119 CHAPTER 2 CONFIGURATION

Throws indent
Specifies the white space to print before the throws keyword in case it was printed on a
new line.

Example 2.282. throws indentation with 3 spaces
private static final File getDestinationFile(File dest, String packageName,
 String filename)
-->throws IOException, FooException {
 ...
}

2.8.8.2 Misc
Lets you control miscellaneous indentation settings.

Figure 2.42. Indentation Misc settings page

Indent

Indent class bodies
When enabled, indentation is increased for statements within class, interface, enum and
annotation type declarations. Disabling this option might only make sense when using the
GNU brace style.

Since 1.4

INDENTATION 120

Example 2.283. Indented class body
public class Foo
 {
 --->public Foo()
 ---> {
 ---> }

 --->public boolean isFoo(Object other)
 ---> {
 ---> return other instanceof Foo;
 ---> }
 }

Example 2.284. Class body without increased indentation
public class Foo
 {
 public Foo()
 {
 }

 public boolean isFoo(Object other)
 {
 return other instanceof Foo;
 }
 }

Indent method bodies
When enabled, indentation is increased for statements within method and constructor bod-
ies. Disabling this option might only make sense when using the GNU brace style.

Since 1.4

Example 2.285. Indented method body
public void toString()
 {
 --->return this.line + " " + this.column + " " + this.text;
 }

Example 2.286. Method body without increased indentation
public void toString()
 {
 return this.line + " " + this.column + " " + this.text;
 }

Indent “switch” bodies
The Sun Java code convention recommends a switch style where case statements are not
indented relative to the switch statement as a whole. However, this option allows you to
indent the case statements to make the entire switch statement stand out.

121 CHAPTER 2 CONFIGURATION

Example 2.287. Switch statement (unindented)
switch (prio) {
case Priority.ERROR_INT :
case Priority.FATAL_INT :
 color = Color.red;
 break;

case Priority.WARN_INT :
 color = Color.blue;
 break;

default:
 color = Color.black;
 break;
}

Example 2.288. Switch statement (indented)
switch (prio) {
--->case Priority.ERROR_INT :
--->case Priority.FATAL_INT :
---> color = Color.red;
---> break;

--->case Priority.WARN_INT :
---> color = Color.blue;
---> break;

--->default:
---> color = Color.black;
---> break;
}

Indent “case” bodies
When enabled, indentation is increased for statements within case statement bodies.

Since 1.4

Example 2.289. Indented case bodies
switch (prio) {
 case Priority.ERROR_INT :
 case Priority.FATAL_INT :
 --->color = Color.red;
 --->break;

 case Priority.WARN_INT :
 --->color = Color.blue;
 --->break;

 default:
 --->color = Color.black;
 --->break;
}

INDENTATION 122

Example 2.290. Case statements without increased indentation
switch (prio) {
 case Priority.ERROR_INT :
 case Priority.FATAL_INT :
 color = Color.red;
 break;

 case Priority.WARN_INT :
 color = Color.blue;
 break;

 default:
 color = Color.black;
 break;
}

Indent block bodies
When enabled, indentation is increased for statements within blocks. Disabling this option
might only make sense when using the GNU brace style.

Since 1.4

Example 2.291. Indented block
if (true)
 {
 --->doStuff();
 --->assertStuffDoneCorrectly();
 }

Example 2.292. Block without increased indentation
if (true)
 {
 doStuff();
 assertStuffDoneCorrectly();
 }

Indent labels
Specifies whether labels should be indented with the current indentation level.

Example 2.293. Unindented label
// advance to the first CLASS_DEF or INTERFACE_DEF
LOOP:
 for (AST child = tree.getFirstChild();
 child != null;
 child = child.getNextSibling()) {
 switch (child.getType()) {
 case JavaTokenTypes.CLASS_DEF :
 case JavaTokenTypes.INTERFACE_DEF :
 next = child;
 break LOOP;
 default :
 break;
 }
 }

123 CHAPTER 2 CONFIGURATION

Example 2.294. Indented label
--->--->// advance to the first CLASS_DEF or INTERFACE_DEF
--->--->LOOP:
 for (AST child = tree.getFirstChild();
 child != null;
 child = child.getNextSibling()) {
 switch (child.getType()) {
 case JavaTokenTypes.CLASS_DEF :
 case JavaTokenTypes.INTERFACE_DEF :
 next = child;
 break LOOP;

 default :
 break;
 }
 }

Indent dotted expressions
When enabled, indentation is increased for dotted expressions. This option is only present
for historic reasons—to be able to address some unwanted behavior without breaking back-
wards compatibility. It is recommended to have this option always enabled.

Since 1.9

Example 2.295. Unindented dotted expression
((org.omg.CORBA_2_3.portable.OutputStream) s)
.write_abstract_interface(o);

Example 2.296. Indented dotted expression
((org.omg.CORBA_2_3.portable.OutputStream) s)
 .write_abstract_interface(o);

Indent ternary operands
When enabled, indentation is increased for the operands of the ternary operator. This op-
tion is only present for historic reasons—to be able to address some unwanted behavior
without breaking backwards compatibility. It is recommended to have this option always
enabled.

Since 1.8

Example 2.297. Indented ternary operands
text.setValidationSpec(config.getSpecification(), |
 config.getAda(data |
 .hasTransmittal() |
 ? data |
 .getTransmitter()|
 .getElement() |
 : data |
 .getElement())); |

INDENTATION 124

Example 2.298. Unindented ternary operands
text.setValidationSpec(config.getSpecification(), |
 config.getAda(data |
 .hasTransmittal() |
 ? data |
 .getTransmitter() |
 .getElement() |
 : data |
 .getElement())); |

Indent first column comments
By default, all comments will be indented relative to their position in the code to avoid that
comments break the logical structure of the program. But as for certain kind of comments it
may be useful to put them at the first column, you can control here whether such comments
should be printed without indentation.

Example 2.299. First column comment
 public static Printer create(AST node) {

/*
 if (node == null) {
 return new NullPrinter();
 }
*/
 return create(node.getType());
 }

Example 2.300. Indented comment
 public static Printer create(AST node) {

 /*
 if (node == null) {
 return new NullPrinter();
 }
 */
 return create(node.getType());
 }

Continuation indent
Lets you specify extra indentation for consecutive lines of certain elements.

Declaration parameters
With standard indentation enabled, this option causes an extra increase of the indentation
level upon wrapping of method and constructor parameters. With endline indentation this
option is meaningless.

Example 2.301. Wrapped method parameters
public void aMethod(int param 1, int param2, |
 int param3) { |
 int a = param1 + param2 + param3; |
} |

125 CHAPTER 2 CONFIGURATION

Example 2.302. Wrapped method parameters with continuation indentation
public void aMethod(int param 1, int param2, |
 int param3) { |
 int a = param1 + param2 + param3; |
} |

Blocks
The Sun brace style could make seeing the statement body difficult. To work around this
problem, you may want to use continuation indentation in case you like this brace style.
This setting applies for if, for, while and do-while blocks.

Example 2.303. Non-continuation indentation
if ((condition1 && condition2)
 || (condition3 && condition4)
 || !(condition5 && condition6)) { // BAD WRAPS
 doSomethingAboutIt(); // MAKE THIS LINE EASY TO MISS
}

Example 2.304. Continuation indentation
if ((condition1 && condition2)
 || (condition3 && condition4)
 || !(condition5 && condition6)) {
 doSomethingAboutIt();
}

Refer to Section 2.8.6.1, “Layout” for the available brace style options.

Operators
When enabled, indentation will be increased before an operand will be printed.

Example 2.305. Ternary expression (endline indented)
String comma = spaceAfterComma
 --->? COMMA_SPACE
 --->: COMMA;

return statements
Lets you increase the indentation level after return statements. This is only meaningful
when a statement cannot be printed in one line.

Since 1.6

Example 2.306. return statement
return auswahlkriteriumComboBox.getUnselectedValueContent() |
.equals(auswahlkriteriumComboBox.getSelectedItem()); |

Example 2.307. return statement with continuation indentation
return auswahlkriteriumComboBox.getUnselectedValueContent() |
 .equals(auswahlkriteriumComboBox.getSelectedItem()); |

As you can see from the above examples, without continuation indentation it might happen
that wrapped lines are printed at the same indentation level as the return statement. It really
depends where the line wrapping takes place. The two following examples indent both no
matter what setting (though different, of course).

INDENTATION 126

Example 2.308. return statement
return auswahlkriteriumComboBox.getUnselectedValueContent().equals(|
 auswahlkriteriumComboBox.getSelectedItem()); |

Example 2.309. return statement with continuation indentation
return auswahlkriteriumComboBox.getUnselectedValueContent().equals(|
 auswahlkriteriumComboBox.getSelectedItem()); |

Align
Lets you control what elements should be visually aligned to each other.

Enum constants
Lets you align the parameter lists of enum constants. Please note that aligning only takes
place if “Wrap after enum constants” has been enabled as well.

Since 1.8

Example 2.310. Enum constants
public enum Code {
 NOT_READY((byte) 0x09),
 ERROR((byte) 0x10),
 ILLEGAL((byte) 0x11);
}

Example 2.311. Aligned enum constants
public enum Code {
 NOT_READY((byte) 0x09),
 ERROR ((byte) 0x10),
 ILLEGAL ((byte) 0x11);
}

Declaration parameters
When enabled, aligns the parameters of method/constructor declarations. This only applies
if all parameters will be wrapped; either because wrapping is forced or the max. line length
is reached. To force aligning, you have to enable the wrapping for method parameters. See
“Declaration parameters” for more information.

Example 2.312. Method declaration parameters
public static File create(final File file,
 File directory,
 int backupLevel) {
 ...
}

Example 2.313. Method declaration parameters (aligned)
public static File create(final File file,
 File directory,
 int backupLevel) {
 ...
}

127 CHAPTER 2 CONFIGURATION

Variable identifiers
When enabled, the identifiers of consecutive variable declarations are aligned. You can con-
trol what declarations are treated as consecutive with different chunk options. Refer to Sec-
tion 2.8.10.2.1, “Chunks” for more information.

Example 2.314. Variable identifiers
String text = "text";
int a = -1;
History.Entry entry = new History.Entry(text);

Example 2.315. Variable identifiers (aligned)
String text = "text";
int a = -1;
History.Entry entry = new History.Entry(text);

Assignments
When enabled, consecutive assignment expressions and the assignment parts of consecutive
variable declarations are aligned. You can control what statements are treated as consecutive
with different chunk options. Refer to Section 2.8.10.2.1, “Chunks” for more information.

Example 2.316. Variable assignments (aligned)
String text = "text";
int a = -1;
History.Entry entry = new History.Entry(text);

If both variable alignment options are enabled, you can achieve a style like the following:

Example 2.317. Variable identifiers/assignments (both aligned)
String text = "text";
int a = -1;
History.Entry entry = new History.Entry(text);

Chained method calls
When disabled, indentation happens according to the current indentation level.

Example 2.318. Method call chain (standard indented)
Schluesselerzeugung.createService()
.getNeuerSchluesselService(
 SchluesselService.SCHLUESSEL_KZ_INTERESSENT);

Otherwise indentation is performed relative to the column offset of the first chain link.

Example 2.319. Method call chain (aligned)
Schluesselerzeugung.createService()
 .getNeuerSchluesselService(
 SchluesselerzeugungService.SCHLUESSEL_KZ_INTERESSENT);

Please note that you can enforce line breaks for chained method calls, see “Wrap chained
method call”.

INDENTATION 128

Nested chained method calls
When disabled, indentation happens according to the current indentation level.

Since 1.6

Example 2.320. Method call chain (standard indented)
id = RefData.getSegmentId(RefData.getAccessor().getCutOff(fileInfo
 .getCutoffId())
 .getTheoreticalDate(),
 fileInfo.getExternalSenderId(),
 _fileType,
 fileInfo.getCustomerFormat()
 .getId());

Otherwise indentation is performed relative to the column offset of the first chain link.

Example 2.321. Method call chain (aligned)
id = RefData.getSegmentId(RefData.getAccessor()
 .getCutOff(fileInfo.getCutoffId())
 .getTheoreticalDate(),
 fileInfo.getExternalSenderId(),
 _fileType,
 fileInfo.getCustomerFormat()
 .getId());

Please note that you can force line breaks for nested chained method calls, see “Wrap nested
chained method call”.

Ternary expressions
If disabled, ternary expressions are printed according to the current indentation policy. See
Section 2.8.8.1.1, “Strategies” for more information.

Example 2.322. Ternary operators (standard indented)
alpha = (aLongBooleanExpression) ? beta |
: gamma; |

Example 2.323. Ternary operators (endline indented)
alpha = (aLongBooleanExpression) ? beta |
 : gamma; |

When enabled, the second operator will always be aligned relative to the first one.

Example 2.324. Ternary expressions (aligned)
alpha = (aLongBooleanExpression) ? beta |
 : gamma; |

Note that this option only takes effect, if indeed a line break was inserted before the second
expression. You can enforce such line breaks. See “Wrap ternary expression colon” for more
information.

Assertion expressions
When enabled, the second expression of assertion statements is aligned.

129 CHAPTER 2 CONFIGURATION

Example 2.325. Assertion expression (standard indented)
assert ((nBits & ~ALL_BITS) != 0) : "Invalid modifier bits: " +
 (nBits & ~ALL_BITS);

Example 2.326. Assertion expression (endline indented)
assert ((nBits & ~ALL_BITS) != 0) : "Invalid modifier bits: " +
 (nBits & ~ALL_BITS);

Example 2.327. Assertion expression (aligned)
assert ((nBits & ~ALL_BITS) != 0) : "Invalid modifier bits: " +
 (nBits & ~ALL_BITS);

Arrays
Forces alignment of the curly braces of array initializers with the declaration. This only
applies when using either the standard indentation policy or mixed endline indentation
policy, because here by default the braces are indented according to the current indentation
level and therefore do not align.

Since 1.0.3

Example 2.328. Array initialization (standard indented)
private static String [] sFields =
 {
 "LOCATION.ID",
 "TRACKING_EVENT.CREATE_TIME",
 "TRACKING_EVENT.EVENT_TIME",
 "TRACKING_EVENT.ORIGIN_TIME_ZONE_OFFSET",
 "TRACKING_EVENT.EVENT_TYPE",
 };

Example 2.329. Array initialization (standard indented, but aligned)
private static String [] sFields =
{
 "LOCATION.ID",
 "TRACKING_EVENT.CREATE_TIME",
 "TRACKING_EVENT.EVENT_TIME",
 "TRACKING_EVENT.ORIGIN_TIME_ZONE_OFFSET",
 "TRACKING_EVENT.EVENT_TYPE",
};

Right parenthesis
Forces alignment of wrapped right parentheses with the declaration or call. This only ap-
plies when using standard indentation policy, because here by default the parentheses are
indented according to the current indentation level.

Since 1.2.1

Example 2.330. Method call (standard indented, 2 spaces indent)
myMethod(
 getSomeValue(
 param1
),
 param2
);

INDENTATION 130

Example 2.331. Method call (standard indented, but aligned)
myMethod(
 getSomeValue(
 param1
),
 param2
);

Example 2.332. Method declaration (standard indented)
public MyCustomStringTemplate createTemplate(
 Map three, int one, // xxx
 String two // xxx
)
{
 ...
}

Example 2.333. Method declaration (standard indented, but aligned)
public MyCustomStringTemplate createTemplate(
 Map three, int one, // xxx
 String two // xxx
)
{
 ...
}

Anonymous inner classes
Lets you force alignment of anonymous inner brace blocks according to the current inden-
tation level. Only applies when standard indentation is used.

Since 1.6

Example 2.334. Anonymous inner class (standard indented)
Action action = new AbstractAction("action") {
 public void actionPerformed (ActionEvent ev) {
 }
 };

Example 2.335. Anonymous inner class (standard indented but aligned)
Action action = new AbstractAction("action") {
 public void actionPerformed (ActionEvent ev) {
 }
};

Endline comments
Aligns endline comments that belong together. You can control how Jalopy determines what
comments belong together with the Chunk settings.

Since 1.9

Example 2.336. Endline comments
if (m.tryMatch(h)) { // help match
 casHead(h, mn); // pop both h and m
} else { // lost match
 h.casNext(m, mn); // help unlink
}

131 CHAPTER 2 CONFIGURATION

Example 2.337. Aligned endline comments
if (m.tryMatch(h)) { // help match
 casHead(h, mn); // pop both h and m
} else { // lost match
 h.casNext(m, mn); // help unlink
}

2.8.8.3 Tabs
Lets you control the tab settings.

Figure 2.43. Indentation Tabs settings page

Use tabs to indent
Normally, Jalopy uses spaces to indent lines. If you prefer hard tabs, check this option. You
can change the original tab indent on the general indentation settings page, see the Original
Tab indent option.

Please note that it is very important that you specify the correct tab size for your
original sources on the general indentation page.

Example 2.338. Use tabs for indentation
» if (true) {
» » methodCall(param1,
» » » param2
» » » param3);
» }

Use only leading tabs
When enabled, tabs are only used up to the current brace level, spaces are used afterwards.

WHITE SPACE 132

Example 2.339. Leading indentation
» if (test()) {
» » methodCall(param1,
» » ····param2
» » ····param3);
» }

Use tabs in comments
When enabled, hard tabs are used for printing indentation in comments.

Since 1.2.1

Example 2.340. Comment that uses spaces for indentation
//······System.out.println("DEBUG: line=" + _line);

Example 2.341. Comment that uses tabs for indentation
//» »···System.out.println("DEBUG: line=" + _line);

2.8.9 White Space
The white space settings page lets you configure how white space characters are used to
separate individual syntax elements of source files. Making good use of spacing is considered
good programming style and greatly enhances developer comprehension, therefore Jalopy
provides a vast amount of flexibility to control white space behavior. Because of the sheer
amount of elements, you can choose between two views that group the available options
in different ways to provide a somewhat greater flexibility when adjusting the more than
150 individual options.

Choose view
Lets you choose between different views in which the white space options are presented to
the user. The available choices are:

• Group by Java Token

The token view groups the white space options by the Java separator and operator tokens
like commas, parentheses or assignments. This is the default and preferred view, because
ideally it takes little more than twenty adjustments to configure behavior for all available
options.

• Groupy by Java Element

The element view groups the white space options logically by the different available ele-
ments like declarations, control statements or expressions. This way it is easier to adjust
options for just one element as all related options are presented together.

Since 1.6

133 CHAPTER 2 CONFIGURATION

2.8.9.1 Token view
Figure 2.44. White Space Token View

Before operator
Lets you specify what operators should have a blank space printed before.

Assignment operator
Controls whether a blank space will be printed before assignment operators. The assignment
operators are: = += -= *= \= %= &= |= ^= <<= >>= >>>=

Example 2.342. Assignment operator
a=(b+c)*d;
a+=12;

Example 2.343. Assignment operator with space before
a =(b+c)*d;
a +=12;

Assignment operator in annotations
Controls whether a blank space will be printed before assignment operators in annotations.

Since 1.9

Example 2.344. Assignment operator
@Name(first="Joe",last="Hacker")

Example 2.345. Assignment operator with space before
@Name(first ="Joe",last ="Hacker")

WHITE SPACE 134

Bitwise operator
Controls whether a blank space will be printed before bitwise operators. The bitwise oper-
ators are: & | ^

Example 2.346. Bitwise operator
return(getOperatingSystem()&PLAT_UNIX)!=0;

Example 2.347. Bitwise operator with space before
return(getOperatingSystem() &PLAT_UNIX)!=0;

Logical operator
Controls whether a blank space will be printed before logical operators. The logical oper-
ators are: && ||

Example 2.348. Logical operator
if((LA(1)=='/')&&(LA(2)!='*'||(LA(2)=='*'&&LA(3)!='*'))) ...

Example 2.349. Logical operator with spaces around
if((LA(1)=='/') &&(LA(2)!='*' ||(LA(2)=='*' &&LA(3)!='*'))) ...

Math operator
Controls whether a blank space will be printed before mathematical operators. The math-
ematical operators are: + - / * %

Example 2.350. Mathematical operator
a=(b+c)*d;

Example 2.351. Mathematical operator with space before
a=(b +c) *d;

Relational operator
Controls whether a blank space will be printed before relational operators. The relational
operators are: == != < > <= >=

Example 2.352. Relational operator
if((LA(1)=='\n'||LA(1)=='\r')) ...

Example 2.353. Relational operator with space before
if((LA(1) =='\n'||LA(1) =='\r')) ...

Shift operator
Controls whether a blank space will be printed before shift operators. The shift operators
are: << >> >>>

Example 2.354. Shift operator
if(((1L<<i)&l)!=0) ...

Example 2.355. Shift operator with space before
if(((1L <<i)&l)!=0) ...

135 CHAPTER 2 CONFIGURATION

Postfix operator
Controls whether a blank space will be printed before postfix operators. The postfix oper-
ators are: ++ --

Since 1.6

Example 2.356. Postfix operator
int next = i++;

Example 2.357. Postfix operator with space before
int next = i ++;

String concat operator
Controls whether a blank space will be printed before the string concat operator.

Since 1.0.3

Example 2.358. String concat operator
a="a"+1;
b=1+"b";
c=1+2+3+"c";
d="d"+1+2+3;
e="e"+(1+2)+"e";

Example 2.359. String concat operator with space before
a="a" +1;
b=1 +"b";
c=1+2+3 +"c";
d="d" +1 +2 +3;
e="e" +(1+2) +"e";

After operator
Lets you specify what operators should have a blank space printed after.

Assignment operator
Controls whether a blank space will be printed after assignment operators. The assignment
operators are: = += -= *= \= %= &= |= ^= <<= >>= >>>=

Example 2.360. Assignment operator
a=(b+c)*d;
a+=12;

Example 2.361. Assignment operator with space after
a= (b+c)*d;
a+= 12;

Assignment operator in annotations
Controls whether a blank space will be printed after assignment operators in annotations.

Since 1.9

WHITE SPACE 136

Example 2.362. Assignment operator
@Name(first="Joe",last="Hacker")

Example 2.363. Assignment operator with space after
@Name(first= "Joe",last= "Hacker")

Bitwise operator
Controls whether a blank space will be printed after bitwise operators. The bitwise operators
are: & | ^

Example 2.364. Bitwise operator
return(getOperatingSystem()&PLAT_UNIX)!=0;

Example 2.365. Bitwise operator with space after
return(getOperatingSystem()& PLAT_UNIX)!=0;

Logical operator
Controls whether a blank space will be printed after logical operators. The logical operators
are: && ||

Example 2.366. Logical operator
if((LA(1)=='/')&&(LA(2)!='*'||(LA(2)=='*'&&LA(3)!='*'))) ...

Example 2.367. Logical operator with spaces around
if((LA(1)=='/')&& (LA(2)!='*'|| (LA(2)=='*'&& LA(3)!='*'))) ...

Complement operator
Controls whether a blank space will be printed after complement operators. The logical
operators are: ~ !

Example 2.368. Complement operator
f(!x);

Example 2.369. Complement operator with space after
f(! x);

Mathematical operator
Controls whether a blank space will be printed after mathematical operators. The mathe-
matical operators are: + - / * %

Example 2.370. Mathematical operator
a=(b+c)*d;

Example 2.371. Mathematical operator with space after
a=(b+ c)* d;

137 CHAPTER 2 CONFIGURATION

Relational operator
Controls whether a blank space will be printed after relational operators. The relational
operators are: == != < > <= >=

Example 2.372. Relational operator
if((LA(1)=='\n'||LA(1)=='\r')) ...

Example 2.373. Relational operator with space after
if((LA(1)== '\n'||LA(1)== '\r')) ...

Shift operators
Controls whether a blank space will be printed after shift operators. The shift operators
are: << >> >>>

Example 2.374. Shift operator
if(((1L<<i)&l)!=0) ...

Example 2.375. Shift operator with space after
if(((1L<< i)&l)!=0) ...

Prefix operator
Controls whether a blank space will be printed after prefix operators. The prefix operators
are: ++ --

Example 2.376. Prefix operator
int previous = --i;

Example 2.377. Prefix operator with space after
int previous = -- i;

Unary operator
Controls whether a blank space will be printed after unary operators. The unary operators
are: - +

Since 1.6

Example 2.378. Unary operator
int x = 3 * -4;

Example 2.379. Unary operator with space after
int x = 3 * - 4;

String concat operator
Controls whether a blank space will be printed after the string concat operator.

Since 1.0.3

WHITE SPACE 138

Example 2.380. String concat operator
a="a"+1;
b=1+"b";
c=1+2+3+"c";
d="d"+1+2+3;
e="e"+(1+2)+"e";

Example 2.381. String concat operator with space after
a="a"+ 1;
b=1+ "b";
c=1+2+3+ "c";
d="d"+ 1+ 2+ 3;
e="e"+ (1+2)+ "e";

Before comma
Lets you specify what commas should have a blank space printed before.

Annotation array
Controls whether a blank space will be printed before commas of annotation arrays.

Example 2.382. Annotation array
@Target({FIELD,METHOD,CONSTRUCTOR})
public class Foo { }

Example 2.383. Annotation array with space before comma
@Target({FIELD ,METHOD ,CONSTRUCTOR})
public class Foo { }

Annotation type member argument
Controls whether a blank space will be printed before commas of annotation member ar-
guments.

Example 2.384. Annotation
@Point(x=23,y=-3)
public class Foo { }

Example 2.385. Annotation with space before comma
@Point(x=23 ,y=-3)
public class Foo { }

Enum constant
Controls whether a blank space will be printed before commas of enum constants.

Example 2.386. Enum constants
enum Color{GREEN,BLUE}

Example 2.387. Enum constants with space before comma
enum Color{GREEN ,BLUE}

Enum constant argument
Controls whether a blank space will be printed before commas of enum constants.

139 CHAPTER 2 CONFIGURATION

Example 2.388. Enum constant arguments
enum Color{GREEN(0,255.0),BLUE(0,0,255)}

Example 2.389. Enum constant arguments with space before comma
enum Color{GREEN(0 ,255 .0),BLUE(0 ,0 ,255)}

extends/implements
Controls whether a blank space will be printed before the commas of extends and/or im-
plements types.

Extends type
Controls whether a blank space will be printed before the commas of extends types.

Example 2.390. Extends types
interface Fooable extends Doable,Readable {}

Example 2.391. Extends types with space before comma
interface Fooable extends Doable ,Readable {}

Extends type
Controls whether a blank space will be printed before the commas of implements types.

Example 2.392. Implements types
class Foo implements I0,I1,I2 {}

Example 2.393. Implements types with space before comma
class Foo implements I0 ,I1 ,I2 {}

Multiple declarations
Controls whether a blank space will be printed before the commas of multi-field and/or
multi-variable declarations.

Field
Controls whether a blank space will be printed before the commas of multi-field declara-
tions.

Example 2.394. Multi-field declaration
class Foo {
 int a=0,b=1,c=2,d=3;
}

Example 2.395. Multi-field declaration with space before commas
class Foo {
 int a=0 ,b=1 ,c=2 ,d=3;
}

Variable
Controls whether a blank space will be printed before the commas of multi-variable dec-
larations.

WHITE SPACE 140

Example 2.396. Multi-variable declaration
void foo() {
 int a=0,b=1,c=2,d=3;
}

Example 2.397. Multi-variable declaration with space before commas
void foo() {
 int a=0 ,b=1 ,c=2 ,d=3;
}

Declaration parameter
Controls whether a blank space will be printed before the commas of method and/or con-
structor declarations parameters.

Constructor

Example 2.398. Constructor declaration
Foo(int p1,int p2,int p3) {
}

Example 2.399. Constructor declaration with space before commas
Foo(int p1 ,int p2 ,int p3) {
}

Method

Example 2.400. Method declaration
void foo(int p1,int p2,int p3) {
}

Example 2.401. Method declaration with space before commas
void foo(int p1 ,int p2 ,int p3) {
}

Throws clauses
Controls whether a blank space will be printed before the commas of throws clauses of
method and/or constructor declarations.

Constructor
Controls whether a blank space will be printed before the commas of throws clauses of
constructor declarations.

Example 2.402. Constructor declaration throws clause
Foo() throws IOException,FooException {
}

Example 2.403. Constructor declaration throws clause with space before commas
Foo() throws IOException ,FooException {
}

141 CHAPTER 2 CONFIGURATION

Method
Controls whether a blank space will be printed before the commas of throws clauses of
method declarations.

Example 2.404. Method declaration throws clause
void foo() throws IOException,FooException {
}

Example 2.405. Method declaration throws clause with space before commas
void foo() throws IOException ,FooException {
}

Call arguments
Controls whether a blank space will be printed before the commas of call arguments.

Constructor
Controls whether a blank space will be printed before the commas of constructor call ar-
guments.

Example 2.406. Constructor call
Foo(int p1,int p2,int p3){
 super(p1,true);
}

Example 2.407. Constructor call space before commas
Foo(int p1,int p2,int p3){
 super(p1 ,true);
}

Method
Controls whether a blank space will be printed before the commas of method call argu-
ments.

Example 2.408. Method call
test(x,y);

Example 2.409. Method call space before commas
test(x ,y);

Creator
Controls whether a blank space will be printed before the commas of creator call arguments.

Example 2.410. Creator call
Point point=new Point(x,y);

Example 2.411. Creator call space before commas
Point point=new Point(x ,y);

Array initializer
Controls whether a blank space will be printed before the commas of array initializers.

WHITE SPACE 142

Example 2.412. Array initializer
int[] foo=new int[]{1,2,3};

Example 2.413. Array initializer with space before commas
int[] foo=new int[]{1 ,2 ,3};

for
Controls whether a blank space will be printed before the commas of for initializer and/
or incrementor parts.

Initializer
Controls whether a blank space will be printed before the commas of for initializer parts.

Example 2.414. for initializer
for(int i=0,j=array.length;i<array.length;i++) {}

Example 2.415. for initializer with space before commas
for(int i=0 ,j=array.length;i<array.length;i++) {}

Incrementor
Controls whether a blank space will be printed before the commas of for incrementor parts.

Example 2.416. for incrementor
for(int i=0,j=array.length;i<array.length;i++,j--) {}

Example 2.417. for incrementor with space before commas
for(int i=0,j=array.length;i<array.length;i++ ,j--) {}

Parameterized types
Controls whether a blank space will be printed before the commas of parameterized types.

Type parameter
Controls whether a blank space will be printed before the commas of type parameters.

Example 2.418. Type parameter
class GenericType<S,T>{}

Example 2.419. Type parameter with space before commas
class GenericType<S ,T>{}

Type argument
Controls whether a blank space will be printed before the commas of type arguments.

Example 2.420. Type argument
caller.<String,Element>foo();

Example 2.421. Type argument with space before commas
caller.<String ,Element>foo();

143 CHAPTER 2 CONFIGURATION

After comma
Lets you specify what commas should have a blank space printed after.

Annotation array
Controls whether a blank space will be printed after commas of annotation arrays.

Example 2.422. Annotation array
@Target({FIELD,METHOD,CONSTRUCTOR})
public class Foo { }

Example 2.423. Annotation array with space after comma
@Target({FIELD, METHOD, CONSTRUCTOR})
public class Foo { }

Annotation type member argument
Controls whether a blank space will be printed after commas of annotation member argu-
ments.

Example 2.424. Annotation
@Point(x=23,y=-3)
public class Foo { }

Example 2.425. Annotation with space after comma
@Point(x=23, y=-3)
public class Foo { }

Enum constant
Controls whether a blank space will be printed after commas of enum constants.

Example 2.426. Enum constants
enum Color{GREEN,BLUE}

Example 2.427. Enum constants with space after comma
enum Color{GREEN, BLUE}

Enum constant argument
Controls whether a blank space will be printed after commas of enum constants.

Example 2.428. Enum constant arguments
enum Color{GREEN(0,255.0),BLUE(0,0,255)}

Example 2.429. Enum constant arguments with space after comma
enum Color{GREEN(0, 255, 0),BLUE(0, 0, 255)}

extends/implements
Controls whether a blank space will be printed after the commas of extends and/or imple-
ments types.

Extends type
Controls whether a blank space will be printed after the commas of extends types.

WHITE SPACE 144

Example 2.430. Extends types
interface Fooable extends Doable,Readable {}

Example 2.431. Extends types with space after comma
interface Fooable extends Doable, Readable {}

Implements type
Controls whether a blank space will be printed after the commas of implements types.

Example 2.432. Implements types
class Foo implements I0,I1,I2 {}

Example 2.433. Implements types with space after comma
class Foo implements I0, I1, I2 {}

IMultiple declarations
Controls whether a blank space will be printed after the commas of multi-field and/or
multi-variable declarations.

Field
Controls whether a blank space will be printed after the commas of multi-field declarations.

Example 2.434. Multi-field declaration
class Foo {
 int a=0,b=1,c=2,d=3;
}

Example 2.435. Multi-field declaration with space after commas
class Foo {
 int a=0, b=1, c=2, d=3;
}

Variable
Controls whether a blank space will be printed after the commas of multi-variable decla-
rations.

Example 2.436. Multi-variable declaration
void foo() {
 int a=0,b=1,c=2,d=3;
}

Example 2.437. Multi-variable declaration with space after commas
void foo() {
 int a=0, b=1, c=2, d=3;
}

Declaration parameter
Controls whether a blank space will be printed after the commas of method and/or con-
structor declarations parameters.

145 CHAPTER 2 CONFIGURATION

Constructor
Controls whether a blank space will be printed after the commas of constructor declarations
parameters.

Example 2.438. Constructor declaration
Foo(int p1,int p2,int p3) {
}

Example 2.439. Constructor declaration with space after commas
Foo(int p1, int p2, int p3) {
}

Method

Example 2.440. Method declaration
void foo(int p1,int p2,int p3) {
}

Example 2.441. Method declaration with space after commas
void foo(int p1, int p2, int p3) {
}

Throws clauses
Controls whether a blank space will be printed after the commas of throws clauses of method
and/or constructor declarations.

Constructor
Controls whether a blank space will be printed after the commas of throws clauses of con-
structor declarations.

Example 2.442. Constructor declaration throws clause
Foo() throws IOException,FooException {
}

Example 2.443. Constructor declaration throws clause with space after commas
Foo() throws IOException, FooException {
}

Method
Controls whether a blank space will be printed after the commas of throws clauses of method
declarations.

Example 2.444. Method declaration throws clause
void foo() throws IOException,FooException {
}

Example 2.445. Method declaration throws clause with space after commas
void foo() throws IOException, FooException {
}

WHITE SPACE 146

Call arguments
Controls whether a blank space will be printed after the commas of call arguments.

Constructor
Controls whether a blank space will be printed after the commas of constructor call argu-
ments.

Example 2.446. Constructor call
Foo(int p1,int p2,int p3){
 super(p1,true);
}

Example 2.447. Constructor call space after commas
Foo(int p1,int p2,int p3){
 super(p1, true);
}

Method
Controls whether a blank space will be printed after the commas of method call arguments.

Example 2.448. Method call
test(x,y);

Example 2.449. Method call space after commas
test(x, y);

Creator
Controls whether a blank space will be printed after the commas of creator call arguments.

Example 2.450. Creator call
Point point=new Point(x,y);

Example 2.451. Creator call space after commas
Point point=new Point(x, y);

Array initializer
Controls whether a blank space will be printed after the commas of array initializers.

Example 2.452. Array initializer
int[] foo=new int[]{1,2,3};

Example 2.453. Array initializer with space after commas
int[] foo=new int[]{1, 2, 3};

for
Controls whether a blank space will be printed after the commas of for initializer and/or
incrementor parts.

147 CHAPTER 2 CONFIGURATION

Initializer
Controls whether a blank space will be printed after the commas of for initializer parts.

Example 2.454. for initializer
for(int i=0,j=array.length;i<array.length;i++) {}

Example 2.455. for initializer with space after commas
for(int i=0, j=array.length;i<array.length;i++) {}

Incrementor
Controls whether a blank space will be printed after the commas of for incrementor parts.

Example 2.456. for incrementor
for(int i=0,j=array.length;i<array.length;i++,j--) {}

Example 2.457. for incrementor with space after commas
for(int i=0,j=array.length;i<array.length;i++, j--) {}

Parameterized types
Controls whether a blank space will be printed after the commas of parameterized types.

Type parameter
Controls whether a blank space will be printed after the commas of type parameters.

Example 2.458. Type parameter
class GenericType<S,T>{}

Example 2.459. Type parameter with space after commas
class GenericType<S, T>{}

Type argument
Controls whether a blank space will be printed after the commas of type arguments.

Example 2.460. Type argument
caller.<String,Element>foo();

Example 2.461. Type argument with space after commas
caller.<String, Element>foo();

Before colon
Lets you specify what colons should have a blank space printed before.

assert
Controls whether colons of assert statements should have a blank space printed before.

Example 2.462. assert statement
assert condition:reportError();

WHITE SPACE 148

Example 2.463. assert statement with space before colon
assert condition :reportError();

case
Controls whether colons of case statements should have a blank space printed before.

Example 2.464. assert statement
switch (list[i]) {
case 't':
 break;
}

Example 2.465. assert statement with space before colon
switch (list[i]) {
case 't' :
 break;
}

Conditional
Controls whether colons of the conditional operator should have a blank space printed
before.

Example 2.466. Conditional operator
String value=condition?TRUE:FALSE;

Example 2.467. Conditional operator with space before colon
String value=condition?TRUE :FALSE;

for
Controls whether colons of enhanced for statements should have a blank space printed
before.

Example 2.468. Enhancement for statement
for (String s:names) { }

Example 2.469. Enhanced for statement with space before colon
for (String s :names) { }

Label
Controls whether colons of labeled statements should have a blank space printed before.

Example 2.470. Labeled statement
label: {
 ...
}

Example 2.471. Labeled statement with space before colon
label : {
 ...
}

149 CHAPTER 2 CONFIGURATION

After colon
Lets you specify what colons should have a blank space printed after.

assert
Controls whether colons of assert statements should have a blank space printed after.

Example 2.472. assert statement
assert condition:reportError();

Example 2.473. assert statement with space after colon
assert condition: reportError();

Conditional
Controls whether colons of the conditional operator should have a blank space printed after.

Example 2.474. Conditional operator
String value=condition?TRUE:FALSE;

Example 2.475. Conditional operator with space after colon
String value=condition?TRUE: FALSE;

for
Controls whether colons of enhanced for statements should have a blank space printed after.

Example 2.476. Enhancement for statement
for (String s:names) { }

Example 2.477. Enhanced for statement with space after colon
for (String s: names) { }

Label
Controls whether colons of labeled statements should have a blank space printed after.

Example 2.478. Labeled statement
label:for(;;){
 ...
}

Example 2.479. Labeled statement with space after colon
label: for(;;){
 ...
}

Please note that this option only applies when no line break is printed after the colon.

Before semicolon
Lets you specify what semicolons should have a blank space printed before.

for
Controls whether semicolons of for statements should have a blank space printed before.

WHITE SPACE 150

Example 2.480. for statement
for(int i=0;i<array.length;i++) {}

Example 2.481. for statement with space before semicolon
for(int i=0 ;i<array.length ;i++) {}

After semicolon
Lets you specify what semicolons should have a blank space printed after.

for
Controls whether semicolons of for statements should have a blank space printed after.

Example 2.482. for statement
for(int i=0;i<array.length;i++) {}

Example 2.483. for statement with space after semicolon
for(int i=0; i<array.length; i++) {}

Before question mark
Lets you specify what question marks should have a blank space printed before.

Conditional operator
Controls whether question marks of the conditional operator should have a blank space
printed before.

Example 2.484. Conditional operator
String value=condition?TRUE:FALSE;

Example 2.485. Conditional operator with space before question mark
String value=condition ?TRUE:FALSE;

Type parameter
Controls whether question marks of type parameters should have a blank space printed
before. Please note that this option only applies if no white space after the left angle bracket
is forced (See “Space after left bracket type parameter”).

Example 2.486. Type parameter
class QuestionMark<T extends Comparable< ? super Number>> {}

Example 2.487. Type parameter with space before question mark
class QuestionMark<T extends Comparable< ? super Number>> {}

Type argument
Controls whether question marks of type arguments should have a blank space printed
before. Please note that this option only applies if no white space after the left angle bracket
and/or commas is forced (See “Space after left bracket type argument”).

151 CHAPTER 2 CONFIGURATION

Example 2.488. Type argument
Map<X<?>,Y<? extends K,? super V>>t;

Example 2.489. Type argument with space before question mark
Map<X< ?>,Y< ? extends K, ? super V>>t;

After question mark
Lets you specify what question marks should have a blank space printed after.

Conditional operator
Controls whether question marks of the conditional operator should have a blank space
printed after.

Example 2.490. Conditional operator
String value=condition?TRUE:FALSE;

Example 2.491. Conditional operator with space after question mark
String value=condition? TRUE:FALSE;

Type parameter
Controls whether question marks of type parameters should have a blank space printed
after. Please note that this option only applies if no white space before the right angle bracket
is forced (See “Space before right angle bracket type parameter”).

Example 2.492. Type parameter
class X10<T extends Map.Entry<?,?>> {}

Example 2.493. Type parameter with space after question mark
class X10<T extends Map.Entry<? ,? >> {}

Type argument
Controls whether question marks of type arguments should have a blank space printed after.
Please note that this option only applies if no white space before the right angle bracket
and/or commas is forced (See “Space before right angle bracket type argument”).

Example 2.494. Type argument
Map<X<?>,Y>t;

Example 2.495. Type argument with space after question mark
Map<X<? >,Y>t;

Before ellipsis
Lets you specify whether a blank space should be printed before the ellipsis.

Vararg
Controls whether a blank space will be printed before the ellipsis of a variable arity param-
eter (varag).

WHITE SPACE 152

Since 1.2

Example 2.496. Vararg ellipsis
public void test(String[]...args) {
}

Example 2.497. Vararg ellipsis with space before
public void test(String[] ...args) {
}

After ellipsis
Lets you specify whether a blank space should be printed after the ellipsis.

Vararg
Controls whether a blank space will be printed after the ellipsis of a variable arity parameter
(varag).

Since 1.6

Example 2.498. Vararg ellipsis
public void test(String[]...args) {
}

Example 2.499. Vararg ellipsis with space after
public void test(String[]... args) {
}

Before ampersand
Lets you specify whether a blank space should be printed before the ampersand.

Type parameter
Controls whether a blank space will be printed before the ampersand of type parameters.

Since 1.6

Example 2.500. Type parameter
class Foo<S,T extends Element&List> {
}

Example 2.501. Type parameter with space before ampersand
class Foo<S,T extends Element &List> {
}

After ampersand
Lets you specify whether a blank space should be printed after the ampersand.

Type parameter
Controls whether a blank space will be printed after the ampersand of type parameters.

Since 1.6

153 CHAPTER 2 CONFIGURATION

Example 2.502. Type parameter
class Foo<S,T extends Element&List> {
}

Example 2.503. Type parameter with space after ampersand
class Foo<S,T extends Element& List> {
}

Before left parenthesis
Lets you specify what left parentheses should have a blank space printed before.

Annotation argument list
Controls whether a blank space should be printed before the left parenthesis of annotation
argument lists.

Example 2.504. Annotation
@Annot(x=23,y=-3)
class Foo {
}

Example 2.505. Annotation with space before argument list
@Annot (x=23,y=-3)
class Foo {
}

Annotation type member
Controls whether a blank space should be printed before the left parenthesis annotation
type members.

Example 2.506. Annotation type member
@interface MyAnnotation {
 String value();
}

Example 2.507. Annotation type member with space left paren
@interface MyAnnotation {
 String value ();
}

Enum constant argument
Controls whether a blank space should be printed before the left parenthesis of enum con-
stant argument lists.

Example 2.508. Enum constant
enum MyEnum {
 GREEN(0,255,0)
}

Example 2.509. Enum constant with space before left parenthesis
enum MyEnum {
 GREEN (0,255,0)
}

WHITE SPACE 154

Declaration parameter
Controls whether a blank space will be printed before the left parenthesis of method and/
or constructor parameter lists.

Constructor
Control whether a blank space will be printed before the left parenthesis of constructor
parameter lists.

Example 2.510. Constructor declaration
Foo(int p1,int p2,int p3) {
}

Example 2.511. Constructor declaration with space before left parenthesis
Foo (int p1,int p2,int p3) {
}

Method
Control whether a blank space will be printed before the left parenthesis of method param-
eter lists.

Example 2.512. Method declaration
public void foo(int p1,int p2,int p3) {
}

Example 2.513. Method declaration with space before left parenthesis
public void foo (int p1,int p2,int p3) {
}

Statement expressions
Lets you control whether a blank space will be printed before the left parenthesis of state-
ment expressions.

if
Lets you control whether a blank space will be printed before the left parenthesis of if
expressions.

Example 2.514. if statement
if(condition) {
}

Example 2.515. if statement with space before left parenthesis
if (condition) {
}

for
Lets you control whether a blank space will be printed before the left parenthesis of for
expressions.

Example 2.516. for statement
for(String s : names) {
}

155 CHAPTER 2 CONFIGURATION

Example 2.517. for statement with space before left parenthesis
for (String s : names) {
}

while
Lets you control whether a blank space will be printed before the left parenthesis of while
expressions.

Example 2.518. while statement
while(condition) {
}

Example 2.519. while statement with space before left parenthesis
while (condition) {
}

switch
Lets you control whether a blank space will be printed before the left parenthesis of switch
expressions.

Example 2.520. switch statement
switch(c) {
}

Example 2.521. switch statement with space before left parenthesis
switch (c) {
}

throw
Lets you control whether a blank space will be printed before the left parenthesis of throw
expressions.

Example 2.522. throw statement
throw(new UnsupportOperationException());

Example 2.523. throw statement with space before left parenthesis
throw (new UnsupportOperationException());

synchronized
Lets you control whether a blank space will be printed before the left parenthesis of syn-
chronized expressions.

Example 2.524. synchronized statement
synchronized(this) {
 performOperation();
}

Example 2.525. synchronized statement with space before left parenthesis
synchronized (this) {
 performOperation();
}

WHITE SPACE 156

catch
Lets you control whether a blank space will be printed before the left parenthesis of catch
expressions.

Example 2.526. catch statement
try {
 Integer.parseInt(value);
} catch(NumberFormatException ex) {
}

Example 2.527. catch statement with space before left parenthesis
try {
 Integer.parseInt(value);
} catch (NumberFormatException ex) {
}

return
Lets you control whether a blank space will be printed before the left parenthesis of return
expressions.

Example 2.528. return statement
return(200 + (a * b));

Example 2.529. return statement with space before left parenthesis
return (200 + (a * b));

Call arguments
Controls whether a blank space will be printed before the left parenthesis of call arguments.

Constructor
Controls whether a blank space will be printed before the left parenthesis of constructor
call arguments.

Example 2.530. Constructor call
Foo(int p1,int p2,int p3){
 super(p1,true);
}

Example 2.531. Constructor call with space before left parenthesis
Foo(int p1,int p2,int p3){
 super (p1,true);
}

Method
Controls whether a blank space will be printed before the left parenthesis of method call
arguments.

Example 2.532. Method call
test(x,y);

Example 2.533. Method call space with space before left parenthesis
test (x,y);

157 CHAPTER 2 CONFIGURATION

Creator
Controls whether a blank space will be printed before the left parenthesis of creator call
arguments.

Example 2.534. Creator call
Point point=new Point(x,y);

Example 2.535. Creator call with space before left parenthesis
Point point=new Point (x,y);

After left parenthesis
Lets you specify what left parentheses should have a blank space printed after.

Annotation argument list
Controls whether a blank space should be printed after the left parenthesis of annotation
argument lists.

Example 2.536. Annotation
@Annot(x=23,y=-3)
class Foo {
}

Example 2.537. Annotation with space after left parenthesis
@Annot(x=23,y=-3)
class Foo {
}

Enum constant argument
Controls whether a blank space should be printed after the left parenthesis of enum constant
argument lists.

Example 2.538. Enum constant
enum MyEnum {
 GREEN(0,255,0)
}

Example 2.539. Enum constant with space after left parenthesis
enum MyEnum {
 GREEN(0,255,0)
}

Declaration parameter
Controls whether a blank space will be printed after the left parenthesis of method and/
or constructor parameter lists.

Constructor
Control whether a blank space will be printed after the left parenthesis of constructor pa-
rameter lists.

WHITE SPACE 158

Example 2.540. Constructor declaration
Foo(int p1,int p2,int p3) {
}

Example 2.541. Constructor declaration with space after left parenthesis
Foo(int p1,int p2,int p3) {
}

Method
Control whether a blank space will be printed after the left parenthesis of method parameter
lists.

Example 2.542. Method declaration
public void foo(int p1,int p2,int p3) {
}

Example 2.543. Method declaration with space after left parenthesis
public void foo(int p1,int p2,int p3) {
}

Statement expressions
Lets you control whether a blank space will be printed before the left parenthesis of state-
ment expressions.

if
Lets you control whether a blank space will be printed after the left parenthesis of if ex-
pressions.

Example 2.544. if statement
if(condition) {
}

Example 2.545. if statement with space after left parenthesis
if(condition) {
}

for
Lets you control whether a blank space will be printed after the left parenthesis of for ex-
pressions.

Example 2.546. for statement
for(String s : names) {
}

Example 2.547. for statement with space after left parenthesis
for(String s : names) {
}

159 CHAPTER 2 CONFIGURATION

while
Lets you control whether a blank space will be printed after the left parenthesis of while
expressions.

Example 2.548. while statement
while(condition) {
}

Example 2.549. while statement with space after left parenthesis
while(condition) {
}

switch
Lets you control whether a blank space will be printed after the left parenthesis of switch
expressions.

Example 2.550. switch statement
switch(c) {
}

Example 2.551. switch statement with space after left parenthesis
switch(c) {
}

throw
Lets you control whether a blank space will be printed after the left parenthesis of throw
expressions.

Example 2.552. throw statement
throw(new UnsupportOperationException());

Example 2.553. throw statement with space after left parenthesis
throw(new UnsupportOperationException());

synchronized
Lets you control whether a blank space will be printed after the left parenthesis of synchro-
nized expressions.

Example 2.554. synchronized statement
synchronized(this) {
 performOperation();
}

Example 2.555. synchronized statement with space after left parenthesis
synchronized(this) {
 performOperation();
}

WHITE SPACE 160

catch
Lets you control whether a blank space will be printed after the left parenthesis of catch
expressions.

Example 2.556. catch statement
try {
 Integer.parseInt(value);
} catch(NumberFormatException ex) {
}

Example 2.557. catch statement with space after left parenthesis
try {
 Integer.parseInt(value);
} catch(NumberFormatException ex) {
}

return
Lets you control whether a blank space will be printed after the left parenthesis of return
expressions.

Example 2.558. return statement
return(200 + (a * b));

Example 2.559. return statement with space after left parenthesis
return(200 + (a * b));

Call arguments
Controls whether a blank space will be printed after the left parenthesis of call arguments.

Constructor
Controls whether a blank space will be printed after the left parenthesis of constructor call
arguments.

Example 2.560. Constructor call
Foo(int p1,int p2,int p3){
 super(p1,true);
}

Example 2.561. Constructor call with space after left parenthesis
Foo(int p1,int p2,int p3){
 super(p1,true);
}

Method
Controls whether a blank space will be printed after the left parenthesis of method call
arguments.

Example 2.562. Method call
test(x,y);

Example 2.563. Method call space with space after left parenthesis
test(x,y);

161 CHAPTER 2 CONFIGURATION

Creator
Controls whether a blank space will be printed after the left parenthesis of creator call
arguments.

Example 2.564. Creator call
Point point=new Point(x,y);

Example 2.565. Creator call with space after left parenthesis
Point point=new Point(x,y);

Parenthesized expression
Controls whether a blank space will be printed after the left parenthesis of parenthesized
expressions..

Example 2.566. Expression
int r = (a * (b + c + d) * (e + f));

Example 2.567. Expression with space after left parenthesis
int r = (a * (b + c + d) * (e + f));

Type cast
Controls whether a blank space will be printed after the left parenthesis of type casts.

Example 2.568. Type cast
LineManager m = (LineManager)a.getParent();

Example 2.569. Type cast with space after left parenthesis
LineManager m = (LineManager)a.getParent();

Before right parenthesis
Lets you specify what right parentheses should have a blank space printed before.

Annotation argument list
Controls whether a blank space should be printed before the right parenthesis of annotation
argument lists.

Example 2.570. Annotation
@Annot(x=23,y=-3)
class Foo {
}

Example 2.571. Annotation with space before right parenthesis
@Annot(x=23,y=-3)
class Foo {
}

Enum constant argument
Controls whether a blank space should be printed before the right parenthesis of enum
constant argument lists.

WHITE SPACE 162

Example 2.572. Enum constant
enum MyEnum {
 GREEN(0,255,0)
}

Example 2.573. Enum constant with space before right parenthesis
enum MyEnum {
 GREEN(0,255,0)
}

Declaration parameter
Controls whether a blank space will be printed after the left parenthesis of method and/
or constructor parameter lists.

Constructor
Control whether a blank space will be printed before the right parenthesis of constructor
parameter lists.

Example 2.574. Constructor declaration
Foo(int p1,int p2,int p3) {
}

Example 2.575. Constructor declaration with space before right parenthesis
Foo(int p1,int p2,int p3) {
}

Method
Control whether a blank space will be printed before the right parenthesis of method pa-
rameter lists.

Example 2.576. Method declaration
public void foo(int p1,int p2,int p3) {
}

Example 2.577. Method declaration with space before right parenthesis
public void foo(int p1,int p2,int p3) {
}

Statement expressions
Lets you control whether a blank space will be printed before the left parenthesis of state-
ment expressions.

if
Lets you control whether a blank space will be printed before the right parenthesis of if
expressions.

Example 2.578. if statement
if(condition) {
}

163 CHAPTER 2 CONFIGURATION

Example 2.579. if statement with space before right parenthesis
if(condition) {
}

for
Lets you control whether a blank space will be printed before the right parenthesis of for
expressions.

Example 2.580. for statement
for(String s : names) {
}

Example 2.581. for statement with space before right parenthesis
for(String s : names) {
}

while
Lets you control whether a blank space will be printed before the right parenthesis of while
expressions.

Example 2.582. while statement
while(condition) {
}

Example 2.583. while statement with space before right parenthesis
while(condition) {
}

switch
Lets you control whether a blank space will be printed before the right parenthesis of switch
expressions.

Example 2.584. switch statement
switch(c) {
}

Example 2.585. switch statement with space before right parenthesis
switch(c) {
}

throw
Lets you control whether a blank space will be printed before the right parenthesis of throw
expressions.

Example 2.586. throw statement
throw(new UnsupportOperationException());

Example 2.587. throw statement with space before right parenthesis
throw(new UnsupportOperationException());

WHITE SPACE 164

synchronized
Lets you control whether a blank space will be printed before the right parenthesis of syn-
chronized expressions.

Example 2.588. synchronized statement
synchronized(this) {
 performOperation();
}

Example 2.589. synchronized statement with space before right parenthesis
synchronized(this) {
 performOperation();
}

catch
Lets you control whether a blank space will be printed before the right parenthesis of catch
expressions.

Example 2.590. catch statement
try {
 Integer.parseInt(value);
} catch(NumberFormatException ex) {
}

Example 2.591. catch statement with space before right parenthesis
try {
 Integer.parseInt(value);
} catch(NumberFormatException ex) {
}

return
Lets you control whether a blank space will be printed before the right parenthesis of return
expressions.

Example 2.592. return statement
return(200 + (a * b));

Example 2.593. return statement with space before right parenthesis
return(200 + (a * b));

Call arguments
Controls whether a blank space will be printed before the right parenthesis of call argu-
ments.

Constructor
Controls whether a blank space will be printed before the right parenthesis of constructor
call arguments.

165 CHAPTER 2 CONFIGURATION

Example 2.594. Constructor call
Foo(int p1,int p2,int p3){
 super(p1,true);
}

Example 2.595. Constructor call with space before right parenthesis
Foo(int p1,int p2,int p3){
 super(p1,true);
}

Method
Controls whether a blank space will be printed before the right parenthesis of method call
arguments.

Example 2.596. Method call
test(x,y);

Example 2.597. Method call space with space before right parenthesis
test(x,y);

Creator
Controls whether a blank space will be printed before the right parenthesis of creator call
arguments.

Example 2.598. Creator call
Point point=new Point(x,y);

Example 2.599. Creator call with space before right parenthesis
Point point=new Point(x,y);

Parenthesized expression
Controls whether a blank space will be printed before the right parenthesis of parenthesized
expressions..

Example 2.600. Expression
int r = (a * (b + c + d) * (e + f));

Example 2.601. Expression with space before right parenthesis
int r = (a * (b + c + d) * (e + f));

Type cast
Controls whether a blank space will be printed before the right parenthesis of type casts.

Example 2.602. Type cast
LineManager m = (LineManager)a.getParent();

Example 2.603. Type cast with space before right parenthesis
LineManager m = (LineManager)a.getParent();

WHITE SPACE 166

After right parenthesis
Lets you specify what right parentheses should have a blank space printed after.

Type cast
Controls whether a blank space will be printed after the right parenthesis of type casts.

Example 2.604. Type cast
LineManager m = (LineManager)a.getParent();

Example 2.605. Type cast with space after right parenthesis
LineManager m = (LineManager) a.getParent();

Between empty parentheses
Lets you specify what empty parentheses should have a blank space printed between.

Annotation type member
Controls whether a blank space should be printed between the empty parentheses of anno-
tation type members.

Example 2.606. Annotation type member
@interface MyAnnotation {
 String value();
}

Example 2.607. Annotation type member with space between empty parentheses
@interface MyAnnotation {
 String value();
}

Enum constant argument
Controls whether a blank space should be printed between the empty parentheses of enum
constant argument lists.

Example 2.608. Enum constant
enum MyEnum {
 GREEN()
}

Example 2.609. Enum constant with space between empty parentheses
enum MyEnum {
 GREEN()
}

Declaration parameter
Controls whether a blank space will be printed between the empty parentheses of method
and/or constructor parameter lists.

Constructor
Control whether a blank space will be printed between the empty parentheses of constructor
parameter lists.

167 CHAPTER 2 CONFIGURATION

Example 2.610. Constructor declaration
Foo() {
}

Example 2.611. Constructor declaration with space between empty parentheses
Foo() {
}

Method
Control whether a blank space will be printed before the empty parentheses of method
parameter lists.

Example 2.612. Method declaration
public void foo() {
}

Example 2.613. Method declaration with space between empty parentheses
public void foo() {
}

Call arguments
Controls whether a blank space will be printed between the empty parentheses of call ar-
guments.

Constructor
Controls whether a blank space will be printed between the empty parentheses of construc-
tor call arguments.

Example 2.614. Constructor call
Foo(int p1,int p2,int p3){
 super();
}

Example 2.615. Constructor call with space between empty parentheses
Foo(int p1,int p2,int p3){
 super();
}

Method
Controls whether a blank space will be printed between the empty parentheses of method
call arguments.

Example 2.616. Method call
test();

Example 2.617. Method call space with space between empty parenthesis
test();

Creator
Controls whether a blank space will be printed between the empty parentheses of creator
call arguments.

WHITE SPACE 168

Example 2.618. Creator call
Point point=new Point();

Example 2.619. Creator call with space between empty parentheses
Point point=new Point();

Other parentheses
Lets you control some general parentheses behavior.

Same direction parentheses
When enabled, no white space will be printed before or after parentheses with the same
direction.

Naturally, this option is only meaningful if any of the space after left parenthesis/space
before right parenthesis options have been enabled.

Since 1.0.1

Example 2.620. Parentheses with same direction
if ((LA(1) == '/') && (LA(2) != '*'))
 ...

Example 2.621. Parentheses with same direction (compacted)
if ((LA (1) == '/') && (LA(2) != '*'))
 ...

Before left brace
Controls whether a blank space should be printed before the left curly brace.

Compact declaration
Controls whether a blank space should be printed before the left curly brace of compacted
declaration blocks.

Example 2.622. Compact method declaration
void foo(){int i = 1;}

Example 2.623. Compact method declaration with space before left curly brace
void foo() {int i = 1;}

Array initializer
Controls whether a blank space should be printed before the left curly brace of array ini-
tializers that fit into one line.

Example 2.624. Array initializer
String[] first=new String[]{"1", "2"};

Example 2.625. Array initializer with space before left curly brace
String[] first=new String[] {"1", "2"};

169 CHAPTER 2 CONFIGURATION

After left brace
Controls whether a blank space should be printed after left curly braces.

Annotation array
Controls whether a blank space should be printed after the left curly brace of annotation
arrays.

Example 2.626. Annotation array
@Target({FIELD, METHOD, CONSTRUCTOR})
class FOO {
}

Example 2.627. Annotation array with space after left curly brace
@Target({ FIELD, METHOD, CONSTRUCTOR})
class FOO {
}

Compact declaration
Controls whether a blank space should be printed after the left curly brace of compacted
declaration blocks.

Example 2.628. Compact method declaration
void foo(){int i = 1;}

Example 2.629. Compact method declaration with space after left curly brace
void foo(){ int i = 1;}

Array initializer
Controls whether a blank space should be printed after the left curly brace of array initial-
izers.

Example 2.630. Array initializer
String[] first=new String[]{"1", "2"};

Example 2.631. Array initializer with space after left curly brace
String[] first=new String[]{ "1", "2"};

Before right brace
Controls whether a blank space should be printed after left curly braces.

Annotation array
Controls whether a blank space should be printed before the right curly brace of annotation
arrays.

Example 2.632. Annotation array
@Target({FIELD, METHOD, CONSTRUCTOR})
class FOO {
}

WHITE SPACE 170

Example 2.633. Annotation array with space before right curly brace
@Target({FIELD, METHOD, CONSTRUCTOR })
class FOO {
}

Compact declaration
Controls whether a blank space should be printed before the right curly brace of compacted
declaration blocks.

Example 2.634. Compact method declaration
void foo(){int i = 1;}

Example 2.635. Compact method declaration with space before right curly brace
void foo(){int i = 1; }

Array initializer
Controls whether a blank space should be printed before the right curly brace of array
initializers.

Example 2.636. Array initializer
String[] first=new String[]{"1", "2"};

Example 2.637. Array initializer with space before right curly brace
String[] first=new String[]{"1", "2" };

Between empty braces
Controls whether a blank space should be printed between empty braces.

Compact declaration
Controls whether a blank space should be printed between empty curly braces of compacted
declaration blocks.

Example 2.638. Compact method declaration
void foo(){}

Example 2.639. Compact method declaration with space between empty curly braces
void foo(){ }

Array initializer
Controls whether a blank space should be printed between empty curly braces of array
initializers.

Example 2.640. Array initializer
String[] first=new String[]{};

Example 2.641. Array initializer with space between empty braces
String[] first=new String[]{ };

171 CHAPTER 2 CONFIGURATION

Before left bracket
Controls whether a blank space should be printed before left brackets.

Array declaration
Controls whether a blank space should be printed before the left bracket of array declaration
statements.

Example 2.642. Array declaration statement
String[] first={};

Example 2.643. Array declaration statement with space before left bracket
String [] first={};

Array creator
Controls whether a blank space should be printed before the left bracket of array creation
statements.

Example 2.644. Array creator statement
String[] third=new String[3];

Example 2.645. Array creator statement with space before left bracket
String[] third=new String [3];

Array accessor
Controls whether a blank space should be printed before the left bracket of array access
statements.

Example 2.646. Array accessor
value=third[3];

Example 2.647. Array accessor with space before left bracket
value=third [3];

After left bracket
Controls whether a blank space should be printed after left brackets.

Array creator
Controls whether a blank space should be printed after the left bracket of array creation
statements.

Example 2.648. Array creator statement
String[] third=new String[3];

Example 2.649. Array creator statement with space after left bracket
String[] third=new String[3];

Array accessor
Controls whether a blank space should be printed after the left bracket of array access state-
ments.

WHITE SPACE 172

Example 2.650. Array accessor
value=third[3];

Example 2.651. Array accessor with space after left bracket
value=third[3];

Before right bracket
Controls whether a blank space should be printed before right brackets.

Array creator
Controls whether a blank space should be printed before the right bracket of array creation
statements.

Example 2.652. Array creator
String[] third=new String[3];

Example 2.653. Array creator with space before right bracket
String[] third=new String[3];

Array accessor
Controls whether a blank space should be printed before the right bracket of array access
statements.

Example 2.654. Array accessor
value=third[3];

Example 2.655. Array accessor with space before right bracket
value=third[3];

Between empty brackets
Controls whether a blank space should be printed between empty brackets.

Array declaration
Controls whether a blank space should be printed between empty brackets of array decla-
ration statements.

Example 2.656. Array declaration statement
String[] first={};

Example 2.657. Array declaration statement with space between empty bracket
String[] first={};

Array creator
Controls whether a blank space should be printed between empty brackets of array creator
statements.

Example 2.658. Array creator statement
String[] first=new String[]{};

173 CHAPTER 2 CONFIGURATION

Example 2.659. Array creator statement with space between empty bracket
String[] first=new String[]{};

Before left angle bracket
Controls whether a blank space should be printed before left angle brackets of parameterized
types.

Type parameter
Controls whether a blank space should be printed before left angle brackets of type param-
eters.

Example 2.660. Type parameter
class AngleBracket<S,T extends Element> {}

Example 2.661. Type parameter with space before left angle bracket
class AngleBracket <S,T extends Element> {}

Type argument
Controls whether a blank space should be printed before left angle brackets of type argu-
ments.

Example 2.662. Type argument
caller.<String,Element>foo();

Example 2.663. Type argument with space before left angle bracket
caller. <String,Element>foo();

After left angle bracket
Controls whether a blank space should be printed after left angle brackets of parameterized
types.

Type parameter
Controls whether a blank space should be printed after left angle brackets of type param-
eters.

Example 2.664. Type parameter
class AngleBracket<S,T extends Element> {}

Example 2.665. Type parameter with space after left angle bracket
class AngleBracket< S,T extends Element> {}

Type argument
Controls whether a blank space should be printed after left angle brackets of type arguments.

Example 2.666. Type argument
caller.<String,Element>foo();

WHITE SPACE 174

Example 2.667. Type argument with space after left angle bracket
caller.< String,Element>foo();

Before right angle bracket
Controls whether a blank space should be printed before right angle brackets of parame-
terized types.

Type parameter
Controls whether a blank space should be printed before right angle brackets of type pa-
rameters.

Example 2.668. Type parameter
class AngleBracket<S,T extends Element> {}

Example 2.669. Type parameter with space before right angle bracket
class AngleBracket<S,T extends Element > {}

Type argument
Controls whether a blank space should be printed before right angle brackets of type argu-
ments.

Example 2.670. Type argument
caller.<String,Element>foo();

Example 2.671. Type argument with space before right angle bracket
caller.<String,Element >foo();

175 CHAPTER 2 CONFIGURATION

2.8.9.2 Element view

Figure 2.45. White Space Element View

Declarations
Lets you configure the white space behavior for declarations.

Classes
Lets you configure the white space behavior for class declarations.

Before comma in implements clause
Please refer to the explanation for “Space before comma implements type”.

After comma in implements clause
Please refer to the explanation for “Space after comma implements type”.

Interfaces
Lets you configure the white space behavior for interface declarations.

Before comma in extends clause
Please refer to the explanation for “Space before comma extends type”.

After comma in extends clause
Please refer to the explanation for “Space after comma extends type”.

Enums
Lets you configure the white space behavior for enum declarations.

WHITE SPACE 176

Before comma between constants
Please refer to the explanation for “Space before comma enum constant”.

After comma between constants
Please refer to the explanation for Section 2.8.9.1.4, “Enum constant”.

Before left parenthesis in constant argument list
Please refer to the explanation for “Space before left parenthesis enum constant argument”.

After left parenthesis in constant argument list
Please refer to the explanation for “Space after left parenthesis enum constant argument”.

Before comma in constant argument list
Please refer to the explanation for “Space before comma enum constant argument”.

After comma in constant argument list
Please refer to the explanation for Section 2.8.9.1.4, “Enum constant argument”.

Before right parenthesis in constant argument list
Please refer to the explanation for “Space before right parenthesis enum constant argument”.

Between empty parentheses in constant argument list
Please refer to the explanation for “Space between empty parentheses enum constant argu-
ment”.

Annotations
Lets you configure the white space behavior for annotation type declarations.

Before left parenthesis of type members
Please refer to the explanation for “Space before left parenthesis annotation type member”.

Between empty parentheses of type members
Please refer to the explanation for “Space between empty parentheses annotation type mem-
ber”.

Before left parenthesis of member list
Please refer to the explanation for “Space before left parenthesis annotation argument list”.

After left parenthesis of member list
Please refer to the explanation for “Space after left parenthesis annotation argument list”.

Before assignment operator
Please refer to the explanation for “Space before assignment operator in annotations”.

After assignment operator
Please refer to the explanation for “Space after assignment operator in annotations”.

177 CHAPTER 2 CONFIGURATION

Before comma in member list
Please refer to the explanation for “Space before comma annotation type member argu-
ment”.

After comma in member list
Please refer to the explanation for “Space after comma annotation type member argument”.

Before right parenthesis of member list
Please refer to the explanation for “Space before right parenthesis annotation argument list”.

After left curly brace of annotation array
Please refer to the explanation for “Space after left curly brace annnotation array”.

Before comma in annotation array
Please refer to the explanation for “Space before comma annotation array”.

After comma in annotation array
Please refer to the explanation for “Space after comma annotation array”.

Before right curly brace of annotation array
Please refer to the explanation for “Space before right curly brace annotation array”.

Fields
Lets you configure the white space behavior for field declarations.

Before comma in multi-field
Please refer to the explanation for Section 2.8.9.1.3, “Field”.

After comma in multi-field
Please refer to the explanation for Space after comma multi-field.

Constructors
Lets you configure the white space behavior for constructor declarations.

Before left parenthesis of parameter list
Please refer to the explanation for Section 2.8.9.1.15, “Constructor”.

After left parenthesis of parameter list
Please refer to the explanation for “Space after left parenthesis constructor declaration”.

Before comma in parameter list
Please refer to the explanation for “Space before comma constructor declaration parameter”.

After comma in parameter list
Please refer to the explanation for Section 2.8.9.1.4, “Constructor”.

WHITE SPACE 178

Before right parenthesis of parameter list
Please refer to the explanation for “Space before right parenthesis constructor declaration
parameter”.

Between empty parentheses of parameter list
Please refer to the explanation for “Space between empty parentheses constructor declara-
tion”.

Before comma in throws clause
Please refer to the explanation for “Space before comma constructor throws type”.

After comma in throws clause
Please refer to the explanation for “Space after comma constructor declaration throws type”.

Methods
Lets you configure the white space behavior for method declarations.

Before left parenthesis of parameter list
Please refer to the explanation for “Space before left parenthesis method declaration”.

After left parenthesis of parameter list
Please refer to the explanation for “Space after left parenthesis method declaration”.

Before comma in parameter list
Please refer to the explanation for “Space before comma method declaration parameter”.

After comma in parameter list
Please refer to the explanation for “Space after comma method declaration parameter”.

Before ellipsis in parameter list
Please refer to the explanation for Section 2.8.9.1.11, “Vararg”.

After ellipsis in parameter list
Please refer to the explanation for Section 2.8.9.1.12, “Vararg”.

Before right parenthesis of parameter list
Please refer to the explanation for “Space before right parenthesis method declaration pa-
rameter”.

Between empty parentheses of parameter list
Please refer to the explanation for “Space between empty parentheses enum constant argu-
ment”.

Before comma in throws clause
Please refer to the explanation for “Space before comma method throws type”.

179 CHAPTER 2 CONFIGURATION

After comma in throws clause
Please refer to the explanation for “Space after comma method declaration throws type”.

Local variables
Lets you configure the white space behavior for local variable declarations.

Before comma in multi-variable
Please refer to the explanation for Space before comma multi-var.

After comma in multi-variable
Please refer to the explanation for Space after comma multi-variable.

Labels

Before colon
Please refer to the explanation for Section 2.8.9.1.5, “Label”.

After colon
Please refer to the explanation for “Space after label colon”.

Control Statements
Lets you configure the white space behavior for control statements.

if
Lets you configure the white space behavior for if statements.

Before left parenthesis of expression list
Please refer to the explanation for “Space before left parenthesis if ”.

After left parenthesis of expression list
Please refer to the explanation for Section 2.8.9.1.16, “if ”.

Before right parenthesis of expression list
Please refer to the explanation for “Space before right parenthesis if ”.

for
Lets you configure the white space behavior for for statements.

Before left parenthesis of expression list
Please refer to the explanation for “Space before left parenthesis for”.

After left parenthesis of expression list.
Please refer to the explanation for “Space after left parenthesis for”.

Before comma in initialization
Please refer to the explanation for “Space before comma for initializer”.

WHITE SPACE 180

After comma in initialization
Please refer to the explanation for “Space after comma for initializer”.

Before comma in increment
Please refer to the explanation for “Space before comma for incrementor”.

After comma in increment
Please refer to the explanation for “Space after comma for incrementor”.

Before semicolon
Please refer to the explanation for “Space before semi colon for”.

After semicolon
Please refer to the explanation for “Space after semi colon for”.

Before colon
Please refer to the explanation for “Space before enhanced for colon”.

After colon
Please refer to the explanation for “Space after enhanced for colon”.

Before right parenthesis of expression list
Please refer to the explanation for “Space before right parenthesis for”.

while/do-while
Lets you configure the white space behavior for while and do/while statements.

Before left parenthesis of expression list
Please refer to the explanation for “Space before left parenthesis while”.

After left parenthesis of expression list
Please refer to the explanation for “Space after left parenthesis while”.

Before right parenthesis of expression list
Please refer to the explanation for “Space before right parenthesis while”.

switch
Lets you configure the white space behavior for switch statements.

Before left parenthesis of expression list
Please refer to the explanation for Section 2.8.9.1.15, “switch”.

After left parenthesis of expression list
Please refer to the explanation for “Space after left parenthesis switch”.

Before right parenthesis of expression list
Please refer to the explanation for “Space before right parenthesis switch”.

181 CHAPTER 2 CONFIGURATION

Before colon
Please refer to the explanation for “Space before case colon”.

synchronized
Lets you configure the white space behavior for synchronized statements.

Before left parenthesis of expression list
Please refer to the explanation for “Space before left parenthesis synchronized”.

After left parenthesis of expression list
Please refer to the explanation for “Space after left parenthesis synchronized”.

Before right parenthesis of expression list
Please refer to the explanation for “Space before right parenthesis synchronized”.

catch
Lets you configure the white space behavior for catch statements.

Before left parenthesis of expression list
Please refer to the explanation for Section 2.8.9.1.15, “catch”.

After left parenthesis of expression list
Please refer to the explanation for Section 2.8.9.1.16, “catch”.

Before right parenthesis of expression list
Please refer to the explanation for Section 2.8.9.1.17, “catch”.

assert
Lets you configure the white space behavior for assert statements.

Before colon
Please refer to the explanation for “Space before assertion colon”.

After colon
Please refer to the explanation for “Space after assertion colon”.

throw
Lets you configure the white space behavior for throw statements.

Before left parenthesis of expression
Please refer to the explanation for “Space before left parenthesis throw”.

After left parenthesis of expression
Please refer to the explanation for “Space after left parenthesis throw”.

Before right parenthesis of expression
Please refer to the explanation for “Space before right parenthesis throw”.

WHITE SPACE 182

return
Lets you configure the white space behavior for return statements.

Before left parenthesis of expression
Please refer to the explanation for “Space before left parenthesis return”.

After left parenthesis of expression
Please refer to the explanation for “Space after left parenthesis return”.

Before right parenthesis of expression
Please refer to the explanation for Section 2.8.9.1.17, “return”.

Expressions
Lets you configure the white space behavior for expressions.

Constructor call
Lets you configure the white space behavior for constructor calls.

Before left parenthesis of argument list
Please refer to the explanation for “Space before left parenthesis constructor call”.

After left parenthesis of argument list
Please refer to the explanation for “Space after left parenthesis constructor call”.

Before comma in argument list
Please refer to the explanation for “Space before comma constructor call argument”.

After comma in argument list
Please refer to the explanation for “Space after comma constructor call argument”.

Before right parenthesis of argument list
Please refer to the explanation for “Space before right parenthesis constructor call”.

Between empty parentheses of argument list
Please refer to the explanation for “Space between empty parentheses constructor call”.

Creator call

Before left parenthesis of argument list
Please refer to the explanation for “Space before left parenthesis creator call”.

After left parenthesis of argument list
Please refer to the explanation for “Space after left parenthesis creator call”.

Before comma in argument list
Please refer to the explanation for “Space before comma creator call argument”.

183 CHAPTER 2 CONFIGURATION

After comma in argument list
Please refer to the explanation for “Space after comma creator call argument”.

Before right parenthesis of argument list
Please refer to the explanation for Section 2.8.9.1.17, “Creator”.

Between empty parentheses of argument list
Please refer to the explanation for “Space between empty parentheses creator call”.

Method call

Before left parenthesis of argument list
Please refer to the explanation for “Space before left parenthesis method call”.

After left parenthesis of argument list
Please refer to the explanation for “Space after left parenthesis method call”.

Before comma in argument list
Please refer to the explanation for “Space before comma method call argument”.

After comma in argument list
Please refer to the explanation for “Space after comma method call argument”.

Before right parenthesis of argument list
Please refer to the explanation for “Space before right parenthesis method call”.

Between empty parentheses of argument list
Please refer to the explanation for “Space between empty parentheses method call”.

Operators

Before assignment operator
Please refer to the explanation for “Space before assignment operator”.

After assignment operator
Please refer to the explanation for Section 2.8.9.1.2, “Assignment operator”.

Before assignment operator in annotations
Please refer to the explanation for “Space before assignment operator in annotations”.

After assignment operator in annotations
Please refer to the explanation for “Space after assignment operator in annotations”.

Before bitwise operator
Please refer to the explanation for “Space before bitwise operator”.

WHITE SPACE 184

After bitwise operator
Please refer to the explanation for “Space after bitwise operator”.

Before logical operator
Please refer to the explanation for “Space before logical operator”.

After logical operator
Please refer to the explanation for “Space after logical operator”.

Before mathematical operator
Please refer to the explanation for “Space before mathematical operator”.

After mathematical operator
Please refer to the explanation for “Space after mathematical operator”.

Before string concat operator
Please refer to the explanation for “Space before concat operator”.

After string concat operator
Please refer to the explanation for “Space after concat operator”.

Before relational operator
Please refer to the explanation for Section 2.8.9.1.1, “Relational operator”.

After relational operator
Please refer to the explanation for “Space after relational operator”.

Before shift operator
Please refer to the explanation for “Space before shift operator”.

After shift operator
Please refer to the explanation for “Space after shift operator”.

Before conditional question operator
Please refer to the explanation for “Space before question mark conditional operator”.

After conditional question operator
Please refer to the explanation for “Space after question mark conditional operator”.

Before conditional colon operator
Please refer to the explanation for Section 2.8.9.1.5, “Conditional”.

After conditional colon operator
Please refer to the explanation for “Space after conditional operator colon”.

Parenthesized expression
Lets you control the white space behavior for parenthesized expressions.

185 CHAPTER 2 CONFIGURATION

After left parenthesis
Please refer to the explanation for Section 2.8.9.1.16, “Parenthesized expression”.

Before right parenthesis
Please refer to the explanation for Section 2.8.9.1.17, “Parenthesized expression”.

Type cast
Lets you control the white space behavior for type casts.

After left parenthesis
Please refer to the explanation for “Space after left parenthesis type cast”.

Before right parenthesis
Please refer to the explanation for “Space before right parenthesis type cast”.

After right parenthesis
Please refer to the explanation for “Space after right parenthesis type cast”.

Arrays
Lets you control the white space behavior for arrays.

Declaration
Lets you control the white space behavior for array declarations.

Before left bracket
Please refer to the explanation for “Space before left bracket array declaration”.

Between empty brackets
Please refer to the explanation for “Space between empty brackets array declaration”.

Allocation
Lets you control the white space behavior for array allocations.

Before left bracket
Please refer to the explanation for “Space before left bracket creator”.

After left bracket
Please refer to the explanation for Section 2.8.9.1.26, “Array creator”.

Before right bracket
Please refer to the explanation for “Space before right bracket array creator”.

Between empty brackets
Please refer to the explanation for “Space between empty brackets array creator”.

Initializer
Lets you control the white space behavior for array initializers.

WHITE SPACE 186

Before left brace
Please refer to the explanation for “Space before left curly brace array initializer”.

After left brace
Please refer to the explanation for “Space after left curly brace array initializer”.

Before comma
Please refer to the explanation for “Space before comma array initializer”.

After comma
Please refer to the explanation for “Space after comma array initializer”.

Before right brace
Please refer to the explanation for “Space before right curly brace array initializer”.

Between empty braces
Please refer to the explanation for “Space between empty curly braces array initializer”.

Accessor
Lets you control the white space behavior for array accesssors.

Before left bracket
Please refer to the explanation for Section 2.8.9.1.25, “Array accessor”.

After left bracket
Please refer to the explanation for Section 2.8.9.1.26, “Array accessor”.

Before right bracket
Please refer to the explanation for “Space before right bracket array accessor”.

Parameterized types
Lets you control the white space behavior for parameterized (generic) types.

Type parameter
Lets you configure the white space behavior for type parameters.

Before left angle bracket
Please refer to the explanation for “Space before left angle bracket type parameter”.

After left angle bracket
Please refer to the explanation for “Space after left bracket type parameter”.

Before comma in brackets
Please refer to the explanation for “Space before comma type parameter”.

After comma in brackets
Please refer to the explanation for “Space after comma type parameter”.

187 CHAPTER 2 CONFIGURATION

Before ampersand in brackets
Please refer to the explanation for “Space before ampersand type parameter”.

After ampersand in brackets
Please refer to the explanation for “Space after ampersand type parameter”.

Before question mark in brackets
Please refer to the explanation for “Space before question mark type parameter”.

After question mark in brackets
Please refer to the explanation for “Space after question mark type parameter”.

Before right angle bracket
Please refer to the explanation for “Space before right angle bracket type parameter”.

Type argument
Lets you configure the white space behavior for type arguments.

Before left angle bracket
Please refer to the explanation for “Space before left angle bracket type argument”.

After left angle bracket
Please refer to the explanation for “Space before left angle bracket type argument”.

Before comma in brackets
Please refer to the explanation for “Space before comma type argument”.

After comma in brackets
Please refer to the explanation for “Space after comma type argument”.

Before question mark in brackets
Please refer to the explanation for “Space before question mark type argument”.

After question mark in brackets
Please refer to the explanation for “Space after question mark type argument”.

Before right angle bracket
Please refer to the explanation for “Space before right angle bracket type argument”.

2.8.10 Separation
Lets you control the insertion of blank lines to separate statements or declarations with
different functions or meanings. Just as related statements should be grouped together, un-
related statements should be separated from each other. In English, the start of a new para-
graph is identified with indentation or a blank line. This greatly aids reading ease and helps
to improve comprehension and reading speed. When coding, you should strive for a similar
goal and always give the reader hints as to how the program is organized.

SEPARATION 188

With Jalopy you are able to enforce consistent blank lines behavior and divide groups
of related statements into paragraphs, separate routines from one another and highlight
comments. You can give Jalopy complete control over the blank lines handling, or use a
more relaxed style and keep existing blank lines up to a given number.

2.8.10.1 General
Lets you specify the number of blank lines that should appear before, after and between
different Java source elements.

Figure 2.46. Blank Lines settings page

Package statement
Lets you control how many blank lines should be printed after the package statement.

Example 2.672. 3 blank lines after package statement
package com.triemax.jalopy.printer;
¶
¶
¶
import antlr.collections.AST;

import com.triemax.jalopy.parser.JavaAST;
import com.triemax.jalopy.parser.JavaTokenTypes;

...

Imports
Lets you control how many blank lines should be printed after the last import statement.

189 CHAPTER 2 CONFIGURATION

Example 2.673. 4 blank lines after last import statement
package com.triemax.jalopy.printer;

import antlr.collections.AST;

import com.triemax.jalopy.parser.JavaAST;
import com.triemax.jalopy.parser.JavaTokenTypes;
¶
¶
¶
¶
public class Printer {
}

Declaration section
Lets you control how many blank lines should be printed before a new declaration section.
A declaration section means an arbitary amount of similar declarations, like e.g. instance
initializers, or methods or enum declarations. This option is only meaningful when code
sorting is enabled for declarations. Refer to Section 2.8.11.1, “Declarations” for more in-
formation about the code sorting feature.

Since 1.4

Example 2.674. 2 blank lines before code sections
private Foo aFoo;
¶
¶
Constructor(Foo rFoo) {
}
¶
¶
public static void method(Foo rFoo) {
}

Classes
Lets you control how many blank lines should be printed before the first top level class
declaration of a compilation unit and between two class declarations.

Example 2.675. 1 blank line before class declaration
¶
class Foo {
}

The blank lines before setting is only meaningful if the class declaration is the first top level
declaration of a compilation unit and not preceded by a package or import statement.

Example 2.676. 2 blank lines between two class declarations
class One {
}
¶
¶
class Two {
}

SEPARATION 190

Interfaces
Lets you control how many blank lines should be printed before the first top level interface
declaration of a compilation unit and between two interface declarations.

Example 2.677. 2 blank lines before first interface declarations
¶
¶
interface Fooable {
}

The blank lines before setting is only meaningful if the interface declaration is the first top
level declaration of a compilation unit and not preceded by a package or import statement.

Example 2.678. 3 blank lines between two interface declarations
interface One {
}
¶
¶
¶
interface Two {
}

Enums
Lets you control how many blank lines should be printed before the first top level enum
declaration of a compilation unit and between two enum declarations. The blank lines
before setting is only meaningful if the enum declaration is the first top level declaration of
a compilation unit and not preceded by a package or import statement.

Since 1.1

Example 2.679. 3 blank lines between two enum declarations
public enum Season {
 WINTER, SPRING, SUMMER, FALL
}
¶
¶
¶
public enum Day {
 MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY
}

Annotations
Lets you control how many blank lines should be printed before the first top level annota-
tion declaration of a compilation unit and between two annotation declarations. The blank
lines before setting is only meaningful if the annotation declaration is the first top level
declaration of a compilation unit and not preceded by a package or import statement.

Since 1.1

191 CHAPTER 2 CONFIGURATION

Example 2.680. 2 blank lines between two enum declarations
public @interface Name {
 String first();
 String last();
}
¶
¶
public @interface Endorsers {
 String[] value();
}

Methods
Lets you control how many blank lines should be printed between two method/constructor
declarations.

Example 2.681. 3 blank lines between two method declarations
public static Printer getInstance() {
 return INSTANCE;
}
¶
¶
¶
public void print(AST node, ASTWriter out)
 throws IOException {
}

Variables
Lets you control how many blank lines should be printed before and after variable decla-
rations.

Example 2.682. 1 blank line before variable declarations
System.out.println();
¶
int a = 1;
int b = 2;

Example 2.683. 2 blank lines after variable declarations
int a = 1;
int b = 2;
¶
¶
System.out.println();

Left curly brace class
Forces the given number of blank lines after left curly braces of class, interface and enum
declarations. You need to explicitly enable the option to take effect. When enabled, this
option takes highest precedence and overrides all other blank line settings.

Please note that you need to set this option only if you want different left curly blank
lines behavior for class level blocks. Otherwise, the corresponding options for left curly
brace endline/newline would be enough to enforce consistent behavior.

Since 1.9.1

SEPARATION 192

Example 2.684. Blank lines before Javadoc=1
class Demo {
¶
 /** Demo method */
 public void foo() {
 }
}

Example 2.685. Blank lines before Javadoc=1, Blank lines after left curly braces=0
class Demo {
 /** Demo method */
 public void foo() {
 }
}

Left curly brace method
Forces the given number of blank lines after left curly braces of method and constructor
declarations. You need to explicitly enable the option to take effect. When enabled, this
option takes highest precedence and overrides all other blank line settings.

Please note that you need to set this option only if you want different left curly blank
lines behavior for method level blocks. Otherwise, the corresponding options for left curly
brace endline/newline would be enough to force consistent behavior.

Since 1.9.1

Example 2.686. Keep blank lines=1
private final void loadVersion() {
¶
 check();
}

Example 2.687. Keep blank lines=1, Blank lines after left curly braces methods=0
private final void loadVersion() {
 check();
}

Left curly brace endline
Forces the given number of blank lines after left curly braces that are printed at the end of
the line beginning the compound statement (a.k.a. Sun brace style). You need to explicitly
enable the option to take effect. When enabled, this option overrides all other blank line
settings other than Left curly brace class and Left curly brace method.

Example 2.688. Blank lines before blocks=1
public void foo() {
¶
 if (condition()) {
¶
 if (anotherCondition()) {
 doSomething();
 }
 }
}

193 CHAPTER 2 CONFIGURATION

Example 2.689. Blank lines before blocks=1, Blank lines after left curly braces=0
public void foo() {
 if (condition()) {
 if (anotherCondition()) {
 doSomething();
 }
 }
}

Left curly brace endline newline
Forces the given number of blank lines after left curly braces that are printed at the beginning
of lines (a.k.a. C brace style). When enabled, this option overrides all other blank line
settings.

Since 1.7

Example 2.690. Blank lines before blocks=1
public void foo()
{
¶
 if (condition())
 {
¶
 if (anotherCondition())
 {
 doSomething();
 }
 }
}

Example 2.691. Blank lines before blocks=1, Blank lines after left curly braces=0
public void foo()
{
 if (condition())
 {
 if (anotherCondition())
 {
 doSomething();
 }
 }
}

Right curly brace
Forces the given number of blank lines before closing curly braces, no matter what other
blank lines settings dictate.

Example 2.692. Blank lines before blocks=1
public void foo() {
 if (condititon()) {
 if (anotherCondition()) {
 doSomething();
¶
 }
¶
 }
¶
}

SEPARATION 194

Blocks
Lets you control how many blank lines should be printed before and after statement blocks
(if-else , for, while, do-while, switch, try-catch-finally, synchronized). Note that the “Blank
Lines After” setting also applies for anonymous inner classes.

Example 2.693. 2 blank lines before and after blocks
AST type = null;
¶
¶
switch (next.getType()) {
 case JavaTokenTypes.LPAREN :
 type = PrinterUtils.advanceToFirstNonParen(next);
 break;
 default :
 type = next;
 break;
}
¶
¶
AST ident = type.getFirstChild();

Case blocks
Lets you control how many blank lines should be printed before each case block of a switch
expression.

Example 2.694. 3 blank lines before case blocks
switch (next.getType()) {
¶
¶
¶
 case JavaTokenTypes.LPAREN :
 type = PrinterUtils.advanceToFirstNonParen(next);
 break;
¶
¶
¶
 default :
 type = next;
 break;
}

Control statements
Lets you control how many blank lines should be printed before the statements return,
break and continue.

195 CHAPTER 2 CONFIGURATION

Example 2.695. 2 blank lines before case control statements
switch (next.getType()) {
 case JavaTokenTypes.LPAREN :
 type = PrinterUtils.advanceToFirstNonParen(next);
¶
¶
 break;

 default :
 type = next;
¶
¶
 break;
}

Note that this setting does not apply when a control statement appears directly after the
case or default keyword or when the statement is the single member of a statement block
without curly braces.

Example 2.696. Setting takes no effect before case control statements
switch (next.getType()) {
 case JavaTokenTypes.LPAREN :
 break;

 default :
 continue;
}

Example 2.697. Setting takes no effect for single statements in blocks
if (isClean())
 return;

Single-line comments
Lets you control how many blank lines should be printed before single-line comments.

Example 2.698. 1 blank line before single-line comment
System.out.println("ERROR");
¶
// XXX use log4j logger
ex.printStackTrace();

Multi-line comments
Lets you control how many blank lines should be printed before multi-line comments.

Example 2.699. 2 blank lines before multi-line comment
System.out.println("ERROR");
¶
¶
/* XXX use log4j logger */
ex.printStackTrace();

Javadoc comments
Lets you control how many blank lines should be printed before Javadoc comments.

SEPARATION 196

Separator comments
Lets you control how many blank lines should be printed before and after separator com-
ments.

Since 1.7

Example 2.700. 2 blank lines before/after separator comment
protected Foo instance;
¶
¶
//~ Constructors ---
¶
¶
public Demo () {}
public Demo (Foo anotherFoo) {}

Header
Lets you control how many blank lines should be printed before and after headers.

Example 2.701. No blank lines after header
// Copyright 1998-2000, Foo, Inc. All Rights Reserved.
// Confidential and Proprietary Information of Foo, Inc.
// Protected by or for use under one or more of the following patents:
// U.S. Patent Nos. X,XXX,XXX. Other Patents Pending.
package com.foobar;

...

Example 2.702. 2 blank lines after header
// Copyright 1998-2000, Foo, Inc. All Rights Reserved.
// Confidential and Proprietary Information of Foo, Inc.
// Protected by or for use under one or more of the following patents:
// U.S. Patent Nos. X,XXX,XXX. Other Patents Pending.
¶
¶
package com.foobar;

...

Footer
Lets you control how many blank lines should be printed before and after footers.

SQLJ clauses
Lets you control how many blank lines should be printed before and after SQLJ clauses.

Example 2.703. 2 blank lines before/after SQLJ clause
Integer salesRepID = new Integer(358);
String salesRepName = "Jouni Seppanen";
Date dateSold = new Date(97,11,6);
¶
¶
#sql { INSERT INTO SALES VALUES(:itemID,:itemName,:dateSold,:totalCost,
 :salesRepID,:salesRepName) };
¶
¶
SalesRecs sales;

197 CHAPTER 2 CONFIGURATION

Assignment section
Lets you control how many blank lines are printed after a section with several (at least two)
consecutive assignment expressions.

Since 1.4

Example 2.704. 1 blank line after assignment section
c.fill = GridBagConstraints.HORIZONTAL;
c.insets = new Insets(0, 0, 0, 0);
¶
middlePanel.add(buttonsPanel, c);

2.8.10.2 Misc
Lets you control miscellaneous separation settings.

Figure 2.47. Blank Lines Misc settings page

Keep blank lines up to
When enabled, retains up to the given number of blank lines found in the original source.
Note that Jalopy still takes your other blank lines settings into account. If you disable this
option, all original blank lines will be ignored!

SEPARATION 198

Example 2.705. Source code with blank lines to separate declaration sections
aMVString = new MultiValueString("abc");
¶
System.out.println("MV = "+aMVString);
¶
System.out.println("MV0 = "+aMVString.extract(0));
System.out.println("MV1 = "+aMVString.extract(1));
System.out.println("MV2 = "+aMVString.extract(2));
System.out.println("");

If this feature is left disabled, Jalopy will print the individual lines according to the current
blank lines settings but won’t try to keep any blank lines.

Keep blank lines in headers up to
When enabled, retains up to the given number of blank lines found in the original source
file between header (and footer) comments. This option is only signficant when you enable
the header/footer feature and specify a multi-header template, without enabling the override
mode.

Since 1.7

Example 2.706. Source code with blank lines to separate headers
/*
 * Foo.java
 *
 * $Header: //depot/foo/src/main/com/foo/Foo.java#13 $
 */
¶
/*
 * Copyright (c) 2002 FooBar, Inc. All rights reserved.
 *
 * This software is the confidential and proprietary information
 * of FooBar, Inc. ("Confidential Information"). You shall not
 * disclose such Confidential Information and shall use it only
 * in accordance with the terms of the license agreement you
 * entered into with FooBar, Inc.
 */
package com.foobar.lemon;

Chunks
Lets you define what makes a chunk: a section of associated statements. With "Variable
identifiers" and/or "Align assignments" enabled, Jalopy determines what statements can be
aligned using these options. With “Align endline comments” enabled, Jalopy determines
what comments should be aligned together.

By comments
When enabled, a statement with a comment before is recognized as the start of a new chunk.

Example 2.707. Aligned assignments/identifiers
String text = "text";
int a = -1;
// create a new entry
History.Entry entry = new History.Entry(text);

199 CHAPTER 2 CONFIGURATION

Example 2.708. Aligned assignments/identifiers, chunks by comments
String text = "text";
int a = -1;
// create a new entry
History.Entry entry = new History.Entry(text);

By blank lines
When enabled, a statement which has one or more blank lines before is recognized as the
start of a new chunk.

Example 2.709. Aligned assignments/identifiers
String text = "text";
int a = -1;
¶
History.Entry entry = new History.Entry(text);

Example 2.710. Aligned assignments/identifiers, chunks by blank lines
String text = "text";
int a = -1;
¶
History.Entry entry = new History.Entry(text);

By line wrap
When enabled, a statement that takes more than just one line to print is recognized as the
start of a new chunk. With standard indentation, it is recommended to have this option
enabled, because otherwise wrapped expressions might obscure aligned assignments. Please
note that this option does not affect endline comments!

Since 1.3

Example 2.711. Aligned assignments
int labelR_x = Math_min(iconR.x, textR.x);
int labelR_with = Math_max(iconR.x + iconR.width, textRrr.x) -
 labelR_x;
int labelR_width = Math_max(iconR.x + iconR.width, textRrr.x) -
 labelR_x;
int labelR_y = Math_min(iconR.y, textR.y);
int labelR_height = Math_max(iconR.y + iconR.height,
 textR.y + textR.height);
int labelR_x = Math_min(iconR.x, textR.x);
int lab = Math_min(iconR.x, textR.x);

Example 2.712. Aligned assignments, chunks by line wrap, prefer wrap after assign
int labelR_x = Math_min(iconR.x, textR.x);
int labelR_with =
 Math_max(iconR.x + iconR.width, textRrr.x) - labelR_x;
int labelR_width =
 Math_max(iconR.x + iconR.width, textRrr.x) - labelR_x;
int labelR_y = Math_min(iconR.y, textR.y);
int labelR_height =
 Math_max(iconR.y + iconR.height, textR.y + textR.height);
int labelR_x = Math_min(iconR.x, textR.x);
int lab = Math_min(iconR.x, textR.x);

SEPARATION 200

Remove blank lines for method prototypes
When enabled, blank lines around abstract method declarations are removed. This includes
all methods in interfaces (which are implicitly abstract). And all methods explicitely declared
abstract in classes. If left disabled, blank lines will be printed according to the blank lines
settings for methods (see “Blank lines after methods”).

Since 1.2

Example 2.713. Method prototypes
interface foo {

 public void method1();

 public void method2();

 public void method3();
}

Example 2.714. Method prototypes without blank lines
interface foo {
 public void method1();
 public void method2();
 public void method3();
}

Ignore control statements option for break in switch
When enabled, the “Blank Lines before control statements” option is ignored for break
statements within switch blocks.

Since 1.3

Example 2.715. 1 blank lines before control statements
switch (number) {
 case 1:
 System.out.println();

 break;

 default:
 System.out.println();

 break;
}

Example 2.716. 1 blank lines before control statements, but option ignored
switch (number) {
 case 1:
 System.out.println();
 break;

 default:
 System.out.println();
 break;
}

Ignore blocks option in switch
When enabled, the “Blank lines for blocks” option is ignored within switch blocks.

201 CHAPTER 2 CONFIGURATION

Since 1.3

Example 2.717. 1 blank lines before blocks
switch (number) {
 case 1:

 if (DEBUG)
 System.out.println("FIRST NUMBER");

 break;

 default:

 while (true)
 perform();

 break;
}

Example 2.718. 1 blank lines before blocks, but option ignored
switch (number) {
 case 1:
 if (DEBUG)
 System.out.println("FIRST NUMBER");

 break;

 default:
 while (true)
 perform();

 break;
}

2.8.11 Sorting
Lets you control the code sorting. Code sorting lets you arrange elements in a specific order
to ease navigation and improve comprehension.

2.8.11.1 Declarations
Lets you control the order of the main declaration elements of Java compilation units:
classes, interfaces, enums, annotations, fields, initializers, constructors and methods.

SORTING 202

Figure 2.48. Sorting Declarations settings page

Sort declarations
Enables or disables the sorting of declarations. When disabled, all declarations appear in
their original order. Otherwise they are grouped and sorted according to the defined order.

Sort Order
You can specify the order in which static fields/initializers, instance fields, instance initial-
izers, constructor, method, enum, annotation, class and interface declarations and enum
constants should appear in source files by selecting an element type and moving it up or
down the list with the Up and Down buttons.

By default, with sorting enabled, the different declaration elements are grouped together,
but within one element type the contained declarations are still placed in their original
order. For example, all methods will be grouped together, but otherwise the methods appear
in their original order. Enable any of the “Sort Members” check boxes, if you want to have
all members of one type sorted as well.

Use the Edit... button to configure the order in which the individual declaration mem-
bers should appear. A dialog opens that lets you specify the sorting criteria, e.g. modifier
or name. You can select what criteria should be used and in what order. Jalopy checks all
enabled sorting conditions in the specified order until the sorting position of a declaration
member could be determined.

For example, if you want your methods to be sorted according to their access modifier
and names, enable both criteria and disable the others. For two methods Jalopy will first
check whether the modifiers are equal. If they differ, the sorting order is already obvious
and no further criteria applied. But if they are equal, the names will be checked and and
the two methods sorted lexicographically.

203 CHAPTER 2 CONFIGURATION

For modifiers, you can further refine what modifiers should be significant for sorting
and in what order they are tested. Though accessible from different dialogs, the settings for
modifier sorting are global and used across all declaration types to achieve a consistent style.

Methods

Figure 2.49. Configure Sorting Order of Methods

For methods, you can specify sorting by modifiers, name, parameter count, Java Bean pat-
tern, regular expression pattern or custom ordering. Enable the check box for each criteria
that should be significant and use the Up and Down buttons to specify the order in which
the criteria should be applied. To further refine the way sorting is applied for modifiers,
select the “Modifiers” entry and press the Edit... button to define what modifiers should
be significant and adjust their order.

Example 2.719. Method
public final void setName(String first, String second) {
 ...
}

In the above example, the access modifier would be “public final”, the name “set-
Name” and parameter count '2';.

Bean Pattern
Bean pattern refers to the JavaBeans specification naming convention that requires accessor
and mutator methods to begin with either the set, get or is prefixes.

SORTING 204

Figure 2.50. Configure Sorting Order of JavaBeans Methods

You can control the order in which JavaBeans methods and ordinary methods appear by
selecting the entry and press the Edit... button. Adjust the order of the different elements
in the list component of the new dialog and press Apply. The Ordinary method entry refers
to all non-Bean methods.

Group methods with similar names
Normally bean pattern sorting means that all methods of one type (getters, boolean getters,
setters, ordinary methods) are grouped together according to the specified order. Enabling
this option causes all methods with similar names to be grouped together, i.e. bean methods
and ordinary methods may be mixed, but all bean methods for one property stay together.

Similar methods are determined by stripping the bean prefix and comparing the result-
ing method names. Similar methods are grouped together according to the specified order
(getters, boolean getters, setters, ordinary methods).

Since 1.5

Example 2.720. Bean pattern sorting
public void aaaaaa() {}

public void bbbbbb() {}

public void cccccc() {}

public Object getAaaaaa() {}

public Object getBbbbbb() {}

public Object getCccccc() {}

public boolean isAaaaaa() {}

public boolean isBbbbbb() {}

public boolean isCccccc() {}

public void setAaaaaa() {}

public void setBbbbbb() {}

public void setCccccc() {}

205 CHAPTER 2 CONFIGURATION

Example 2.721. Bean pattern sorting, group similar
public void aaaaaa() {}

public Object getAaaaaa() {}

public boolean isAaaaaa() {}

public void setAaaaaa() {}

public void bbbbbb() {}

public Object getBbbbbb() {}

public boolean isBbbbbb() {}

public void setBbbbbb() {}

public void cccccc() {}

public Object getCccccc() {}

public boolean isCccccc() {}

public void setCccccc() {}

Keep bean methods together
Grouping similar methods will let you group all bean methods for one property together,
but the bean methods are otherwise still mixed with ordinary methods. If you instead prefer
to have all bean methods grouped together, you can enable this option to build one large
block with all bean methods.

Since 1.8

Example 2.722. Bean pattern sorting, group similar
public void aaaaaa() {}

public Object getAaaaaa() {}

public boolean isAaaaaa() {}

public void setAaaaaa() {}

public void bbbbbb() {}

public Object getBbbbbb() {}

public boolean isBbbbbb() {}

public void setBbbbbb() {}

public void cccccc() {}

public Object getCccccc() {}

public boolean isCccccc() {}

public void setCccccc() {}

SORTING 206

Example 2.723. Bean pattern sorting, group similar, bean methods kept together
public Object getAaaaaa() {}

public boolean isAaaaaa() {}

public void setAaaaaa() {}

public Object getBbbbbb() {}

public boolean isBbbbbb() {}

public void setBbbbbb() {}

public Object getCccccc() {}

public boolean isCccccc() {}

public void setCccccc() {}

public void aaaaaa() {}

public void bbbbbb() {}

public void cccccc() {}

Regular expression
Lets you define arbitrary regular expressions to match method signatures to specify absolute
positions for specific methods.

Figure 2.51. Configure Regular Expression Sorting

Matching is performed against a simplified signature: only modifiers, return type and
method name are used.

Example 2.724. Method declaration
public boolean equals(Object rOther) {
 ...
}

The above method declaration would yield the following signature: public boolean equals

207 CHAPTER 2 CONFIGURATION

Add...
To add a new regular expression, press the Add... button.

Figure 2.52. Add Regular Expression

Enter the regular expression into the Regex text field and press the Apply... button to apply
the addition. If you want to test the regular expression before you submit it, enter a test
string in the String field and press the Test button to perform pattern matching.

Remove
To remove an existing regular expression, select the expression you want to remove and
press the Remove button.

Change...
To change an existing regular expression, select the expression you want to change and press
the Change... button.

Figure 2.53. Change Regular Expression

Adjust the regular expression in the Regex text field and press the Apply... button to apply
the change. If you want to test the regular expression before you submit it, enter a test string
in the String field and press the Test button to perform pattern matching.

Custom Sort Order
As it might not always be sufficient to rely on method signature information alone, devel-
opers can take total control over method ordering using special Javadoc tags.

SORTING 208

IMPORTANT Javadoc formatting, see Section 2.8.14.1.1, “Format comments”,
must be enabled for this feature to work

In order to have methods grouped by purpose, check the Custom entry in the upper list
of the dialog, move it to the top and utilize two custom Javadoc tags in your method com-
mentary. In your method declaration comments, you need to add the Javadoc standalone
tag @jalopy.group followed by a logical group name. This name can be freely chosen and
defines the group a method belongs to.

Example 2.725. Sorting method declarations with @jalopy.group
 /**
 * Returns the value of the Foo property.
 *
 * @jalopy.group Accessors
 */
 public int getFoo () {
 ...
 }

Then you specify the order of methods with the @jalopy.group-order (you can use
@jalopy.group_order to circumvent a bug in the Sun 1.4.2 Javadoc implementation)
in the class or interface Javadoc comment. Simply place all group names defined with
@jalopy.group tags in the desired order here and all methods will be sorted accordingly.

There is no special requirement on how the logical group names should be written, but
it is good practice to separate them by commas.

Example 2.726. Class declaration with @jalopy.group-order
 /**
 * I want methods ordered by value provided in the @jalopy.group tag of
 * each method in this order. If the method doesn’t have a @jalopy.group tag,
 * fall back on project defaults.
 *
 * @jalopy.group-order Constructors,Queries,Accessors
 */
class Foo {
 ...
}

This works recursively for all methods of a compilation unit, i.e. for inner classes Jalopy
first checks the inner class declaration comment and if no @jalopy.group-order tag can
be found, it recursively searches all parent class/interface declarations of the unit. A group
name not only defines the sorting order, but is used for separator comments also (Refer to
Section 2.8.11.3, “Comments” for more information on this feature).

Please note that all methods that have no custom group information associated are
placed below the ones with grouping tags. Within each group the methods are sorted ac-
cording to the normal criteria (access modifier, name, parameter count).

Since 1.1

209 CHAPTER 2 CONFIGURATION

Example 2.727. Custom separator comments
//~ Queries --

/**
 * This method gets object by primary key
 *
 * @param inConn db conn
 * @param inPK the primary key
 *
 * @jalopy.group Queries
 */
public static MyClass getByPK (Connection inConn, Long inPK) {
 ...
}

...

//~ Accessors --

/**
 * This method returns the Name property.
 *
 * @jalopy.group Accessors
 */
public String getName (Connection inConn, String inLoginName) {
 ...
}

Static Methods
In order to separate static methods from non-static methods, enable the corresponding
checkbox. When enabled, you can move the item up and down to specify the relative po-
sition among the other element sections.

The individual static method declarations are sorted according to the criteria defined
for non-static methods.

Since 1.9.4

Classes, Interfaces, Enums
Class, interface, enum and annotation declarations can be sorted according to access mod-
ifier and/or name.

Figure 2.54. Configure Sorting Order of Classes, Interfaces and Enums

SORTING 210

To further refine the way sorting is applied for access modifiers, select the Access Modifier
entry, press the Edit... button, configure what modifiers should be significant and adjust
the order in which testing should be applied.

Example 2.728. Classes/Interfaces
protected abstract class AbstractPage {
 ...
}

In the above example, the modifiers would be “protected abstract” and the name
“AbstractPage”.

Access Modifier
Lets you define what modifiers should be significant when sorting by modifier and in which
order the declarations should be sorted. The position of the Modifiers entry in the parent
dialog defines when the modifiers are compared to determine the order of two declarations.
E.g. if you want to sort by modifier first, Modifiers must be the topmost entry in the parent
dialog.

Figure 2.55. Configure Sorting Order of Modifiers

Select the check box of each access modifier that should be used to determine the order of
declarations and use the Up and Down buttons to define the order in which the declarations
should be sorted.

For example, if you want to place all static methods together above the other ones, you
would check the “static” modifier and move it to the top of the list.

211 CHAPTER 2 CONFIGURATION

Example 2.729. Sort by static modifier first, then access modifier
class Foo {

 public static void x() {}

 static void y() {}

 public void c() {}

 public void d() {}

 protected void b() {}

 private void a() {}
}

But if you only want to have the methods sorted by access modifier, just check the four
access modifiers and specify the order in which the declarations are to be sorted, e.g. private,
package protected, protected and public.

Example 2.730. Sort by access modifier
class Foo {

 private void a() {}

 static void y() {}

 protected void b() {}

 public void c() {}

 public void d() {}

 public static void x() {}
}

Require bean property field
By default all methods following the JavaBeans naming conventions are recognized as Jav-
aBeans methods. In order to limit JavaBeans detection to methods that actually contain a
corresponding property field, enable this option.

Bean property field detection is somewhat fuzzy as no attempt is made to match method
names exactly in order to support field prefixes. Given the method name “getImportance-
Value”, Jalopy would match all fields that end with “importanceValue” as a correspond-
ing property field (case is ignored). But a field name “importanceValue_” would not be
matched.

Since 1.9

Example 2.731. Method declarations
private boolean importanceValue; // property field

public void setImportanceValue(boolean value) {}
public boolean isImportanceValue() {}
public void setTestValue(String value) {}

When the option is disabled, all methods in the above example would be recognized as
JavaBeans methods and handled accordingly. But if the option is enabled, only the first two

SORTING 212

methods would be treated as JavaBeans methods, because only they contain a matching
property field.

This option might affect the sorting of methods when the Bean Pattern criteria is en-
abled, please refer to Section 2.8.11.1.1, “Bean Pattern”. It also impacts what Javadoc tem-
plate might be chosen when generating Javadoc comments, see Section 2.8.14.5, “Tem-
plates”.

Boolean Getter
Lets you configure the regular expression that is used to determine what method declara-
tions are recognized as Boolean Getters. According to the JavaBeans naming conventions,
only method declarations starting with the “is” prefix are Boolean Getters, but it might
make sense to lift this restriction. In certain cases it is more reasonable to name methods in
a way that better describes their purpose, but still treat them as Boolean Getters, like e.g.
canDelete() or shouldDelete().

IMPORTANT The prefix must be enclosed with matching parentheses! Always
use something like ^(is|should|can)[A-Z]\w+ rather than
^is|should|can[A-Z]\w+

Since 1.1

2.8.11.2 Modifiers
Controls the sorting of declaration modifiers.

Figure 2.56. Sorting Modifiers settings page

213 CHAPTER 2 CONFIGURATION

Sort modifiers
Enables or disables the sorting of modifiers. When disabled, the modifiers appear in their
original order. Otherwise they are sorted according to the specified order (see below).

Sort annotations
Controls whether annotations should be sorted lexicographically.

Since 1.9

Example 2.732. Unsorted annotations
@Remote(Whatever.class)
@Interceptors(Test.class)
@Stateful
class Foo {}

Example 2.733. Sorted annotations
@Interceptors(Test.class)
@Remote(Whatever.class)
@Stateful
class Foo {}

Sort Order
Lets you specify the order in which the individual modifiers should appear. Select an entry
in the list and use the Up and Down buttons to move it to the desired location. The list
contains the different available Java modifiers as of J2SE 6.0. The @annotation entry
represents annotations.

Example 2.734. Marker annotation placed before public modifier
@Preliminary public class TimeTravel {
 ...
}

Example 2.735. Marker annotation placed after public modifier
public @Preliminary class TimeTravel {
 ...
}

Please note that normal annotations and single-member annotations are always printed
before all other modifiers!

Example 2.736. Normal annotation
@RequestForEnhancement(
 id = 2868724,
 synopsis = "Provide time-travel functionality",
 engineer = "Mr. Peabody",
 date = "4/1/2004"
)
public static void travelThroughTime(Date destination) {
 ...
}

SORTING 214

Example 2.737. Single-member annotation
@Copyright("2002 Yoyodyne Propulsion Systems, Inc., All rights reserved.")
public class OscillationOverthruster {
 ...
}

2.8.11.3 Comments
Lets you control the behavior of the separator comments. When the sorting of declarations
is enabled, separator comments may be inserted before every element section to make it
easier to identify the different parts of a source file.

A separator comment usually starts with a leading //~ followed by the specified descrip-
tion text of a section and a certain number of fill characters to take up the rest of the space.
But the style of the comments is fully configurable as well.

Example 2.738. Separator comment
//~ Methods --

Figure 2.57. Comments Separator settings page

Insert
Controls when separator comments should be inserted.

Between sections
Enables the insertion of separator comments between the different code sections of a
compilation unit. You can control the appearance of the comments as described in Sec-
tion 2.8.11.3.2, “Separator Comment Descriptions” and Section 2.8.11.3.3, “Separator
Comment Style”.

215 CHAPTER 2 CONFIGURATION

Example 2.739. Separator comments
public class Foo {

 //~ Static fields/initializers ---------------------------------------

 static final String LABELED_BY_PROPERTY = "labeledBy";

 //~ Instance fields --

 private Icon defaultIcon = null;

 //~ Constructors ---

 public Foo(String text, Icon icon) {
 ...
 }

 public Foo(String text) {
 ...
 }

 //~ Methods --

 public Icon getDisabledIcon() {
 ...
 }

 public Icon getIcon() {
 ...
 }

 //~ Inner Classes --

 protected class FooContainer {
 ...
 }
}

IMPORTANT The option requires the “Sort declarations” option to be enabled
in order to take effect

Between sections of inner classes
The insertion of separator comments for inner classes/interfaces may lead to confusion,
therefore you can control it here separately.

SORTING 216

Example 2.740. Separator comments
public class Foo {

 //~ Static fields/initializers -----------------------------------

 static final String LABELED_BY_PROPERTY = "labeledBy";

 //~ Instance fields --

 private Icon defaultIcon = null;

 //~ Constructors ---

 public Foo(String text, Icon icon) {
 ...
 }

 public Foo(String text) {
 ...
 }

 //~ Methods --

 public Icon getDisabledIcon() {
 ...
 }

 public Icon getIcon() {
 ...
 }

 //~ Inner Classes --

 protected class FooContainer {

 public Component getParent() {
 ...
 }

 //~ Methods --

 public int getComponentCount() {
 ...
 }
 }
}

IMPORTANT The option requires the “Sort declarations” option to be enabled
in order to take effect

Between methods
When enabled, separator comments are inserted between method declarations.

Since 1.3

217 CHAPTER 2 CONFIGURATION

Example 2.741. Method comment separator
/**
 * Returns the value of the disabledIcon property if it’s been set
 *
 * @return The value of the disabledIcon property.
 */
public Icon getDisabledIcon() {
 ...
}

//~ --

/**
 * Return the keycode that indicates a mnemonic key.
 *
 * @return int value for the mnemonic key
 */
public int getDisplayedMnemonic() {
 ...
}

IMPORTANT The option requires the “Sort declarations” option to be enabled
in order to take effect

Between methods of inner classes
When enabled, separator comments are inserted between method declarations of inner
classes.

Since 1.7

IMPORTANT “Sort declarations” must be enabled in order to take effect

Example 2.742. Method comment separator of inner classes
public class Foo {

 ...

 static class Item {

 /**
 * Returns the value of the disabledIcon property if it’s been
 * set
 *
 * @return The value of the disabledIcon property.
 */
 public Icon getDisabledIcon() {
 ...
 }

 //~ //

 /**
 * Return the keycode that indicates a mnemonic key.
 *
 * @return int value for the mnemonic key
 */
 public int getDisplayedMnemonic() {
 ...
 }
 }
}

SORTING 218

Descriptions
Lets you define the description texts for the individual code sections. Select a row in the list
and press the Change... button to invoke a dialog that lets you specify the text for a specific
section. The dialog may be invoked directly by double-clicking on the list.

Figure 2.58. Configure Section Description Text

If you want to disable the insertion for specific sections, you can achieve this means by
removing the corresponding description text. Please note that the “Ordinary methods” text
is only used when custom grouping is enabled, and specifies the section name for those
methods that have no custom grouping info associated (see Section 2.8.11.1.1, “Custom
Sort Order”).

Style
Lets you control the style of separator comments.

Fill character
Lets you define the fill character that should be used in comments.

Example 2.743. Fill character styles
//~ Methods

//~ Methods ..

//~ Methods --

//~ Methods ==

//~ Methods **

//~ Methods //

Edit...
Press the Edit... button to adjust the templates that will be used for separator comments. The
templates may contain one or several single-line or multi-line comments. You can configure
two different templates: one for the comments between the different declaration sections,
and one for comments between method declarations.

Example 2.744. Default separator template
//~ ${description} ${fill.character}*

219 CHAPTER 2 CONFIGURATION

As you can see in the example above, certain variables may be used that are substituted
during formatting to include the code section description or stretch the comment to com-
pletely fill a line.

Table 2.6. Separator template variables

Variable Description

${description} Lets you include the description text of the current code section (Refer to Sec-
tion 2.8.11.3.2, “Separator Comment Descriptions” for information on how to
adjust the descriptions).

${fill.character} Lets you include the fill character as defined by the corresponding combo box.
Please note that you have to place an asterix (*) after the variable if you want
to have a comment line stretched to the full line length.

Please note that Jalopy needs a way to differ between user comments and separator com-
ments, because separator comments must be removed on each run in order to ensure cor-
rect locations and behavior. Jalopy recognizes all single-line comments starting with //~ as
separator comments. If you would rather use a multi-line comment instead or don’t like
the default identifier, you need to make sure that the comments get removed. This means
can be achieved by adding a unique identifier into the template and configure a custom
removal pattern for it (see Section 2.8.13.3, “Comment Removal”).

Example 2.745. Multi-line comment separator template
/**${fill.character}*
 * ~#~ ${description}:
 ${fill.character}//

In the example above, ~#~ would be configured as the removal pattern.

Since 1.4

Line length
Lets you define the maximal line length for separator comments. The specified fill charac-
ter might be used to increase the length of a separator comment to span exactly until the
specified line length.

Since 1.2.1

2.8.12 Imports
Controls the handling of import declarations. With Java, import declarations are used to
make types available within a compilation unit. There are two types of import declarations:

Single-type imports import a single named type.

Example 2.746. Single-type imports
import java.util.ArrayList;
import java.util.List;

On-demand imports import all accessible types declared in the type or package.

Example 2.747. On-demand imports
import java.util.*;
import java.util.regex.*

IMPORTS 220

Figure 2.59. Imports settings page

2.8.12.1 General
Lets you control the general imports settings.

Sort imports
Enables or disables the sorting of import declarations. Enabling this option will sort all dec-
larations lexicographically. When disabled, import declarations are printed in their original
order.

Sort Order
When sorting is enabled, import declarations will be sorted according to the order of the
package names as specified in the list component. To control the order in which the decla-
rations should appear, you can use the Up and Down buttons to move the corresponding
entries up and down.

You can add/remove package names (e.g. javax, javax.swing or com.foo.sarah) to and
from the list via the Add... and Remove buttons. A dialog appears that lets you add a new
grouping definition. The star character (*) represents all undefined packages and cannot
be removed.

221 CHAPTER 2 CONFIGURATION

Figure 2.60. Add new Grouping Definition

A grouping definition consists of a package name and a grouping depth that defines how
many parts of the name should be significant for grouping (see “Grouping” below for more
information).

If you want to change an existing grouping definition, you can do so by selecting an
entry in the list, and pressing the Change... button. A dialog appears that lets you change
an existing grouping definition. Alternatively, you can invoke the dialog by double-clicking
on a grouping definition.

Figure 2.61. Change existing Grouping Definition

Please note that the * character represents all packages not explicitly defined. It cannot be
removed, and you can only adjust its grouping depth.

Grouping
In addition to sorting, declarations may be grouped together to reduce complexity by pack-
ing related information into a common unit. Grouping means that associated declarations
are separated by one blank line. Grouping only happens if sorting is enabled.

The grouping depth lets you control how many parts of a package name should be
considered when determine whether two import declarations are to be grouped together.
Grouping only happens when all relevant parts are equal. So via the grouping depth you
can effectively specify how many package name parts are relevant.

Default grouping depth
This switch lets you define the default grouping depth that should be used when no group-
ing depth was defined for a specific package name (see below). To disable grouping at all,
set the default grouping depth to '0'.

IMPORTS 222

Example 2.748. Grouping depth == 1
import java.awt.Color;
import java.awt.Component;
import java.awt.GridBagConstraints;
import java.awt.GridBagLayout;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.util.ArrayList;
import java.util.List;

Only the first part of the package name will be used to determine grouping.

Example 2.749. Grouping depth == 2
import java.awt.Color;
import java.awt.Component;
import java.awt.GridBagConstraints;
import java.awt.GridBagLayout;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

import java.util.ArrayList;
import java.util.List;

The first two parts of the package name will be used to determine grouping.

Example 2.750. Grouping depth == 3
import java.awt.Color;
import java.awt.Component;
import java.awt.GridBagConstraints;
import java.awt.GridBagLayout;

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

import java.util.ArrayList;
import java.util.List;

The first three parts of the package name will be used to determine grouping.

Group static imports
To better differ between standard import declarations and the static imports introduced
in J2SE 5.0, you can control whether static imports should be grouped separately. You
can select whether static import declarations should be printed together with the standard
import declarations (“Never”) or placed above (“Top”) or below (“Bottom”) all standard
import declarations.

Since 1.4

Example 2.751. Mixed static/standard import declarations
import java.awt.BorderLayout;

import javax.swing.SwingUtilities;
import static javax.swing.WindowConstants;

import z.Foo;

223 CHAPTER 2 CONFIGURATION

Example 2.752. Static import declarations placed above
import static javax.swing.WindowConstants;

import java.awt.BorderLayout;

import javax.swing.SwingUtilities;

import z.Foo;

Example 2.753. Static import declarations placed below
import java.awt.BorderLayout;

import javax.swing.SwingUtilities;

import z.Foo;

import static javax.swing.WindowConstants;

2.8.12.2 Optimization
Lets you optimize the import declarations by either expanding or collapsing them, obsolete
or unused imports are removed.

NOTE When using either one of the Ant, Console or Maven plug-ins, you have
to explicitly configure the class path for this feature to work. Please refer
to the documentation of the individual plug-ins to learn how one can
accomplish this (see Part II, “Plug-ins”)

Expand on-demand imports
When enabled, tries to expand all on-demand import declarations. Expanding means to
resolve all on-demand imports (sometimes called wildcard imports) and replace them with
single-type imports (sometimes called explicit imports) of the types that are actually used
in the source file.

Single-type imports have several advantages and should be preferred over on-demand
imports.

• They avoid any class path conflicts that could break your code when a class is added to
a package you import

• They make dependencies explicit, so that anyone who has to read your code later knows
what you meant to import and what you didn’t mean to import

• They can make some compilation faster, because the compiler doesn’t have to search
the whole package to identify dependencies, though this is usually not a huge deal with
modern compilers

Example 2.754. On-demand import declaration
import java.util.*;

could become

Example 2.755. Single-type import declarations
import java.util.ArrayList;
import java.util.List;

COMMENTS 224

In the examples above, the on-demand import declaration has been expanded into two
single-type import declarations that reference the needed types for this package.

Collapse single-type imports
When enabled, tries to collapse all single-type declarations. Collapsing means to remove
all single-type imports of a given package and replace them with one on-demand import
declaration.

Example 2.756. Single-type import declarations
import java.awt.event.MouseEvent;
import javax.swing.JButton;
import javax.swing.JTable;
import javax.swing.JTextField;

could become

Example 2.757. On-demand import declarations
import java.awt.event.*;
import javax.swing.*;

Please note that there might be collisions that prevent collapsing when two types have the
same name.

Example 2.758. Single-type import declarations
import java.awt.Color;
import java.util.List;

In the example above, collapsing both packages is not possible because this would lead to
invalid code, as both java.awt and java.util contain a type named List. In such cases
only one package will be collapsed (if no further conflicts are detected).

NOTE The NetBeans plug-in currently does not support import collapsing

2.8.13 Comments
Controls how Jalopy handles comments in source files.

225 CHAPTER 2 CONFIGURATION

Figure 2.62. Comments settings page

2.8.13.1 Comment types
Describes what comments Jalopy recognizes and how they are treated. As far as Jalopy is
concerned, there are five types of comments:

Single-line comments
An end-of-line comment: all text from the ASCII characters // to the end of the line

Example 2.759. Single-line comment
// [PENDING] this should be part of the ErrorManager

Single-line comments are normally printed as-is, but can be formatted as well (see Sec-
tion 2.8.13.4, “Format”).

Multi-line comments
A traditional comment: all text from the ASCII characters /* to the ASCII characters */

Example 2.760. Multi-line comment
/*
public int getSubregionStartOffset(int line, int subregion)
{
 ChunkCache.LineInfo[] lineInfos = cache.getLineInfosForPhysicalLine(line);
 return buffer.getLineStartOffset(lineInfos[subregion].physicalLine)
 + lineInfos[subregion].offset;
}
*/

COMMENTS 226

Multi-line comments are normally printed as-is, but can be formatted as well (see Sec-
tion 2.8.13.4, “Format”).

Javadoc comments
A documentation comment: actually a special kind of multi-line comment as defined by the
Sun Javadoc specification; all text from the ASCII characters /** to the ASCII characters
*/.

Example 2.761. Javadoc comment
/**
 * A scroll listener will be notified when the text area is scrolled, either
 * horizontally or vertically.
 */

Javadoc comments are normally printed as-is, but can be formatted according to the code
convention settings (see Section 2.8.14.1, “Format”).

Separator comments
A Jalopy-specific separator comment: actually a special kind of single-line comment; all text
from the ASCII characters //~ to the end of the line.

Example 2.762. Separator comment
//~ Inner classes ------------------------------------

Separator comments are always removed during parsing and may be re-inserted during
emitting according to the code convention settings. Refer to Section 2.8.11.3, “Comments”
for more information about separator comments.

Pragma comments //J[directive]
A Jalopy-specific control comment: actually a special kind of single-line comment; all text
from the ASCII characters //J to the end of the line. Pragma comments are always printed
as-is. Currently, Jalopy supports the following pragma comments:

//J- and //J+

Lets you selectively disable formatting for certain code sections. //J- tells Jalopy to disable
formatting until //J+ will enable it again. All code between (and including) the two com-
ments will be printed as-is.

Example 2.763. Pragma comments
//J-
 if (operator.equals("EQ")) return (left == right);
else if (operator.equals("NE")) return (left != right);
else if (operator.equals("LT")) return (left < right);
else if (operator.equals("GT")) return (left > right);
else if (operator.equals("LE")) return (left <= right);
else if (operator.equals("GE")) return (left >= right);
else
{
 throw new IllegalArgumentException("Unknown int if operator: " +
 operator);
}
//J+

227 CHAPTER 2 CONFIGURATION

IMPORTANT The two comments must always be used in conjunction and they
must always appear on a line by themselves. Never place them
after code elements!

//JDOC-

When placed in front of a Javadoc comment, disables the Javadoc generation feature no
matter what the code convention dictates.

Example 2.764. //JDOC- comment
 /**
 * DOCUMENT ME!
 */
 public class Test {

 //JDOC-
 public void test(String input) {

 ...
 }
 }

//J:KEEP+

Instructs Jalopy to keep existing line breaks within array initializers and parameter or argu-
ment lists. The comment must be placed either directly after the left curly brace of array
initializers, or the left parenthesis of parameter or argument lists, or the first element of the
initializer or list.

Since 1.9.3

Example 2.765. Keep line breaks within call argument list
FormLayout layout = new FormLayout(//J:KEEP+
 "fill:d:grow(1.0), 15px",
 "7px, d, 7px, fill:d:grow(1.0)");

Example 2.766. Keep line breaks within array initializer
String[] options =
 { //J:KEEP+
 "-jar", aLauncher.getAbsolutePath(),
 "-application", "org.foo.application.Main",
 "-debug",
 "-consolelog"
 };

Please refer to the documentation of the wrapping options in Section 2.8.7.1.2, “Keep line
breaks”, for information on how to configure the general wrapping behavior.

2.8.13.2 Comment association
Jalopy associates comments using an assignment heuristics considering empty lines and/or
column offsets. If you plan to switch between several code conventions on a regular basis,
e.g. to toggle between personal preference and company guidelines, you should make sure

COMMENTS 228

to use similar separation settings in order to avoid any association differences. It is good
practice to always craft a code convention that reflects the personal style from a master code
convention (usually the company code convention) and only adjust those settings that run
counter to personal taste. Please refer to the Profiles section for more information.

2.8.13.3 Remove

Controls whether and what types of comments should be removed during formatting.

Single-line comments
When enabled, removes all single-line comments found in a source file that matches cer-
tain criteria. To customize what single-line comments should be removed, you can use the
Customize... button to specify the desired behavior (since 1.1).

Figure 2.63. Configure single-line comment removal

You can choose whether all single-comments should be removed or specify a regular expres-
sion (regex) to match only certain comments. Note that the regex defines a pattern that is
contained in a comment—it must not match exactly.

You can either enter the regex directly into the provided text field or craft one with the
help of a little tool that lets you interactively test the validity of your regex. You can invoke
the regex helper via the Change... button. Note that the Remove custom radio box must be
selected in order to be able to change the regex. The specified regular expression is only
matched against the contents of comments, not any surrounding code elements! The regex
helper is explained in detail below, see Section 2.8.13.3.1, “Regular expression tester” for
more information.

Multi-line comments
When enabled, removes all multi-line comments (sometimes called block comments) found
in a source file that matches certain criteria. To customize what multi-line comments should
be removed, you can use the Customize... button to specify the desired behavior (since 1.1).

229 CHAPTER 2 CONFIGURATION

Figure 2.64. Configure multi-line comment removal

You can choose whether all multi-comments should be removed or specify a regular expres-
sion (regex) to match only certain comments. Note that the regex defines a pattern that is
contained in a comment, it must not match exactly.

You can either enter the regex directly into the provided text field or craft one with the
help of a little tool that lets you interactively test the validity of your regex. You can invoke
the regex dialog via the Change... button. Note that the Remove custom radio box must be
selected in order to be able to change the regex. The specified regular expression is only
matched against the contents of comments, not any surrounding code elements! The regex
tester is explained in detail below, see Section 2.8.13.3.1, “Regular expression tester” for
more information.

Javadoc comments
When enabled, removes all Javadoc comments found in a source file that matches certain
criteria. This may prove useful in conjunction with the Javadoc auto-generation capabilities
to build Javadoc from scratch. To customize what Javadoc comments should be removed,
you can use the Customize... button to specify the desired behavior (since 1.1).

Figure 2.65. Configure Javadoc comment removal

You can choose whether all single-comments should be removed or specify a regular expres-
sion (regex) to match only certain comments. Note that the regex defines a pattern that is
contained in a comment, it must not match exactly.

You can either enter the regex directly into the provided text field or craft one with the
help of a little tool that lets you interactively test the validity of your regex. You can invoke
the regex dialog via the Change... button. Note that the Remove custom radio box must be
selected in order to be able to change the regex. The specified regular expression is only
matched against the contents of comments, not any surrounding code elements! The regex

COMMENTS 230

tester is explained in detail below, see Section 2.8.13.3.1, “Regular expression tester” for
more information.

Regular expression tester
The regular expression tester lets you interactively craft a valid regular expression that con-
tains a certain test string.

Figure 2.66. Regular expression tester

Regex
The Regex text field is where you have to insert the regular expression. This text field initially
contains the current pattern for the comment type that is under construction. Jalopy uses
Java’s build-in regular expression engine which is roughly equivalent with Perl 5 regular
expressions. The syntax is explained here: http://java.sun.com/javase/6/docs/api/java/util/
regex/Pattern.html. For a more precise description of the behavior of regular expression
constructs consult Mastering Regular Expressions [Friedl97].

String
The String text field is where you have to enter a string that should be matched by the
specified regular expression. This text field is initially empty. Once you have edited the two
text fields you may want to use the Test button to perform a pattern matching test in order
to make sure that the specified pattern matches as desired. If testing is successful, a green-
colored message appears, to indicate that fact.

Figure 2.67. Successful regex test

http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html
http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html

231 CHAPTER 2 CONFIGURATION

Otherwise a red-colored message is displayed, and you may want to change your pattern
and/or test string and restart the procedure.

Figure 2.68. Failed regex test

When you are done editing the regular expression, you can press the Apply button to take
over (note that you are not required to perform any testing, the regex is accepted even when
invalid!). You can always use the Cancel button to cancel editing at any time. The dialog
will be closed and no changes applied.

2.8.13.4 Format
Controls the reformatting of comments.

Single-line comments
Enables the reformatting of single-line comments. Only affects the space between leading
delimiter and comment text as shown in the examples below.

Since 1.0.3

Example 2.767. Single-line comment
//Sometimes people run
//the comments against the delimiters

Example 2.768. Single-line comment (reformatted)
// Sometimes people run
// the comments against the delimiters

Multi-line comments
Enables the reformatting of multi-line comments. Only affects the leading asterixes of con-
secutive comment lines as shown in the examples below.

Example 2.769. Multi-line comment
/* Multi-line
* comment.
* end.
*/

COMMENTS 232

Example 2.770. Multi-line comment (reformatted)
/* Multi-line
 * comment.
 * end.
 */

Please note that as of Jalopy 1.6 you can disable formatting of individual comments using
the special /*- delimiter.

Example 2.771. Multi-line comment that keeps its style
/*- Comment that
* should NOT
* be formatted
*/

2.8.13.5 Wrap
Controls the wrapping behavior of comments.

Single-line comments
When enabled, Jalopy tries to ensure that single-line comments do not exceed the maximal
line length.

Since 1.0.3

Example 2.772. A long single-line comment
 |
// this is a long comment so I would like it to wrap
 |

Example 2.773. A long single-line comment that was wrapped
 |
// this is a long comment so|
// I would like it to wrap |
 |

Reflow
By default, wrapping happens on a line-by-line basis, i.e. every line that would exceed the
maximal length will be split and the resulting chunks will be each printed on a line of its
own. To put it in another way: all existing line breaks are kept. This is no problem with
a single comment, but when there are multiple comments in row, wrapping may leave
annoying artifacts like in the example below.

Since 1.0.3

Example 2.774. Wrapped single-line comments
// when comments are reflowed (both single and multi-line), empty |
// comment lines are kept to allow some |
// sort of control how things are broke up |
// |
// otherwise it might be very dangerous to use this feature. |
// The choice is yours |

A better strategy might be to ignore existing line breaks and have the comments reflowed.

233 CHAPTER 2 CONFIGURATION

Example 2.775. Reflowed single-line comments
// when comments are reflowed (both single and multi-line), empty |
// comment lines are kept to allow some sort of control how things |
// are broke up |
// |
// otherwise it might be very dangerous to use this feature. The |
// choice is yours |

Please note that existing blank lines are always kept!

Multi-line comments
When enabled, ensures that multi-line comments do not exceed the maximal line length.

Since 1.0.3

Example 2.776. A long multi-line comment
 |
/* A multi-line comment that spans multiple lines but exceeds the max.
 * line length |
 */ |
 |

Example 2.777. A long multi-line comment that was wrapped
 |
/* A multi-line comment that|
 * spans multiple lines but |
 * exceeds the max. |
 * line length |
 */ |
 |

Please note that as of Jalopy 1.6 you can disable wrapping of individual comments using
the special /*- delimiter.

Example 2.778. Multi-line comment that keeps its style
/*- Comment that
* should NOT
* be wrapped
*/

Reflow
Works similar to single-line comments (see Reflow single-line comments).

Since 1.0.3

Example 2.779. A long multi-line comment that was reflowed
 |
/* A multi-line comment that|
 * spans multiple lines but |
 * exceeds the max. line |
 * length |
 */ |
 |

Compare this to the result of Example 2.777, “A long multi-line comment that was
wrapped” and see how the last two lines differ.

COMMENTS 234

Wrap comments when line length greater than
Lets you define the maximal column width that comments are allowed to use. Jalopy keeps
the comments within this range. This option is only available with either “Wrap single-line
comments” or “Wrap multi-line comments” enabled. Please note that this setting only cov-
ers non-Javadoc comments. Javadoc comments are controlled independently, see “Javadoc
line length”.

Since 1.6

Only wrap when space greater than
Lets you define the minimal amount of horizontal space that is required to let wrapping
occur. This is the space between the current line offset and the maximal line length as de-
fined above (see “Comment Line Length”). If the difference between these two boundaries
is greater than the specified lower bound, wrapping occurs. In contrast, if the difference
between current offset and maximal line length is smaller or equal to the specified lower
bound, no wrapping will occur.

Please note that this option is only available with either “Wrap single-line comments”
or “Wrap multi-line comments” enabled.

Since 1.0.3

Example 2.780. Insufficient space, wrapping impossible
 | | |
System.out.println("Hello");|// quite a long endline comment that
 |// appears after the statement |
 | | |
 O M S

In the above example the space between the current column offset [O] and the maximal
line length [M] is smaller than the specified minimal width (space between [O] and [S]),
therefore wrapping is not possible.

Example 2.781. Sufficient space, wrapping possible
 | | |
System.out.println("Hello");|// quite a long endline | |
 |// comment that appears after |
 |// the statement | |
 | | |
 O S M

In the above example the space between the current column offset [O] and the maximal
line length [M] is greater than the specified minimal width (space between [O] and [S]),
therefore wrapping is performed.

2.8.13.6 Misc
Lets you control miscellaneous comment options.

Keep first column comments as-is
When enabled, first column comments are never formatted and/or wrapped. As the name
implies, first column comments are those comments that start at column one. They are
typically used for commenting out blocks of code during development—something you
might not want to be changed by a formatter.

235 CHAPTER 2 CONFIGURATION

Since 1.6

Example 2.782. First column comment
// System.out.println("appendingRemainingName: " + name.toString());
// Exception e = new Exception();
// e.printStackTrace();

Example 2.783. Wrapped first column comment
// System.out.println("appendingRemainingName: " + name.toString()); Exception
// e = new Exception(); e.printStackTrace();

Move comments after brace block
When enabled, single comments that appear in the first line after the left curly brace of a
statement block and only cover one line, are moved right after the brace. This way you can
achieve a more dense layout in case you want to save vertical space.

Since 1.7

Example 2.784. Comments after left curly braces
void test()
{
 /**
 * @todo evaluate whether this is still necessary
 */
 if (condition1)
 {
 // i should do something
 doSomething();
 }
 else if (condition2)
 {
 // [PENDING] this should be part of whatever, ask Jeff
 // what to do
 takeAction();
 }
}

When the option is enabled, the example above would be printed as:

Example 2.785. Comments after left curly braces
void test()
{
 /**
 * @todo evaluate whether this is still necessary
 */
 if (condition1)
 { // i should do something
 doSomething();
 }
 else if (condition2)
 {
 // [PENDING] this should be part of whatever, ask Jeff
 // what to do
 takeAction();
 }
}

JAVADOC 236

Please note how only the single comment within the if statement is affected. The comment
before the if statement and the consecutive comments after the else statement have been
left untouched.

2.8.14 Javadoc
Lets you control all Javadoc-related options. Javadoc is a tool that parses the declarations
and documentation comments in a set of Java source files and produces a corresponding
set of HTML pages describing the public API or implementation documentation. Jalopy
includes functionality to generate and maintain such comments automatically.

2.8.14.1 Format
Lets you control the Javadoc formatting options.

Figure 2.69. Javadoc settings page

Format comments
Enables or disables the formatting of Javadoc comments. When enabled, Javadoc comments
are always formatted according to the options specified below.

NOTE The formatting style of leading and closing comment delimiter and lead-
ing asterisk characters are determined by analyzing the templates defined
for the different declaration elements. Please refer to Section 2.8.14.5,
“Templates” for more information about Javadoc templates

Block tags
Lets you control the handling of Javadoc block tags.

237 CHAPTER 2 CONFIGURATION

Indent description
When enabled, the description of a Javadoc block tag is indented/aligned beyond the tag
name or tag parameter upon line wrapping. Otherwise successive description lines will start
at the same column offset with the tag.

Since 1.6

Example 2.786. Indented tag descriptions
/**
 * This is overridden to return false if the current <code>Icon</code>'s
 * <code>Image</code> is not equal to the passed in <code>Image</code>
 * <code>img</code>.
 *
 * @see java.awt.image.ImageObserver
 * @see java.awt.Component#imageUpdate(java.awt.Image, int, int, int,
 * int, int)
 *
 * @param img the <code>Image</code> to be compared
 * @param infoflags flags used to repaint the button when the image is
 * updated and which determine how much is to be
 * painted
 * @param x the x coordinate
 */

Example 2.787. Unindented tag descriptions
/**
 * This is overridden to return false if the current <code>Icon</code>'s
 * <code>Image</code> is not equal to the passed in <code>Image</code>
 * <code>img</code>.
 *
 * @see java.awt.image.ImageObserver
 * @see java.awt.Component#imageUpdate(java.awt.Image, int, int, int,
 * int, int)
 *
 * @param img the <code>Image</code> to be compared
 * @param infoflags flags used to repaint the button when the image is
 * updated and which determine how much is to be painted
 * @param x the x coordinate
 */

Group equal
When enabled, sections with equal tags are separated by a single blank line.

Since 1.0

JAVADOC 238

Example 2.788. Javadoc without grouped tags
/**
 * Returns the next list element that starts with a prefix.
 *
 * @param prefix the string to test for a match
 * @param startIndex the index for starting the search
 * @param bias the search direction, either Position.Bias.
 * Forward or Position.Bias.Backward.
 * @return the index of the next list element that starts with the
 * prefix; otherwise -1
 * @exception IllegalArgumentException if prefix is null or startIndex is
 * out of bounds
 * @since 1.4
 */

Example 2.789. Javadoc with grouped tags
/**
 * Returns the next list element that starts with a prefix.
 *
 * @param prefix the string to test for a match
 * @param startIndex the index for starting the search
 * @param bias the search direction, either Position.Bias.
 * Forward or Position.Bias.Backward.
 *
 * @return the index of the next list element that starts with the
 * prefix; otherwise -1
 *
 * @exception IllegalArgumentException if prefix is null or startIndex is
 * out of bounds
 *
 * @since 1.4
 */

Align name/description
When enabled, the names and/or descriptions of tags are aligned in a table like manner to
enhance readability. Otherwise each tag description is indented on its own. You need to
have the indentation of descriptions enabled to see descriptions aligned.

Since 1.0

Example 2.790. Javadoc without aligned tags
/**
 * Returns the next list element that starts with a prefix.
 *
 * @param prefix the string to test for a match
 * @param startIndex the index for starting the search
 * @param bias the search direction, either Position.Bias.Forward or
 * Position. Bias.Backward.
 * @return the index of the next list element that starts with the prefix;
 * otherwise -1
 * @exception IllegalArgumentException if prefix is null or startIndex is
 * out of bounds
 * @since 1.4
 */

239 CHAPTER 2 CONFIGURATION

Example 2.791. Javadoc with aligned tags
/**
 * Returns the next list element that starts with a prefix.
 *
 * @param prefix the string to test for a match
 * @param startIndex the index for starting the search
 * @param bias the search direction, either Position.Bias.
 * Forward or Position.Bias.Backward.
 * @return the index of the next list element that starts with the
 * prefix; otherwise -1
 * @exception IllegalArgumentException if prefix is null or startIndex is
 * out of bounds
 * @since 1.4
 */

Align attributes
When enabled, all attributes of tags with multiple attributes are indented to the level of
the first '.' character in the name of the tag. Otherwise all attributes are indented by two
spaces.

Since 1.0.1

Example 2.792. Javadoc with standard indented tag attributes
/**
 * @ejb.resource-ref
 * res-auth = "Container"
 * res-ref-name = "${kirus.resource.database.name}"
 * res-type = "javax.sql.DataSource"
 */

Example 2.793. Javadoc with aligned tag attributes
/**
 * @ejb.resource-ref
 * res-auth = "Container"
 * res-ref-name = "${kirus.resource.database.name}"
 * res-type = "javax.sql.DataSource"
 */

Sort block tags
When enabled, block tags are sorted. By default, the order is as recommended by the
Javadoc creators (see http://java.sun.com/j2se/javadoc/writingdoccomments/ for more in-
formation), but you can configure the order manually yourself (see below). When disabled,
block tags are printed in their original order.

Since 1.0

Sort attributes
When enabled, if a block tag contains multiple attributes, these are sorted by name. Oth-
erwise the attributes are printed in their original order.

Since 1.0

http://java.sun.com/j2se/javadoc/writingdoccomments/index.html#tag

JAVADOC 240

Example 2.794. Unsorted XDoclet tag attributes
/**
 * Sets the model that represents the contents or “value” of the list and
 * clears the list selection after notifying <code>
 * PropertyChangeListeners</code>.<p> This is a JavaBeans bound property.
 *
 * @param model the <code>ListModel</code> that provides the list of
 * items for display
 *
 * @beaninfo
 * bound: true
 * attribute: visualUpdate true
 * description: The object that contains the data to be drawn
 */

Example 2.795. Sorted XDoclet tags
/**
 * Sets the model that represents the contents or “value” of the list and
 * clears the list selection after notifying <code>
 * PropertyChangeListeners</code>.<p> This is a JavaBeans bound property.
 *
 * @param model the <code>ListModel</code> that provides the list of
 * items for display
 *
 * @beaninfo
 * attribute: visualUpdate true
 * bound: true
 * description: The object that contains the data to be drawn
 */

Sort XDoclet tags
When enabled, XDoclet block tags are sorted by name. Otherwise the order is not changed.
Please note that this option requires “Sort block tags” to be enabled.

Since 1.9.1

Example 2.796. Unsorted XDoclet tags
/**
 * @ejb.home
 * extends = "javax.ejb.EJBHome"
 * local-extends = "javax.ejb.EJBLocalHome"
 * @ejb.interface
 * extends = "javax.ejb.EJBObject"
 * local-extends = "javax.ejb.EJBLocalObject"
 *
 * @weblogic.transaction-descriptor
 * trans-timeout-seconds = "122"
 * @weblogic.transaction-isolation
 * TRANSACTION_READ_COMMITTED
 *
 * @ejb.transaction
 * type = "RequiresNew"
 *
 * @weblogic.enable-call-by-reference
 * True
 *
 * @ejb.resource-ref
 * res-ref-name = "jdbc/foo-pool"
 * res-type = "javax.sql.DataSource"
 * res-auth = "Container"
 */

241 CHAPTER 2 CONFIGURATION

Example 2.797. Sorted XDoclet tags
/**
 * @ejb.home
 * extends = "javax.ejb.EJBHome"
 * local-extends = "javax.ejb.EJBLocalHome"
 * @ejb.interface
 * extends = "javax.ejb.EJBObject"
 * local-extends = "javax.ejb.EJBLocalObject"
 * @ejb.resource-ref
 * res-ref-name = "jdbc/foo-pool"
 * res-type = "javax.sql.DataSource"
 * res-auth = "Container"
 * @ejb.transaction
 * type = "RequiresNew"
 *
 * @weblogic.enable-call-by-reference
 * True
 * @weblogic.transaction-descriptor
 * trans-timeout-seconds = "122"
 * @weblogic.transaction-isolation
 * TRANSACTION_READ_COMMITTED
 */

Configure Tag Order...
Lets you configure the order of block tags when tag sorting is enabled. Pressing the button
will display a configuration dialog that lets you specify both the order of block tags and a
grouping section to define what tags should be separated.

Figure 2.70. Configure Javadoc tag order

Select an entry in the list and use the Up and Down buttons to configure the sort order.
To adjust grouping, specify the grouping section each tag should be part of. “None” means
that tags are always separated. Otherwise two consecutive tags are only separated if their
grouping section is different.

JAVADOC 242

Since 1.8

Compact elements
Javadoc start and end delimiters are usually printed on its own line. When the comment
body does not contain much text, emitting everything in one line might be an easy way to
save vertical space. Same with tags and attributes.

Class comments
Lets you specify how Javadoc comments of class, interface and annotation type declarations
that fit into one line should be printed.

Since 1.5

Example 2.798. Class Javadoc comment
/**
 * A simple container for Foo data.
 */
public class Foo {
}

When enabled, Javadoc comments will be printed in a single line, when possible.

Example 2.799. Class Javadoc comment (shortened)
/** A simple container for Foo data. */
public class Foo {
}

Enum comments
Lets you specify how Javadoc comments of enum declarations that fit into one line should
be printed.

Since 1.7

Example 2.800. Enum Javadoc comment
/**
 * The foo enumeration.
 */
enum Foo {
 ...
}

When enabled, Javadoc comments will be printed in a single line, when possible.

Example 2.801. Enum Javadoc comment (shortened)
/** The foo enumeration. */
enum Foo {
 ...
}

Field comments
Lets you specify how Javadoc comments of fields or enum constants, that fit into one line
should be printed.

243 CHAPTER 2 CONFIGURATION

Example 2.802. Field Javadoc comment
/**
 * What history policy should be used?
 */
private History.Policy _historyPolicy = History.Policy.DISABLED;

When enabled, Javadoc comments for fields or enum constants will be printed in a single
line, when possible.

Example 2.803. Field Javadoc comment (shortened)
/** What history policy should be used? */
private History.Policy _historyPolicy = History.Policy.DISABLED;

Method comments
When enabled, Javadoc comments for methods are printed in a single line when possible.
This depends not only on the length of the description section, but also on your correction
settings. If the auto-correction feature for the tag section is enabled, the comment is only
printed in a single line, if the method does contain a void return type and no parameters
(because otherwise Javadoc tags are inserted).

Since 1.3

Example 2.804. Methods
/**
 * Transfer all entries from src to dest tables
 */
private void transfer(Entry[] src, Entry[] dest) {
 ...
}

When enabled, Javadoc comments for methods and constructors will be printed in a single
line, when possible.

Example 2.805. Method Javadoc comment (shortened)
/** Transfer all entries from src to dest tables */
private void transfer(Entry[] src, Entry[] dest) {
 ...
}

Single block tags
Lets you choose whether comments that only consists of a single block tag should be printed
in one line when possible. Please note that enabling this option only affects those comments
for which compacting has been enabled. E.g. if you want to compact fields with single block
tags, you need to enable the "compact field comments" option.

Since 1.8

Example 2.806. Single block tag
/**
 * @see com.foo.MyClass
 */
class Demo{
}

JAVADOC 244

Example 2.807. Single block tag compacted
/** @see com.foo.MyClass */
class Demo{
}

Single attributes
Lets you choose whether single attributes should be printed in just one line after the tag
name when possible. Otherwise, a line break is printed after the tag name.

Since 1.9.1

Example 2.808. Single XDoclet attribute
/**
 * @weblogic.transaction-descriptor
 * trans-timeout-seconds = "122"
 */
class Demo{
}

Example 2.809. Single XDoclet attribute compacted
/**
 * @weblogic.transaction-descriptor trans-timeout-seconds = "122"
 */
class Demo{
}

Remove stars in <pre> tags
Lets you remove leading stars in pre-formatted sections. It is often tedious to manually
maintain leading stars in front of code snippets enclosed with <pre> tags. They are ignored
by Javadoc anyway. With this option you can control whether Jalopy should remove any
leading stars in pre-formatted sections or have them printed.

Since 1.6

Example 2.810. Javadoc comment with preformatted section
/**
 * <p>As with <code>InputMap</code> if you create a cycle, eg:
 * <pre>
 * ActionMap am = new ActionMap();
 * ActionMap bm = new ActionMap():
 * am.setParent(bm);
 * bm.setParent(am);
 * </pre>
 * some of the methods will cause a StackOverflowError to be thrown.
 */

Example 2.811. Javadoc comment without leading stars in preformatted section
/**
 * <p>As with <code>InputMap</code> if you create a cycle, eg:
 * <pre>
 ActionMap am = new ActionMap();
 ActionMap bm = new ActionMap():
 am.setParent(bm);
 bm.setParent(am);
 * </pre>
 * some of the methods will cause a StackOverflowError to be thrown.
 */

245 CHAPTER 2 CONFIGURATION

Normalize white space
When enabled, all white space gaps are reduced to a single blank space (normalized). Oth-
erwise Jalopy will left white space gaps after sentences alone.

Since 1.8

Example 2.812. White space gaps
/**
 * This is the first sentence. This is the second sentence. This is the
 * third sentence. This is the forth sentence. This is the fifth
 * sentence. Thissssssssssssssssss
 */

Example 2.813. Normalized white space
/**
 * This is the first sentence. This is the second sentence. This is the
 * third sentence. This is the forth sentence. This is the fifth sentence.
 * Thissssssssssssssssss
 */

Separate multi-line XDoclet tags
When enabled, a blank line is printed before and after XDoclet tags that require more than
one line.

Since 1.9.1

Example 2.814. Javadoc XDoclet tags
/**
 * @ejb.home
 * extends = "javax.ejb.EJBHome"
 * local-extends = "javax.ejb.EJBLocalHome"
 * @ejb.bean
 * name = "AboActionManager"
 * type = "Stateless"
 * display-name = "FooManagerBean"
 * description = "FooManager EJB"
 * view-type = "all"
 * jndi-name = "FooMgr"
 * @ejb.interface extends = "javax.ejb.EJBObject"
 */

Example 2.815. Separated Javadoc XDoclet tags
/**
 * @ejb.home
 * extends = "javax.ejb.EJBHome"
 * local-extends = "javax.ejb.EJBLocalHome"
 *
 * @ejb.bean
 * name = "AboActionManager"
 * type = "Stateless"
 * display-name = "FooManagerBean"
 * description = "FooManager EJB"
 * view-type = "all"
 * jndi-name = "FooMgr"
 *
 * @ejb.interface extends = "javax.ejb.EJBObject"
 */

JAVADOC 246

2.8.14.2 Line Wrapping

Wrapping
Lets you control the wrapping options for Javadoc comments.

Line length
Lets you define the maximal column width that Javadoc comments are allowed to use.
Jalopy tries to keep the comments within this range upon reformatting.

Since 1.0

Disable wrapping for in-line tags
Lets you disable automatic line wrapping for in-line tags. Please note that this means that
in-line tags will always print in just one line. If the tag would exceed the maximal line
length, a line break is inserted before the tag. But please be aware that the maximal line
length could still be exceeded when the tag does not fit in a whole line!

Since 1.5

Example 2.816. Wrapped Javadoc in-line tag
/** |
 * This is overridden to return false if the {@link java.awt.Icon |
 * Icon’s} Image is not equal to the passed in Image. |
 */ |

Example 2.817. Javadoc in-line tag (wrapping disabled)
/** |
 * This is overridden to return false if the |
 * {@link java.awt.Icon Icon’s} Image is not equal to the passed |
 * in Image. |
 */ |

Misc
Lets you control miscellaneous Javadoc settings.

Inner spacing
Lets you define the amount of white space that gets printed between block tags and their
description text.

Since 1.0

247 CHAPTER 2 CONFIGURATION

Example 2.818. One space inner spacing
/**
 * Returns the next list element that starts with a prefix.
 *
 * @param prefix the string to test for a match
 * @param startIndex the index for starting the search
 * @param bias the search direction, either Position.Bias.Forward
 * or Position.Bias.Backward.
 *
 * @return the index of the next list element that starts with the prefix;
 * otherwise -1
 *
 * @exception IllegalArgumentException if prefix is null or startIndex is out
 * of bounds
 * ^ ^
 * @since 1.4
 */

Example 2.819. Two spaces inner spacing
/**
 * Returns the next list element that starts with a prefix.
 *
 * @param prefix the string to test for a match
 * @param startIndex the index for starting the search
 * @param bias the search direction, either Position.Bias.Forward
 * or Position.Bias.Backward.
 * @return the index of the next list element that starts with the
 * prefix; otherwise -1
 * @exception IllegalArgumentException if prefix is null or startIndex is
 * out of bounds
 * ^^ ^^
 * @since 1.4
 */

Indent HTML tags
Enables the indentation of most HTML block tags (like lists, tables and the like). Please
note that the HTML contents have to be well-formed for this feature to work! By default,
Jalopy will inform you about invalid HTML when this feature was enabled. Another choice
might be to enable the "Check HTML tags" feature to automatically ensure well-formed
HTML (among other things, see below).

Since 1.0

2.8.14.3 Generation
Controls the auto-generation of missing Javadoc comments.

JAVADOC 248

Figure 2.71. Javadoc settings page

Please refer to Section 2.8.14.5, “Templates” for information about how to define templates
that are used for Javadoc comment generation.

Generate Javadoc comments
Enables or disables the comment auto-generation as a whole.

Since 1.2.1

Include inner classes
Enables comment auto-generation for nested inner classes. Auto-generation does not apply
to anonymous inner classes.

Include Getter/Setter
Controls whether auto-generation should be enabled for methods that follow the JavaBeans
naming convention (Getter/Setter). Please note that you can control what methods should
be recognized as Boolean Getters via a regular expression. Refer to “Boolean Getter Regex”
for more information.

Since 1.3

Exclude Overridden/Implemented
Controls whether Javadoc comments should be generated for methods that are implement-
ing/overriding others.

249 CHAPTER 2 CONFIGURATION

Example 2.820. Class hierarchy
public interface Foo {
 /**
 * Does foo.
 */
 public void doFoo();
}

public abstract class BaseFoo implements Foo {
 @Override public void doFoo() {
 ...
 }
}

public abstract class FooImpl extends BaseFoo {
 @Override public void doFoo() {
 ...
 }
}

With this option enabled, Jalopy would not generate Javadoc for doFoo() in BaseFoo or
FooImpl, because they implement or override another method.

Since 1.8

Generate @see tags
Controls whether Javadoc generation for methods that are implementing or overriding oth-
ers, creates @see tags to point to the referenced method. When disabled, Javadoc generation
uses the descriptions given in the different templates.

Example 2.821. Generated Javadocs
package com.foo;

public interface Foo {
 /**
 * Does foo.
 */
 public void doFoo();
}

public abstract class BaseFoo implements Foo {

 /**
 * DOCME!
 */
 public void doFoo() { }

 /**
 * DOCME!
 */
 public void doBar() { }
}

public abstract class FooImpl extends BaseFoo {

 /**
 * DOCME!
 */
 @Override public void doFoo() { }
}

JAVADOC 250

But when this option has been enabled, Jalopy automatically creates @see tags that refer-
ences the overridden or implemented method in order to point to the documentation avail-
able there.

Example 2.822. Generated Javadocs
package com.foo;

public interface Foo {
 /**
 * Does foo.
 */
 public void doFoo();
}

public abstract class BaseFoo implements Foo {

 /**
 * @see com.foo.Foo#doFoo()
 */
 @Override public void doFoo() { }

 /**
 * DOCME!
 */
 public void doBar() { }
}

public abstract class FooImpl extends BaseFoo {

 /**
 * @see com.foo.BaseFoo$doFoo()
 */
 @Override public void doFoo() { }
}

Since 1.8

Reuse existing comments
When enabled, the textual contents of all existing comments that appear before a certain
node are used as the description section (instead of the one defined in the template). Oth-
erwise the generated Javadoc comment is simply inserted below any already existing com-
ments.

Since 1.5

Example 2.823. Method without Javadoc comment
/*
 * HTML is the top level element
 */
public static Node parseDocument(Lexer lexer) {}

When the option is left disabled, the above example would become

251 CHAPTER 2 CONFIGURATION

Example 2.824. Generated comment
/*
 * HTML is the top level element
 */
/**
 * DOCME!
 *
 * @param lexer DOCME!
 *
 * @return DOCME!
 */
public static Node parseDocument(Lexer lexer) {}

But when the option is enabled, the result would be

Example 2.825. Generated comment that uses existing comment
/**
 * HTML is the top level element
 *
 * @param lexer DOCME!
 *
 * @return DOCME!
 */
public static Node parseDocument(Lexer lexer) {}

Format bean property
Lets you control whether the value of the “property.name” local environment variable
should be split into several chunks or just have its prefix stripped upon interpolation.

When enabled, the property name is determined from the method name by stripping the
bean prefix and taking any upper case letter followed by a lower case letter and put a space in
front of it. E.g. “getImportanceValue” would result in "Importance Value", “getABSValue”
in "ABS Value" and “isValid” in “Valid”. The case of all chunks is adjusted according to
the rules as sketched below.

8.8 Capitalization of inferred names.

When we use design patterns to infer a property or event name, we need
to decide what rules to follow for capitalizing the inferred name. If we ex-
tract the name from the middle of a normal mixedCase style Java name
then the name will, by default, begin with a capital letter. Java programmers
are accustomed to having normal identifiers start with lower case letters.
Vigorous reviewer input has convinced us that we should follow this same
conventional rule for property and event names.

Thus when we extract a property or event name from the middle of an
existing Java name, we normally convert the first character to lower case.
However to support the occasional use of all upper-case names, we check
if the first two characters of the name are both upper case and if so leave
it alone. So for example,

“FooBah” becomes “fooBah”
“Z” becomes “z”
“URL” becomes “URL”

[taken from the JavaBeans Spec]

http://java.sun.com/products/javabeans/docs/spec.html

JAVADOC 252

When disabled, just the bean prefix is stripped and the case of the first letter adjusted
according to the rules laid out in the JavaBean spec.

Since 1.3

Example 2.826. Javadoc template for Setter
/**
 * Sets the value of the $property.name$ property.
 *
 * @param name $property.name$ property value.
 */
public void setImportanceValue(String value) {
 ...
}

Example 2.827. Generated Javadoc comment with formatted JavaBeans property
name

/**
 * Sets the value of the Importance Value property.
 *
 * @param name importance value property value.
 */
public void setImportanceValue(String value) {
 ...
}

Example 2.828. Generated Javadoc comment with unformatted JavaBeans property
name

/**
 * Sets the value of the ImportanceValue property.
 *
 * @param name importanceValue property value.
 */
public void setImportanceValue(String value) {
 ...
}

Enable for
The table component lets you selectively enable the auto-generation of missing Javadoc
comments for specific code elements and access levels. Please note that you can selectively
disable Javadoc generation in source code files by using a special pragma comment. Refer
to the Pragma comments section for more information.

Disable for
Lets you disable Javadoc generation for declarations that either carry specific annotations,
or within classes that extend a certain class or implement a certain interface.This way you
could for example disable Javadoc generation for tests.

Use the Add... button to specify both annotation names and/or the type names of ex-
tends or implements clauses that should disable Javadoc generation when found.

Annotations must be specified in the marker annotation form, e.g. @Test or @Facto-
ry. You never include any parenthesized values. Special support is provided for the @Test
annotation. If it can be found on the class level, all public members will be excluded from
Javadoc generation as well.

Since 1.9.4

253 CHAPTER 2 CONFIGURATION

Example 2.829. Test file
public class FooTest {
 @Test public void test { }
}

could become

Example 2.830. @Test annotation disables Javadoc generation
/**
 * DOCME!
 *
 * @author Joe Tiger
 * @version $version$
 */
public class FooTest {
 @Test public void test { }
}

But you might also use

Example 2.831. Another test file
@Test
public class FooTest {
 public void test { }
}

which would effectively disable Javadoc generation for the whole class as it only contains
public members.

For type names, please note that Javadoc generation will only be disabled for the
members defined within a class—the class declaration itself is not affected. Please
note further that comparison is done using exact string matching: you need to spec-
ify the type names exactly as they appear in the source files. ActionListener and
java.awt.event.ActionListener are treated as two different type names. If you mix
qualified and simple type names in your sources, you need to define both type names here.

Since 1.6

Example 2.832. Java source file with missing Javadoc
/** A sample class. */
public class Foo {
 class MyAction implements ActionListener {
 public void actionPerformed(ActionEvent ev) { }
 }
}

Javadoc generation without exclusions could look like:

JAVADOC 254

Example 2.833. Javadoc generation without exclusion
/** A sample class. */
public class Foo {

 /**
 * DOCME!
 *
 * @author Joe Tiger
 * @version $version$
 */
 class MyAction implements ActionListener {

 /**
 * DOCME!
 *
 * @param ev DOCME!
 */
 public void actionPerformed(ActionEvent ev) { }
 }
}

But with Javadoc generation disabled for ActionListener, the result could look like:

Example 2.834. Javadoc generation with excluded interface
/** A sample class. */
public class Foo {

 /**
 * DOCME!
 *
 * @author Joe Tiger
 * @version $version$
 */
 class MyAction implements ActionListener {
 public void actionPerformed(ActionEvent ev) { }
 }
}

Please note how Javadoc is added for the inner class declaration, but not the inner class
method!

2.8.14.4 Correction
Lets you control the Javadoc comment checking and auto-correction features.

255 CHAPTER 2 CONFIGURATION

Figure 2.72. Javadoc Correction settings page

Correct HTML
This feature lets you enforce valid HTML. When enabled, Jalopy ensures that the com-
ments only contain valid HTML 4.01 markup. Missing tags like optional end tags will be
inserted to ensure well-formed contents.

Example 2.835. Javadoc comment with missing paragraph tags
/**
 * Indicates the kinds of program element to which an annotation type
 * is applicable. If a Target meta-annotation is not present on an
 * annotation type declaration, the declared type may be used on any
 * program element. If such a meta-annotation is present, the compiler
 * will enforce the specified usage restriction.
 *
 * For example, this meta-annotation indicates that the declared type is
 * itself a meta-annotation type. It can only be used on annotation type
 * declarations.
 */

Example 2.836. Javadoc comment with inserted paragraph tags
/**
 * Indicates the kinds of program element to which an annotation type
 * is applicable. If a Target meta-annotation is not present on an
 * annotation type declaration, the declared type may be used on any
 * program element. If such a meta-annotation is present, the compiler
 * will enforce the specified usage restriction.
 *
 * <p>For example, this meta-annotation indicates that the declared type
 * is itself a meta-annotation type. It can only be used on annotation
 * type declarations.</p>
 */

JAVADOC 256

Example 2.837. Javadoc comment with missing tags
/**
 * Returns a short description of this throwable.
 * If this <code>Throwable</code> object was created with a non-null detail
 * message string, then the result is the concatenation of three strings:
 *
 * The name of the actual class of this object
 * ": " (a colon and a space)
 * The result of the {@link #getMessage} method for this object
 *
 */

Example 2.838. Javadoc comment with inserted tags
/**
 * Returns a short description of this throwable. If this <code>
 * Throwable</code> object was created with a non-null detail message
 * string, then the result is the concatenation of three strings:
 *
 *
 * The name of the actual class of this object
 * ": " (a colon and a space)
 * The result of the {@link #getMessage} method for this object
 *
 */

Since 1.0

Correct sentence punctuation
When enabled, ensures that the first sentence of the description section ends with punc-
tuation. If no punctuation is present, a dot character will be added at the end of the first
sentence. The first sentence is determined by either a blank line between two text chunks
or by a HTML block tag. If no obvious sentence break could be found, the dot is added
at the end of the description section.

Since 1.6

Example 2.839. Javadoc comment with missing period after first sentence
/**
 * The method used for creating the tree
 * <p>
 * This method adds an anonymous TreeSelectionListener to
 * the returned JTree. Upon receiving TreeSelectionEvents,
 * this listener calls refresh with the selected node as a
 * parameter.
 */

Example 2.840. Reformatted Javadoc comment with added period after first sentence
/**
 * The method used for creating the tree.
 *
 * <p>This method adds an anonymous TreeSelectionListener to the
 * returned JTree. Upon receiving TreeSelectionEvents, this listener
 * calls refresh with the selected node as a parameter.
 */

257 CHAPTER 2 CONFIGURATION

Description Section
Provides option to control the behavior of the description section of a Javadoc comments.
The description begins after the starting delimiter /** and continues until the tag section.
The tag section starts with the first block tag, which is defined by the first @ character that
begins a line (ignoring leading asterisks, white space and comment separator). The main
description cannot continue after the tag section begins.
/**
 * This sentence would hold the main description for this doc comment.
 * @see java.lang.Object
 */

Correct description section
When enabled, Jalopy inserts a missing description into existing Javadoc comments. Un-
like specified otherwise (see “Use text from @return” below), the description is taken
from the template for the code element that contains the Javadoc comment. Refer to Sec-
tion 2.8.14.5, “Templates” for information on how to customize the templates.

Since 1.2.1

Only when generation
Only inserts the missing description when Javadoc auto-generation has been enabled for
the declaration element that contains the Javadoc comment.

Since 1.2.1

Example 2.841. Javadoc comment without descriptioin
/** @jalopy.group accessor */
protected int getFoo () { }

will only be formatted to

Example 2.842. Inserted description
/**
 * DOCME!
 *
 * @jalopy.group accessor
 */
protected int getFoo () { }

when Javadoc comment auto-generation is enabled for method declarations that have an
access level of protected.

Only when @param or @return
Only inserts the missing description when a @param or @return block tag can be found
in the Javadoc comment.

Since 1.2.1

Example 2.843. Javadoc comment
/** @jalopy.group accessor */
protected int getFoo () { }

JAVADOC 258

will be formatted as

Example 2.844. Javadoc comment
/** @jalopy.group accessor */
protected int getFoo () { }

because the Javadoc comment neither contains a @param nor a @return block tag. But

Example 2.845. Javadoc comment with @return tag
/**
 * @return returns the foo property.
 * @jalopy.group accessor
 */
protected int getFoo () { }

will be formatted as

Example 2.846. Javadoc comment with auto-generated description
/**
 * DOCME!
 *
 * @return returns the foo property.
 *
 * @jalopy.group accessor
 */
protected int getFoo () { }

because a @return tag can be found.

Only when no @see
Only inserts the missing description when no @see block tag can be found in the Javadoc
comment. The default behavior is to disable the insertion of a missing description if the
comment only consists of a single @see block tag or starts with an {@inheritDoc} in-line
tag. In order to avoid adding information that is redundant, one may enable this switch
when @see tags are used to point to related documentation.

Since 1.2.1

Example 2.847. Javadoc comment
/** @jalopy.group accessor */
protected int getFoo () { }

would be formatted as

Example 2.848. Javadoc comment with auto-generated description
/**
 * DOCME!
 *
 * @jalopy.group accessor
 */
protected int getFoo () { }

because the Javadoc comment contains no @see tag. But

259 CHAPTER 2 CONFIGURATION

Example 2.849. Javadoc comment with @see tag
/**
 * @jalopy.group accessor
 * @see #com.foo.OtherClass
 */
protected int getFoo () { }

would be formatted as

Example 2.850. Formatted Javadoc comment
/**
 * @jalopy.group accessor
 * @see #com.foo.OtherClass
 */
protected int getFoo () { }

because a @see tag can be found.

Use text from @return
When enabled, the description text of the @return tag is used (when present) for a missing
description. The first letter of the text will upper-cased.

Since 1.5

Example 2.851. Javadoc with missing description section
/**
 * @return returns the result of the operation.
 */
public Object getResult() {
 ...
}

Example 2.852. Missing description generated from template
/**
 * TODO: DOCME!
 *
 * @return returns the result of the operation.
 */
public Object getResult() {
 ...
}

Example 2.853. Missing description generated from @return tag
/**
 * Returns the result of the operation.
 *
 * @return returns the result of the operation.
 */
public Object getResult() {
 ...
}

Tag Section
Provides options to control the behavior for the block tags of Javadoc comments. The de-
scription begins after the starting delimiter /** and continues until the tag section. The tag

JAVADOC 260

section starts with the first block tag, which is defined by the first @ character that begins a
line (ignoring leading asterisks, white space and comment separator). The main description
cannot continue after the tag section begins. There can be any number of tags—some types
of tags can be repeated while others cannot. In the following example, the @see tags starts
the tag section:
/**
 * This sentence would hold the main description for this doc comment.
 * @see java.lang.Object
 */

Correct tag section
When enabled, missing Javadoc block tags will be inserted, obsolete tags can be removed.
Spelling errors of block and in-line tags are corrected. The description of a tag is taken
from the template for the code element that contains the Javadoc comment. Refer to Sec-
tion 2.8.14.5, “Templates” for information on how to customize the templates.

Only when generation
Only corrects tags when Javadoc auto-generation has been enabled for the declaration ele-
ment that contains the Javadoc comment.

Since 1.2.1

Example 2.854. Javadoc comment
/** @jalopy.group accessor */
protected int getFoo () { }

will only be formatted to

Example 2.855. Javadoc comment with auto-generated @return tag
/**
 * @return DOCME!
 *
 * @jalopy.group accessor
 */
protected int getFoo () { }

when Javadoc comment auto-generation is enabled for method declarations that have an
access level of protected.

Only when @param or @return
Only corrects tags when a @param or @return block tag can be found in the Javadoc com-
ment.

Since 1.2.1

Example 2.856. Javadoc comment without @return or @param
/**
 * @jalopy.group accessor
 */
protected int getFoo (int param) { }

will be formatted as

261 CHAPTER 2 CONFIGURATION

Example 2.857. Javadoc comment without corrections
/**
 * @jalopy.group accessor
 */
protected int getFoo (int param) { }

because the Javadoc comment neither contains a @param nor a @return block tag. But

Example 2.858. Javadoc comment with @param
/**
 * @param param a parameter
 * @jalopy.group accessor
 */
protected int getFoo (int param) { }

will be formatted as

Example 2.859. Corrected Javadoc comment
/**
 * @param param a parameter
 *
 * @return returns the foo property.
 *
 * @jalopy.group accessor
 */
protected int getFoo (int param) { }

because a @param tag can be found.

Only when no @see
Disables the auto-correction when a @see tag is found in the comment. The default be-
havior is to disable auto-correction if the comment only consists of a single @see block
tag or starts with an {@inheritDoc} in-line tag. In order to avoid adding information
that is redundant, one may enable this switch when @see tags are used to point to related
documentation.

Since 1.0.1

Misspelled tag names
When enabled, misspelled Javadoc tag names will be corrected when possible. When Jalopy
encounters an invalid tag name, i.e. the name is not part of the list with valid tag names,
it determines whether the tag name is vastly similar with one on the list. If so, Jalopy
will pick the one from the list otherwise it reports an error. For information about the
build-in list with valid Javadoc tag names refer to Section 2.8.14.6.1.1, “Block tags”, Sec-
tion 2.8.14.6.1.2, “In-line tags” and Appendix C, Build-in XDoclet tags.

Since 1.3

Add @throws tags
When enabled, performs an additional check for exceptions that are actually thrown from
within a constructor or method body, but not documented and adds block tags. E.g. if a
method only declares to throw an IOException, but actually throws a FileNotFoundEx-
ception, and this FileNotFoundException has not been documented with a @throws
tag, it will be added.

JAVADOC 262

Example 2.860. Undocumented exception
/**
 * Description
 *
 * @param rFile input file.
 *
 * @throws IOException if an I/O problem occurred.
 */
public void sample(File rFile) throws IOException {
 if (rFile.exists())
 throw new FileNotFoundException();

 ...
}

Example 2.861. Added exception
/**
 * Description
 *
 * @param rFile input file.
 *
 * @throws IOException if an I/O problem occurred.
 * @throws FileNotFoundException DOCUMENT ME!
 */
public void sample(File rFile) {
 if (rFile.exists())
 throw new FileNotFoundException();

 ...
}

Ignore runtime exceptions
When enabled, no tags will be added or removed for runtime exceptions and errors that are
thrown from within a method or constructor body. Please note that enabling this option
will cause present @throws tags that document runtime exceptions or errors to be removed!
If you want to keep existing tags, please enable the "Keep @throws tags" option as well.

You have to explicitly enable type resolution services for the Ant, Console and Maven
plug-ins to activate this feature. Please refer to the documentation of the individual plug-
ins to learn how one can accomplish this (see Part II, “Plug-ins”).

Since 1.0

Example 2.862. Generated missing throws clause
/**
 * Description
 *
 * @throws IllegalArgumentException DOCME!
 */
public void isNewline(int offset) {
 if (input <= 1) throw new IllegalArgumentException();
 ..
}

263 CHAPTER 2 CONFIGURATION

Example 2.863. No throws clause generated for runtime exception
/**
 * Description
 */
public void isNewline(int offset) {
 if (input <= 1) throw new IllegalArgumentException();
 ..
}

Keep @throws tags
When enabled, no existing @throws tags are removed from comments. This feature proves
useful if you have comments with existing @throws tags for runtime exceptions that are not
actually thrown from within a method body.

Since 1.0

Add template tags
When enabled, tags that are defined in the Javadoc template but missing in the Javadoc
comment of the corresponding declaration node, are inserted. Missing tags are only inserted
when their declaration has its Javadoc generation option enabled for the current scope. This
holds true if even when the Javadoc comment generation is disabled globally in order to
allow fine grained control when and for what declarations missing tags should be inserted.
Please refer to Enable Javadoc generation for for information on how to enable Javadoc
generation for specific declarations. For information on how to customize the Javadoc tem-
plates, please refer to Section 2.8.14.5, “Templates”.

Since 1.5

Example 2.864. Javadoc template
/**
 * TODO: DOCME!
 *
 * @author $user.name$
 */

With the above shown template, upon reformatting Jalopy ensures that all existing class
level Javadoc comments contain the @author tag. Thus, the following comment

Example 2.865. Javadoc comment
/**
 * Encapsulate an attribute declaration.
 */
class AttributeDecl {
}

could become

Example 2.866. Javadoc comment after formatting
/**
 * Encapsulate an attribute declaration.
 *
 * @author John Doo
 */
class AttributeDecl {
}

JAVADOC 264

Note how the $user.name variable expression is interpolated during formatting! Environ-
ment variables are discussed in Section 2.4, “Environment”. Missing tags are added at the
end of the tag section in the order they are defined in the template. We recommend to
enable Tag sorting in order to ensure a specific ordering.

Add method type parameter tags
When enabled, Jalopy enforces/corrects @param tags for generic method and constructor
declarations.

Example 2.867. Generic method
/**
 * blah.
 *
 * @param string blah
 *
 * @return blah
 */
<T, V extends T> V convert(String string);

will have tags inserted for the type parameters.

Since 1.6

Example 2.868. Generic method
/**
 * blah.
 *
 * @param <T> blah
 * @param <V> blah
 * @param string blah
 *
 * @return blah
 */
<T, V extends T> V convert(String string);

Please note that existing @param tags documenting type parameters will be removed when
this option is disabled!

Remove misused tags
When enabled, the validity of block tags will be checked. Not all tags can be used in all
contexts. Tags that are invalid will be removed. If left disabled, Jalopy only prints warnings
about misused tags.

Since 1.0

Use description for @return
When enabled, the text for a missing @return tag description is not taken from the template,
but the first sentence of description section is taken (when present). The first letter of the
description will be lower-cased.

Since 1.5

265 CHAPTER 2 CONFIGURATION

Example 2.869. Javadoc with missing @return tag description
/**
 * Returns the result of the calculation.
 */
public Object getResult() {
 ...
}

Example 2.870. Javadoc with @return tag description inserted from template
/**
 * Returns the result of the calculation.
 *
 * @return DOCME!
 */
public Object getResult() {
 ...
}

Example 2.871. Javadoc with @return tag description taken from description section
/**
 * Returns the result of the calculation.
 *
 * @return returns the result of the calculation.
 */
public Object getResult() {
 ...
}

Add missing description
When enabled, missing descriptions of certain Javadoc block tags will be tagged with a
marker. The tag marker is inserted for the following tags: @author, @deprecated, @ex-
ception, @param, @return, @see, @serialData, @serialField, @since, @throws,
@version. The marker text is taken from the description section of corresponding tem-
plate. XDoclet or custom tags will remain untouched.

Since 1.5

Example 2.872. Tags with missing description
/*
 * HTML is the top level element
 *
 * @param lexer
 *
 * @return
 */
public static Node parseDocument(Lexer lexer) {}

When the option is left disabled, the above example would become

Example 2.873. Tags with missing description
/**
 * HTML is the top level element
 *
 * @param lexer
 *
 * @return
 */
public static Node parseDocument(Lexer lexer) {}

JAVADOC 266

But when the option is enabled, the result would be

Example 2.874. Tagged missing descriptions
/**
 * HTML is the top level element
 *
 * @param lexer DOCME!
 *
 * @return DOCME!
 */
public static Node parseDocument(Lexer lexer) {}

2.8.14.5 Templates
Lets you define templates to be inserted for the different declaration elements when Javadoc
Generation (see Section 2.8.14.3, “Generation”) has been enabled. Each element (Class,
Interface, Field, Constructor and Method) has its own template. Depending on the element
type, a template consists of up to five parts that together form a valid Javadoc comment.
When Javadoc formatting (see Section 2.8.14.1, “Format”) is enabled, the templates will
be reformatted before they are inserted.

You can use variable expressions throughout your templates to insert various data au-
tomagically. See Section 2.4.3, “Local variables” for more information about the available
variables.

IMPORTANT The templates also describe the formatting style for each element
and are used to determine the description texts that are to be in-
serted for the Javadoc auto-correction feature (described in Sec-
tion 2.8.14.4, “Correction”)

Class template
Lets you define the template for class and enum declarations (including inner classes).

267 CHAPTER 2 CONFIGURATION

Figure 2.73. Javadoc class template

Enter a valid Javadoc comment. The Preview window will update in real-time to reflect
your changes.

Example 2.875. Class declaration with generated Javadoc
/**
 * DOCME!
 *
 * @author $author$
 * @version $Revision: #22 $, $Date: 2007/08/15 $
 */
public class CompilationUnit {
}

Interface template
Lets you define the template for interface and annotation declarations.

JAVADOC 268

Figure 2.74. Javadoc interface template

Enter a valid Javadoc comment. The Preview window will update in real-time to reflect
your changes.

Example 2.876. Interface declaration with generated Javadoc
/**
 * DOCME!
 *
 * @author $author$
 * @version $Revision: #22 $, $Date: 2007/08/15 $
 */
public interface Saveable {
}

Enum template
Lets you define the template for enum declarations (includes inner enums).

Since 1.5

269 CHAPTER 2 CONFIGURATION

Figure 2.75. Javadoc enum template

Enter a valid Javadoc comment. The Preview window will update in real-time to reflect
your changes.

Example 2.877. Enum declaration with generated Javadoc
/**
 * DOCME!
 *
 * @author $author$
 * @version $Revision: #22 $, $Date: 2007/08/15 $
 */
public enum Week {
 ...
}

Field template
Lets you define the template for field declarations.

JAVADOC 270

Figure 2.76. Javadoc field template

Enter a valid Javadoc comment. The Preview window will update in real-time to reflect
your changes.

Example 2.878. Field declaration with generated Javadoc
/** DOCME! */
public String name;

Constructor template
Lets you define the template for constructor declarations.

271 CHAPTER 2 CONFIGURATION

Figure 2.77. Javadoc constructor template

Example 2.879. Constructor declaration with generated Javadoc
/**
 * DOCME!
 *
 * @param source DOCME!
 */
public CompilationUnit(String source) {
}

Method template
Lets you define the template for method declarations.

JAVADOC 272

Figure 2.78. Javadoc method template

The Preview window will update in real-time to reflect your changes.

Example 2.880. Method declaration with generated Javadoc
/**
 * DOCME!
 *
 * @param source DOCME!
 *
 * @throws SyntaxException DOCME!
 */
public void compile(File source) throws SyntaxException {
}

Setter template
Lets you define the template for Setter methods (following the JavaBeans naming conven-
tion).

273 CHAPTER 2 CONFIGURATION

Figure 2.79. Javadoc Setter method template

The JavaBeans specification defines a standard way in which the properties for a JavaBean
instance should be accessed. This same technique can also be applied to regular classes and
interfaces to access their attributes. The Setter template is used for all methods that look
like setXxx() (also called mutator methods).

Since 1.1

Example 2.881. Setter method declaration with generated Javadoc
/**
 * Sets the value of the Importance Value property.
 *
 * @param name Importance Value property value.
 */
public void setImportanceValue(String value) {
}

You can use the Synchronize button to synchronize the template with the method declaration
template.

Getter template
Lets you define the template for Getter methods (following the JavaBeans naming conven-
tion).

JAVADOC 274

Figure 2.80. Javadoc Getter method template

The JavaBeans specification defines a standard way in which the properties for a JavaBean
instance should be accessed. This same technique can also be applied to regular classes and
interfaces to access their attributes.

The Getter template is used for all methods that look like getXxx() (also called accessor
methods) and all methods matching the specified Boolean Getter pattern (refer to “Boolean
Getter Regex” for further information).

Since 1.1

Example 2.882. Getter method declaration with generated Javadoc
/**
 * Returns the value of the Importance Value property.
 *
 * @return the Importance Value property.
 */
public void getImportanceValue() {
}

You can use the Synchronize button to synchronize the template with the method declaration
template. Please note that you need to apply any changes made to the method declaration
template first in order to see the changes propagated here.

2.8.14.6 Tags
Lets you define custom tags that should be recognized by the Javadoc parser.

275 CHAPTER 2 CONFIGURATION

Javadoc
Lets you define custom Javadoc tags. You need to specify all non-standard tags that you use,
i.e. all tags not defined in HTML 4.01, in order to see the Javadoc parser behave correctly.
Otherwise errors are generated for every tag that is unknown to the system.

Figure 2.81. Define Custom Javadoc Tags

Refer to the tables below to learn about the tags that are supported by default.

Block tags
Lets you define custom Javadoc block tags. The table below shows the Javadoc block tags
that are supported by default.

Table 2.7. Build-in Javadoc block tags

Name Since

@author 1.0

@beaninfo 1.0

@deprecated 1.0

@exception 1.0

@jalopy.group 1.1

@jalopy.group-order 1.1

@jalopy.group_order 1.1

@param 1.0

@return 1.0

@see 1.0

@serial 1.0

@serialData 1.0

JAVADOC 276

Name Since

@serialField 1.0

@since 1.0

@throws 1.0

@todo 1.0

@version 1.0

Use the Add... and Remove buttons to add or remove items to and from the list.

Figure 2.82. Add new Block Tag

Valid block tags have the form @[a-zA-Z]+, e.g. @pre.

In-line tags
Lets you define custom Javadoc in-line tags. The table below shows the Javadoc in-line tags
that are supported by default.

Table 2.8. Build-in Javadoc in-line tags

Name Since

@code 1.3

@docRoot 1.0

@inheritDoc 1.0

@link 1.0

@linkPlain 1.0

@literal 1.3

@value 1.0

Use the Add... and Remove buttons to add or remove items to and from the list.

Figure 2.83. Add new In-line Tag

277 CHAPTER 2 CONFIGURATION

Valid in-line tags have the form @[a-zA-Z]+, e.g. @root.

XDoclet
Lets you define custom XDoclet tags.

Figure 2.84. Define Custom XDoclet Tags

Refer to Appendix C, Build-in XDoclet tags for the tags that are supported by default. Use
the Add... and Remove buttons to add or remove items to and from the list.

Figure 2.85. Add new XDoclet Tag

Valid XDoclet tags have the form @[a-zA-Z.:_-]+, e.g. @jonas.session-timeout.

Since 1.0

HTML
Lets you define custom HTML tags.

HEADER 278

Figure 2.86. Define Custom HTML Tags

The standard supported tags are those of the HTML 4.01 standard. Use the Add... and
Remove buttons to add or remove items to and from the list.

Figure 2.87. Add new HTML Tag

Since 1.0

2.8.15 Header
This section describes the available options to control the handling of headers. A header is
a uniform comment that appears at the very top of a source file and usually displays the
company’s copyright notice.

279 CHAPTER 2 CONFIGURATION

Example 2.883. Typical header before package statement
/*
 * Sun Public License Notice
 *
 * The contents of this file are subject to the Sun Public License
 * Version 1.0 (the "License"). You may not use this file except in
 * compliance with the License. A copy of the License is available at
 * http://www.sun.com/
 *
 * The Original Code is NetBeans. The Initial Developer of the Original
 * Code is Sun Microsystems, Inc. Portions Copyright 1997-2000 Sun
 * Microsystems, Inc. All Rights Reserved.
 */
package org.netbeans.editor;

...

2.8.15.1 Options
Lets you control the different header options.

Figure 2.88. Header Options settings page

Use Header
Enables or disables the header feature. When enabled and no header could be detected, the
specified header template will be inserted. To avoid header duplication, you have to tell
Jalopy how to detect existing headers. See Section 2.8.15.1.1, “Detection” below.

Override
If you enable this option, the header template will be re-inserted with every run. Any exist-
ing header(s) will be removed. Note that when you specify multiple keys to identify existing

HEADER 280

headers, all recognized headers will be removed! This option is only available, when you’ve
enabled the header feature.

Since 1.0

Keep tags
When enabled, Jalopy keeps expanded RCS-style tags in existing header comments. An
expanded RCS tag looks like $keyword: data $.

It is good advise to replace headers upon every formatting run in order to enforce the
company’s copyright statement under all circumstances. This might cause problems though
when the header contains RCS-style tags. Because the current keyword data is lost upon
formatting, the SCM thinks the files are different even if the file did not change otherwise.
So, after submitting the files show no differences (because the tags have been expanded
again by the SCM). For example, if you have a file with the CVS Id tag, after checkout
the header might look like this

Example 2.884. Header with expanded keyword
/* Copyright (c) 2001-2003, Foobar Systems Ltd.
 *
 * $Id: TestCheckin.java,v 1.2 2004/01/12 21:52:18 xf016997 Exp $
 */

But after formatting, the keyword data gets lost when the Keep tags option was disabled

Example 2.885. Formatted header comment
/* Copyright (c) 2001-2003, Foobar Systems Ltd.
 *
 * Id
 */

Enabling this option will allow you to keep the existing data and the file will look exactly
like in Example 2.884, “Header with expanded keyword” after formatting. Please note that
this feature works for nested tags, too. If you define RCS tags in your template that contain
variable expressions, their values are still kept.

Since 1.0.3

Example 2.886. Header template with nested tags
//++
// Fossi GmbH Source File: $file.name$
// Copyright (c) 2003-$date.year$ by Fossi GmbH
//
// $Created: $date$ ($time.long$) by $user.name$ $
// Last Change: $date$ ($time.long$) by $user.name$
//++

After the first formatting run, the header could look like this

281 CHAPTER 2 CONFIGURATION

Example 2.887. Header template after formatting
//++
// Fossi GmbH Source File: Installer.java
// Copyright (c) 2003-2004 by Fossi GmbH
//
// $Created: 11.05.2004 (09:52:12) by eso $
// Last Change: 11.05.2004 (09:52:12) by eso
//++

After the next formatting run, it might look like this

Example 2.888. Header template after further formatting
//++
// Fossi GmbH Source File: Installer.java
// Copyright (c) 2003-2004 by Fossi GmbH
//
// $Created: 11.05.2004 (09:52:12) by eso $
// Last Change: 28.05.2004 (13:04:39) by harold
//++

This option is only available when the header feature has been enabled.

Detection
To avoid header duplication, Jalopy needs to detect existing headers. Two methods are
provided to allow great flexibility.

Count Lines
Lets you specify the number of single-line comments at the top of a file (before the first
language keyword, being either package, import, class, interface, @interface or
enum) that should be recognized as a header.

Jalopy simply counts the number of single-line comments at the top of a source file
and if this number is greater or equal to the specified line count, all consecutive single-line
comments at the top will be assumed to be part of a header.

Example 2.889. Single-line comment header
//===
// file : Byte.java
// project: bsjt-rt
//
// last change: date: $Date$
// by: $Author$
// revision: $Revision$
//---
// copyright: BSJT Software License (see class documentation)
//===

package com.bsjt.foo;

import ...

In order to recognize the above single-line comments as a header, the line count must be
no less than '1', but it would be best to set it to '10'. A number equal to '0' disables the
Count Lines detection.

HEADER 282

Identify Keys
The second approach is to specify one or several unique keys that are part of your header.
This technique only works with headers that are defined as multi-line comments. To add,
remove or change identify keys, use the corresponding button beneath the keys list.

Specifying several keys makes it easy to switch between headers. Define both a key for the
old header that is to be removed and for your new header that should be inserted. This way,
you are sure that even new additions that happen to contain the old header (maybe checked
out from some SCM) are treated correctly. A good key for the header in Example 2.883,
“Typical header before package statement” above would be “Sun Public License Notice”.

Add...
Lets you add new identify keys. Pressing the button will invoke a new dialog where you
can enter the identify key.

Figure 2.89. Add new Identify Key

Enter the identify key in the text field and press the Add button to submit your addition.
Press the Cancel button if you want to dismiss the action. Please note that the Add button
is only enabled if the text field is not empty.

Change...
Lets you alter an already defined identify key. Pressing the button will invoke a new dialog
where you can change the currently selected identify key. The button is only available if an
item is currently selected in the keys list.

Figure 2.90. Change existing Identify Key

Change the identify key and press the Change button to submit your change. Press the
Cancel button if you want to dismiss the action. Please note that the Change button is only
enabled if the text field is not empty.

283 CHAPTER 2 CONFIGURATION

Remove
Lets you remove the currently selected key(s) from the list. The Remove button is only
available if an item is currently selected in the keys list.

2.8.15.2 Template
Lets you specify the header template. Enter the desired text into the text area. You should
use either one multi-line comment or several single-line comments. Any leading or trailing
white space will be removed upon saving. Note that if you leave the template text empty, no
header template will be inserted during printing, but existing headers may still be removed!

Figure 2.91. Header Template settings page

Since Jalopy 1.7, it’s also possible to maintain multiple header comments in source files.
Please note that if you prefer to separate the different comments with blank lines and don’t
want to enable the override feature, you need to tell Jalopy to keep blank lines between
header comments with the Section 2.8.10.2, “Keep blank lines in headers up to” option.
You can use variable expressions throughout the template text. See Section 2.4.4, “Usage”
for more information about this feature.

2.8.16 Footer
Controls the printing of footers. A footer is a comment that appears at the very bottom of a
source file and usually displays the change history or similar information. As the handling of
footers is analogous to headers, please refer to Section 2.8.15, “Header” for an explanation
of the different options.

ANNOTATIONS 284

Figure 2.92. Footer settings page

Note that Jalopy always prints one trailing empty line after the footer.

2.8.17 Annotations
Lets you configure annotations that should be added to top-level class, interface, enum and
annotation type declarations.

285 CHAPTER 2 CONFIGURATION

Figure 2.93. Annotations settings page

Insert annotations
Enables or disables the automatic insertion of annotations. When enabled, all custom de-
fined annotations (see below) that are not already present for a top-level declaration, will
be inserted during formatting.

Since 1.8

2.8.17.1 Annotation patterns
Lets you define the annotation patterns that should be inserted. You can specify an arbitrary
amount of patterns. The patterns will be inserted during formatting in the given order.
The list component displays all patterns currently defined. Use the button bar on the right
to add, remove or change patterns and define the order in which the patterns should be
inserted.

Add...
Lets you add new annotation patterns. Pressing the button will invoke a new dialog where
you can enter the pattern. Please note that the annotation must be fully qualified. During
insertion, the package name will be stripped and the corresponding import declaration
inserted.

Edit...
Lets you alter an already defined annotation pattern. This button is only available if an item
is currently selected in the pattern list. Pressing the button will invoke a new dialog where
you can change the Annotation pattern for the currently selected item in the pattern list.

SEARCH & REPLACE 286

Remove
Lets you remove an already defined annotation pattern. This button is only available if an
item is currently selected in the pattern list.

Up
Lets you change the position of an already defined annotation pattern in the pattern list.
This button is only available if an item is currently selected in the pattern list and this is
not the topmost item.

Down
Lets you change the position of an already defined annotation pattern in the pattern list.
This button is only available if an item is currently selected in the pattern list and this is
not the last item.

2.8.18 Search & Replace
Lets you perform string Search & Replace operations during formatting.

Figure 2.94. Search & Replace settings page

2.8.18.1 Scope
Lets you configure the elements for which Search & Replace should be performed.

String Literals
Enables Search & Replace for string literals. Please note that you first need to define at least
one pattern in order to be able to enable Search & Replace! See Section 2.8.18.2, “Patterns”
for information on adding patterns.

287 CHAPTER 2 CONFIGURATION

Since 1.7

Example 2.890. String literal
String literal = "String literals are enclosed in double quotes";

Single-line comments
Enables Search & Replace for single-line comments. Please note that you first need to define
at least one pattern in order to be able to enable Search & Replace! See Section 2.8.18.2,
“Patterns” for information on adding patterns.

Since 1.7

Example 2.891. Single-line comment
// Single-line comments are similar like in C++

Multi-line comments
Enables Search & Replace for multi-line comments. Please note that you first need to define
at least one pattern in order to be able to enable Search & Replace! See Section 2.8.18.2,
“Patterns” for information on adding patterns.

Since 1.7

Example 2.892. Multi-line comment
/* Multi-line comments are similar like in C/C++ */

Javadoc comments
Enables Search & Replace for Javadoc comments. Please note that you first need to define
at least one pattern in order to be able to enable Search & Replace! See Section 2.8.18.2,
“Patterns” for information on adding patterns.

Since 1.7

Example 2.893. Javadoc comment
/**
 * Javadoc comments are basically multi-line comments using
 * a special notation
 */

2.8.18.2 Patterns
Lets you define regular expression patterns to use for Search & Replace. You can define
an arbitrary amount of Search & Replace patterns that are executed in the order defined
when formatting a file. The list component displays all patterns currently defined. Use the
button bar on the right to add, remove or change patterns and define the order in which
the patterns should be applied.

Jalopy uses Java’s build-in regular expression engine which is roughly equivalent with
Perl 5 regular expressions. The syntax is explained here: http://java.sun.com/javase/6/docs/
api/java/util/regex/Pattern.html. For a more precise description of the behavior of regular
expression constructs consult Mastering Regular Expressions [Friedl97].

http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html
http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html

SEARCH & REPLACE 288

Add...
Lets you add new Search & Replace patterns. Pressing the button will invoke a new dialog
where you can enter the Search & Replace patterns.

Figure 2.95. Add Search & Replace pattern

Enter the search pattern in the Search for text field and the replace pattern in the Replace
with text field. The replace pattern may contain variable interpolations referring to the saved
parenthesized groups of the search pattern. A variable interpolation is denoted by $1, $2,
or $3, etc.

Suppose you have the search pattern b\d+: and you want to substitute the b's for a's and
the colon for a dash in parts of your input matching the pattern. You can do this by changing
the search pattern to b(\d+): and using the replace pattern a$1-. When a substitution is
made, the $1 means "Substitute whatever was matched by the first saved group of the
matching pattern." An input of b123: after substitution would yield a result of a123-. For
the given patterns
Tank b123: 85 Tank b256: 32 Tank b78: 22

would become
Tank a123- 85 Tank a256- 32 Tank a78- 22

Edit...
Lets you alter an already defined Search & Replace pattern. This button is only available
if an item is currently selected in the pattern list. Pressing the button will invoke a new
dialog where you can change the Search & Replace patterns for the currently selected item
in the pattern list.

Figure 2.96. Change Search & Replace pattern

289 CHAPTER 2 CONFIGURATION

Please refer to Section 2.8.18.2, “Add...” for an explanation of the available regular expres-
sion capabilities.

Remove
Lets you remove an already defined Search & Replace pattern. This button is only available
if an item is currently selected in the pattern list.

Up
Lets you change the position of an already defined Search & Replace pattern in the pattern
list. This button is only available if an item is currently selected in the pattern list and this
is not the topmost item.

Down
Lets you change the position of an already defined Search & Replace pattern in the pattern
list. This button is only available if an item is currently selected in the pattern list and this
is not the last item.

2.8.19 Code Inspector
Lets you configure the code inspector. The code inspector inspects source files for naming
convention violations and possible code weaknesses.

2.8.19.1 Checking
Lets you control the general code inspector settings.

Figure 2.97. Code Inspector settings page

CODE INSPECTOR 290

Enable
Lets you enable or disable the code inspector. You still need to enable at least one of the
provided checks.

Checks
Lets you selectively choose what actions should be performed during inspection.

Obey the general contract when overriding equals
Checks whether the body of a equals method contains a throw statement that would
violate the equals contract. Only applies if the method body does contain more than one
statement; thus, if the method body consists of a single throw statement, we assume you
know what you do and leave it alone. For more information see Effective Java [Bloch01],
Item 7, pp. 32.

Don’t substitute another type for Object
Don’t substitute another type for Object in the equals declaration The equals method
should not be overloaded.

Example 2.894. Overloaded equals - DO NOT USE�
public boolean equals(MyClass o) {
 ...
}

For a detailed discussion see Effective Java [Bloch01], Item 7, pp. 35.

Always override hashCode when you override equals
Failure to do so will result in a violation of the general contract for Object#hashCode,
which will prevent the class from functioning properly in conjunction with all hash-based
collections, including HashMap and HashSet. For a detailed discussion see Effective Java
[Bloch01], Item 8, pp. 36.

Always override toString
It might be quite useful for diagnostic purposes to have objects generating interesting infor-
mation with toString. This way you can easily use logging techniques to track programs
execution.

Example 2.895. Provide useful toString() implemenation
System.out.println("Failed to connect: " + phoneNumber);

For a detailed discussion see Effective Java [Bloch01], Item 9, pp. 42.

Use interfaces only to define types
Interfaces should say something about what a client can do with instances of the class. It
is inappropriate to define an interface for any other purpose. When enabled, Jalopy warns
about uses of the so-called constant interfaces pattern, i.e. an interface that only consists of
constants.

291 CHAPTER 2 CONFIGURATION

Example 2.896. Constant interface pattern - DO NOT USE�
public interface PysicalConstants {

 /** Boltzmann constant (J/K) */
 double BOLTZMANN_CONSTANT = 1.3806503e-23;

 /** Mass of the electron (kg) */
 double ELECTRON_MASS = 9.10938188e-31;
}

For a detailed discussion see Effective Java [Bloch01], Item 89, pp. 89.

Replace structures with classes
Degenerated classes consisting solely of data fields are loosely equivalent to C structures,
but should not be used as they do not offer the benefits of encapsulation.

Example 2.897. Public degenerate class - DO NOT USE�
public class Point {
 public float x;
 public float y;
}

For a detailed discussion see Effective Java [Bloch01], Item 19, pp. 97.

Return zero-length arrays, not nulls
There is really no reason to ever return null from an array-valued method instead of re-
turning a zero-length array. For a detailed discussion see Effective Java [Bloch01], Item 27,
pp. 134.

Adhere to custom naming conventions
Following a naming convention aids readability and maintenance as confusion and irrita-
tion is avoided. For a detailed discussion see Effective Java [Bloch01], Item 38, pp. 165.

Refer to objects by their interfaces
When possible, always use the interface type for parameters, return values, variables and
fields as your program will be much more flexible. When enabled, Jalopy will print warnings
when the different Java collection implementations are used directly.

Example 2.898. // Good - uses interface as type
List subscribers = new ArrayList();

Example 2.899. // Bad - uses interface as type - DO NOT USE�
ArrayList subscribers = new ArrayList();

For a detailed discussion see Effective Java [Bloch01], Item 34, pp. 156.

Never declare that a method “throws Exception”
It is usually bad practise to declare that a method throws Exception because it obscures
any other exception that may be thrown in the same context and denies any guidance to
the programmer conceding the exceptions that the method is capable of throwing. For a
detailed discussion see Effective Java [Bloch01], Item 44, pp. 181.

CODE INSPECTOR 292

Never declare that a method “throws Throwable”
It is usually bad practise to declare that a method throws Throwable because it obscures
any other exception that may be thrown in the same context and denies any guidance to
the programmer conceding the exceptions that the method is capable of throwing. For a
detailed discussion see Effective Java [Bloch01], Item 44, pp. 181.

Don’t ignore exceptions
An empty catch block defeats the purpose of exceptions. At the very least, the catch block
should contain a comment explaining why it is appropriate to ignore the exception.

Example 2.900. Empty catch block ignores exception - DO NOT USE�
try {
 ...
} catch (SomeException ex) {
}

For a detailed discussion see Effective Java [Bloch01], Item 47, pp. 187.

Never invoke wait outside a loop
Always use the wait loop idiom to invoke the wait method. Never invoke it outside of a
loop as the loop serves to test the condition before and after waiting ensuring liveness and
safety For a detailed discussion see Effective Java [Bloch01], Item 50, pp. 201.

Avoid thread groups
As thread groups are largely obsolete, don’t use them. They don’t provide much in the way of
useful functionality, and much of the functionality they do provide is flawed. For a detailed
discussion see Effective Java [Bloch01], Item 53, pp. 211.

Avoid empty finally blocks
Empty finally blocks are of no use and may indicate programmer errors.

Example 2.901. Empty finally block
Writer writer = new BufferedWriter(new FileWriter(file));

try {
 write.write(data);
} catch (IOException ex) {
 System.err.println("file could not be written: " + file);
} finally {
}

The programmer certainly wanted to close the Writer in the finally block to ensure that
allocated system resources will be freed.

Add NOI18N comment for string literals
Enabling this check will cause warnings for all string literals without associated /* NOI18N
*/ comment. Internationalizing Java applications is often done with nifty tools that use
marker comments to indicate that a given string literal should not be considered for local-
ization. Most tools (at least the ones I know of) use trailing single-line comments which
may not be very robust for processing with a formatting tool such as Jalopy. In contrast the

293 CHAPTER 2 CONFIGURATION

author uses a multi-line comment of the form /* NOI18N */ that gets directly placed after
a string literal and will therefore always stuck with it.

Example 2.902. $NON-NLS-1$ comment
FileDialog dialog = new FileDialog(this,
 ResourceBundle.getBundle(BUNDLE_NAME)
 .getString("BTN_SAVE_AS", FileDialog.SAVE); //$NON-NLS-1$

This trailing comment could be easily moved away from its string literal during formatting
which would result in an unwanted notice on successive internationalization runs.

Example 2.903. $NON-NLS-1$ comment (moved)
FileDialog dialog =
 new FileDialog(this,
 ResourceBundle.getBundle(BUNDLE_NAME).
 getString("BTN_SAVE_AS",
 FileDialog.SAVE); //$NON-NLS-1$

Example 2.904. NOI18N comment
FileDialog dialog =
 new FileDialog(this,
 ResourceBundle.getBundle(BUNDLE_NAME).
 getString("BTN_SAVE_AS" /* NOI18N */),
 FileDialog.SAVE);

Add informative comment for collection fields
When not using strong-typed collections (a.k.a. Java Generics), it is best to document the
object type of the items hold by a collection. When enabled, Jalopy checks for the existence
of such comments and warns when they are missing.

Example 2.905. Collection comment
private List _favorableTypes = new ArrayList(20); // List of <String>

Warn about lines that exceed the maximal line length
When enabled, prints a warning for every line that was not printed in between the maximal
line length.

Example 2.906. Line length limit
throw new IllegalArgumentException(|
 "condition must be one of WHEN_IN_FOCUSED_WINDOW or WHEN_FOCUSED");
 |

Suppress within //J- //J+ pragma comments
When enabled, no warnings are printed for code sections enclosed with pragma comments.

Since 1.8

Example 2.907. Line length limit
//J-
throw new IllegalArgumentException(|
 "condition must be one of WHEN_IN_FOCUSED_WINDOW or WHEN_FOCUSED");
//J+ |

CODE INSPECTOR 294

2.8.19.2 Naming
Lets you specify the naming constraints for different Java source file elements. These con-
straints are naturally expressed with regular expressions. Note that you have to enable both
the Code Inspector and the naming convention check in order to see naming checks per-
formed. See Section 2.8.19.1.1, “Adhere to custom naming conventions” for more infor-
mation.

Figure 2.98. Code Inspector Naming settings page

The list component displays all provided naming checks along with their current regular
expression.
Selecting an item in the list and either pressing the Edit... button or double-clicking the
item will open a dialog that lets you change the regular expression.

Change Naming Pattern
The Change Naming Pattern dialog lets you interactively craft a valid regular expression
for a naming check.

295 CHAPTER 2 CONFIGURATION

Figure 2.99. Change Naming Pattern

Regex
The Regex text field is where you have to insert the regular expression. This text field initially
contains the current pattern for the list item that is under construction.

Jalopy uses Java’s build-in regular expression engine which is roughly equivalent with
Perl 5 regular expressions. The syntax is explained here: http://java.sun.com/javase/6/docs/
api/java/util/regex/Pattern.html. For a more precise description of the behavior of regular
expression constructs consult Mastering Regular Expressions [Friedl97]. The defined pattern
must match exactly.

String
The String text field is where you have to enter a string that should be matched by the
specified regular expression. This text field is initially empty.

Test
Once you have edited the two text fields you may want to use the Test button to perform
a pattern matching test in order to make sure that the specified regex matches as desired.
You will be informed about the match status and can decide whether you want to alter your
pattern and/or test string and restart the procedure.

Figure 2.100. Successful regex test

http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html
http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html

CODE INSPECTOR 296

Figure 2.101. Failed regex test

Change
If you are finished editing the regular expression, you can press the Change button to take
over.

Cancel
You can always use the Cancel button to cancel editing at any time. The dialog will be closed
and no changes applied to the list.

297

Chapter 3. Usage

Usage depends on the distribution you received. Please refer to the individual plug-in chap-
ters in Part II, “Plug-ins” for details.

Part II. Plug-ins
This part of the manual covers the plug-ins that ship with Jalopy. plug-ins seamlessly integrate the
extensive formatting capabilities of the Jalopy formatting engine into your favorite application. There
is a wide range of plug-ins available for IDEs, build tools and command line usage or scripting.

• Chapter 4, Ant Task

• Chapter 5, Console Application

• Chapter 6, Eclipse Plug-in

• Chapter 7, IntelliJ IDEA Plug-in

• Chapter 8, JDeveloper Extension

• Chapter 9, jEdit Plug-in

• Chapter 10, Maven 1 Plug-in

• Chapter 11, Maven 2 Plug-in

• Chapter 12, NetBeans Module

301

Chapter 4. Ant Task

Describes the installation and usage of the Jalopy Ant task. Its authors describe Ant as a
“Java-based build tool. In theory, it is kind of like Make, but without Make’s wrinkles.

Why another build tool when there is already make, gnumake, nmake, jam, and others?
Because all those tools have limitations that Ant’s original author couldn’t live with when
developing software across multiple platforms. Make-like tools are inherently shell-based
—they evaluate a set of dependencies, then execute commands not unlike what you would
issue in a shell. This means that you can easily extend these tools by using or writing any
program for the OS that you are working on. However, this also means that you limit
yourself to the OS, or at least the OS type such as Unix, that you are working on. Makefiles
are inherently evil as well. Anybody who has worked on them for any time has run into the
dreaded tab problem. "Is my command not executing because I have a space in front of my
tab???" asked the original author of Ant way too many times. Tools like Jam took care of
this to a great degree, but still have yet another format to use and remember.

Ant is different. Instead of a model where it is extended with shell-based commands, Ant
is extended using Java classes. Instead of writing shell commands, the configuration files are
XML-based, calling out a target tree where various tasks get executed. Each task is run by
an object that implements a particular Task interface. Granted, this removes some of the
expressive power that is inherent by being able to construct a shell command such as 'find .
-name foo -exec rm {}', but it gives you the ability to be cross platform—to work anywhere
and everywhere. And hey, if you really need to execute a shell command, Ant has an <exec>
task that allows different commands to be executed based on the OS that it is executing on.”

4.1 Installation
Explains the steps involved in getting the Ant task up and running.

4.1.1 System requirements
The plug-in requires Ant 1.5 or later. See Section 1.1, “System requirements” for the basic
requirements to run Jalopy.

4.1.2 Installation
The plug-in comes as an executable Jar Archive (JAR) that contains a graphical setup wiz-
ard to let you easily install the software. Wizard installation is highly recommended and
explained in detail in Section 1.3, “Wizard Installation”.

If you would rather install the plug-in manually, you have to decompress and copy the
appropriate files into the different application and/or settings folders. To decompress the
contents of the installer JAR, you can often use the build-in support of your file manager
(e.g. Nautilus) or any other software that can handle the ZIP compression format (e.g. 7Zip,
WinZip or Stuffit Expander). If you don’t have access to one of the convenience tools, you
might resort to the jar command-line application that ships with your Java distribution.

http://projects.gnome.org/nautilus/
http://www.7-zip.org/
http://www.winzip.com/
http://my.smithmicro.com/mac/stuffit/expander.html
http://java.sun.com/docs/books/tutorial/deployment/jar/unpack.html

CONFIGURATION 302

When you’re upgrading from a prior version and want to keep your settings, first copy
or rename the current Jalopy settings directory to match the version number of the new
release. For instance, if your current settings directory is C:\Users\John Doo\.jalopy
\1.9 and you’re about to install Jalopy 1.9.4, either copy the directory contents or rename
it to C:\Users\John Doo\.jalopy\1.9.4.

The Jalopy Ant task requires two JAR files, the Ant library jalopy-ant-1.9.4.jar
and the core engine jalopy-1.9.4.jar. These must be added to the class path. You can
do this in a number of ways:

• Add the two JAR files to the SCM repository and explicitly load the tasks using a class
path you set up in the build file. This is often the best approach as there’s no need for
any work by the individual developers.

• Copy the two JAR files from the temporary directory into a private directory and add
the directory contents to the path via Ant’s -lib option. You can include this directory
in the ANT_ARGS environment variable for automatic inclusion.

• Copy the two JAR files from the temporary directory into the $HOME/.ant/lib folder
below your home directory. The library will be available on all projects which may lead
to library version conflicts.

• Copy the two JAR files from the temporary directory into the $ANT_HOME/lib directory
of your Ant installation. The library will be available to all users of a machine on all
projects which may lead to library version conflicts.

Please note that you should make sure that no other Jalopy binaries are in the class path.
Again you might need to check the global $ANT_HOME/lib directory of your Ant installa-
tion, the user specific $HOME/.ant/lib folder and any directories you include with the -
lib option when running Ant, and remove any older jalopy-*.jar entries.

4.2 Configuration
Although Jalopy ships with sensible default settings (mimicking the Sun Java coding con-
vention), you most likely want to configure the formatter to match your needs (adding
copyright headers, tune Javadoc handling and the like). For such, Jalopy comes with a
graphical configuration tool that lets you interactively customize the settings. See Chap-
ter 2, Configuration for an in-depth discussion of the available options.

To display the configuration tool, you should use the matching wrapper script for your
platform. The wrapper scripts are called jalopy.xxx. Open a shell and invoke the script
with the --configure option:

% jalopy --configure

Or you can execute the JAR directly with

% java -jar jalopy-1.9.4.jar --configure

When you’re done configuring the settings, you should export the code convention as de-
scribed in Section 2.1.1.11, “Export code convention”. The exported settings file is typically
used as part of the Jalopy task configuration in the build script.

http://ant.apache.org/manual/running.html#options
http://ant.apache.org/manual/running.html#files

303 CHAPTER 4 ANT TASK

4.3 Usage
Before you can use the Jalopy Ant task in your build scripts, you have to define the task.
This can be done in several ways, depending on the Ant and Jalopy versions you use.

The most conservative way to define the task that works with all versions, is to utilize
the <taskdef> element in your build script and specify the class name of the Jalopy task. In
order to achieve a self-contained build, you should not place the Jalopy libraries into your
Ant /lib folder, but use the classpath attribute to point to the binaries:

Example 4.1. Task definition with specific class path
<taskdef name="jalopy"
 classname="com.triemax.JalopyTask"
 classpath="${deps}/jalopy-ant-1.9.4.jar" />

Please note that it’s sufficient to reference the Jalopy Ant task library, if the core engine file
sits in the same directory (which should be the norm).

If the Jalopy libraries have been added to the Ant class path (by placing them in the
Ant/lib folder), you can simply bind the task as follows:

Example 4.2. Task definition with global search path
<taskdef name="jalopy" classname="com.triemax.JalopyTask" />

After the task has been defined, you can use it in the same manner like any other task:

Example 4.3. Task usage without namespace
<target name="format">
 <jalopy ...>
 ...
 </jalopy>
</target>

Since Jalopy 1.9.3, you can utilize the library feature available with Ant 1.6 or later. When
the library has been added to the Ant class path, you can either bind the task globally for
the whole script:

Example 4.4. Task definition via project namespace declaration
<project name="foo" xmlns:triemax="antlib:com.triemax" ...>
 ...
</project>

Or limited to a specific target:

Example 4.5. Task definition via target namespace declaration
<target name="jalopy" xmlns:triemax="antlib:com.triemax" />
 ...
<target/>

Declaring the namespace will automatically load the task and you can access it using the
prefixed name defined in the declaration:

http://ant.apache.org/manual/CoreTasks/taskdef.html

PARAMETERS 304

Example 4.6. Task usage with namespace
<target name="format">
 <triemax:jalopy ...>
 ...
 </triemax:jalopy>
</target>

But it is usually more sensible to leave the Ant class path alone and instead explicitly handle
the class path in the build script to achieve a self-contained build process:

Example 4.7. Task definition with typedef
<target name="format">
 <typedef resource="com/triemax/antlib.xml" classpath="${deps}" />
 <jalopy ...>
 ...
 </jalopy>
</target>

Nested <fileset> elements can and should be used to specify the source files and/or direc-
tories:

Example 4.8. Target specification using fileset
<target name="format">
 <jalopy ...>
 <fileset dir="${dir.src.java}">
 <include name="**/*.java" />
 </fileset>
 </jalopy>
</target>

You can also set user environment variables for a run by using nested <variable> elements.

4.3.1 Parameters
The task itself can take several parameters to control the runtime behavior of Jalopy. The
parameters are optional. When omitted, your current profile settings will be used. But it
is recommended that at least a settings file is specified. The valid parameters are listed in
the table below.

Table 4.1. Jalopy Ant task parameters

Attribute Type Description Since Required

backup Boolean Sets whether backup copies of all processed source files
should be kept. When omitted, the corresponding code
convention setting will be used (see Section 2.2.2.2,
“Backup”)

1.0 No

classpath Path The class path for type resolution. Please refer to Ap-
pendix A, “Type Resolution” for the list of features which
require type resolution. If you don’t use any of these fea-
tures, it’s not required to set anything here. Otherwise the
referenced path must contain all types that are needed
by your project. Specifying the Java runtime classes is op-
tional; if they are omitted, the runtime classes used by Ant
will be automatically added

1.9.3 No

classpathref String The class path for type resolution, given as a reference.
Please refer to Appendix A, “Type Resolution” for the
list of features which require type resolution. If you don’t
use any of these features, it’s not required to set any-

1.0 No

http://ant.apache.org/manual/CoreTypes/fileset.html

305 CHAPTER 4 ANT TASK

Attribute Type Description Since Required
thing here. Otherwise the referenced path must contain
all types that are needed by your project. Specifying the
Java runtime classes is optional; if they are omitted, the
runtime classes used by Ant will be automatically added

convention String Sets the location to the code convention settings file to
use. Given either relative to the project’s base directory
or as an absolute local path or internet address (refer to
Section 2.1.1.11, “Export code convention” for information
how to export your settings). When omitted, and no profile
is specified, the settings of the currently active profile will
be used

1.0 No

destdir String Sets the destination directory to create/copy all formatting
output into. If the given directory does not exist, it will
be created. When omitted, all input files will simply be
overridden

1.0 No

encoding String Sets the encoding that controls how Jalopy interprets text
files containing characters beyond the ASCII character set.
Defaults to the platform default encoding

1.0 No

failonerror Boolean Sets whether a run should be held if errors occurred. De-
faults to “true”

1.0 No

file String Specifies a single source file to format. 1.0 Yes, if no
fileset is
specified

fileformat String Sets the file format of the output files. The file format
controls what end of line character is used. Either one of
“UNIX”, “DOS”, “DEFAULT” or “AUTO” can be used (case
insensitive). Defaults to “AUTO”

1.0 No

force Boolean Sets whether the formatting of files should be forced,
even if a file is up-to-date. Defaults to “false”

1.0 No

fork Boolean Sets whether the processing should be performed in a
separate VM. Defaults to “false”

1.0 No

history String Sets the history policy to use. Either one of “ADLER32”,
“CRC32” or “NONE” can be used (case insensitive).
When omitted, the corresponding code convention set-
ting will used (see Section 2.2.2.1, “History”)

1.0.3 No

inputEncoding String Sets the character encoding that controls how Jalopy in-
terprets input text files containing characters beyond the
ASCII character set. Defaults to the platform default en-
coding. Please note that this setting always overrides en-
coding

1.6 No

javadoc String Indicates whether Javadoc related messages should be
printed. Defaults to “true”

1.0 No

loglevel String Specifies the logging level for message output. Either one
of “ERROR”, “WARN”, “INFO” or “DEBUG” can be used
(case insensitive). When omitted, the current code con-
vention settings will be used (see Section 2.6.1, “Cate-
gories”)

1.0 No

log String Specifies the log file to use for logging output. The format
of the logging output is determined by the extension of
the given file. Valid extensions are “.log” for a custom plain
text format, “.xml” for a plain XML format and “.html” for
an hierarchical HTML report. When omitted, the current
code convention setting will be used (see Section 2.6.2,
“Logging”)

1.0.3 No

outputEncoding String Sets the character encoding Jalopy uses to write files. De-
faults to the platform default encoding. Please note that
this setting always overrides encoding

1.6 No

PARAMETERS SPECIFIED AS NESTED ELEMENTS 306

Attribute Type Description Since Required

profile String Sets the Jalopy profile that should be activated during the
run (refer to Section 2.1.1.1, “Main window” for more in-
formation about profiles). The currently active profile will
be restored after formatting. Please note that the profile
must exist�

1.5 No

repository Boolean Indicates whether the type repository should be used for
type resolution. When disabled, an alternative implemen-
tation with different characteristics is used. Only mean-
ingful when a class path has been defined via classpath or
classpathref. You may want to disable the repository if you
commonly format a single file or only a small set of files
in order to avoid the maintenance overhead of the type
repository. Please be aware that the import expansion fea-
ture requires the type repository. Defaults to “true”

1.6 No

test Boolean Sets whether formatting output should actually be written
to disk. If set to “true” no output will be written to disk.
The default is “false”

1.0 No

threads Integer Specifies the number of processing threads to use. Inte-
ger between 1 - 8. When omitted, the current code con-
vention setting will be used

1.0 No

4.3.2 Parameters specified as nested elements
Some parameters may be specified as nested elements.

<classpath>
The class path might be alternatively specified using the nested <classpath> element. It is
recommended to use the same class path as with your compile target, to ensure that all
project types are accessible.

Since 1.9.3

Example 4.9. Class path declaration using nested classpath element
<jalopy ...>
 <classpath>
 <pathelement name="${classpath}" />
 </classpath>
 ...
</jalopy>

<variable>
Used to specify a user environment variable that shall be available during a run. If a variable
with the given name already exists, its value will be overridden during the run and restored
afterwards.

Since 1.0

Table 4.2. Nested variable parameter

Attribute Type Description Required

name String Specifies the name of the variable. Yes

value String Specifies the value that should be assigned to the variable. Yes

http://ant.apache.org/manual/using.html#path

307 CHAPTER 4 ANT TASK

Example 4.10. Variable declaration
<jalopy ...>
 <variable name="author" value="John Doo" />
 ...
</jalopy>

4.4 Example
The following example demonstrates how you can make use of the Jalopy Ant task. Note
that the format target depends on the compile target. This way we can make sure that
the provided class path covers the complete type information.

Example 4.11. Example Ant build file
<?xml version="1.0" ?>
<project name="myProject" default="format" basedir=".">

 <property name="dir.compile" value="${basedir}/build/classes" />
 <property name="dir.lib" value="${basedir}/lib" />
 <property name="dir.src.java" value="${basedir}/src/main/java" />

 <!-- == -->
 <!-- Defines the project class path -->
 <!-- == -->
 <path id="project.classpath" >
 <!-- our compilation directory -->
 <pathelement location="${dir.compile}" />
 <!-- needed 3rd party libraries -->
 <fileset dir="${dir.lib}" >
 <include name="**/*.jar" />
 </fileset>
 </path>

 <!-- == -->
 <!-- Compiles the project sources -->
 <!-- == -->
 <target name="compile">
 <javac destdir="${dir.compile}" classpathref="project.classpath">
 <src path="${dir.src.java}" />
 </javac>
 </target>

 <!-- == -->
 <!-- Formats the project source -->
 <!-- == -->
 <target name="format" depends="compile">
 <!--
 Load the task using explicit class path. Please note that it’s sufficient
 to reference the Jalopy Ant library JAR if the core engine JAR sits in
 the same directory (which should be the norm)
 -->
 <typedef resource="com/triemax/antlib.xml"
 classpath="${basedir}/../deps/jalopy-ant-1.9.4.jar" />

 <!--
 Invokes Jalopy as follows:

 - load the code convention from the given url
 - the import optimization feature will work (if enabled in the code
 convention), because a class path reference is given
 - all formatted files will have unix file format (\n)
 - override the convention to use alder32 checksums of files as history
 policy

EXAMPLE 308

 - override the convention to use loglevel 'info'
 - the task will use 4 worker threads
 - the user environment variable 'author' is set and the value
 'John Doo' assigned

 Since Jalopy 1.3 an include pattern is no longer necessary if you want
 to format all supported source files of a directory structure
 -->
 <jalopy convention="http://shared-server/cisco-omg.xml"
 classpathref="project.classpath"
 fileformat="unix"
 history="adler32"
 loglevel="info"
 threads="4">
 <variable name="author" value="John Doo" />
 <fileset dir="${dir.src.java}">
 <include name="**/*.java" />
 </fileset>
 </jalopy>
 </target>
</project>

309

Chapter 5. Console Application

Describes the installation and usage of the Console plug-in. The Console plug-in provides
a powerful command-line interface for Jalopy.

5.1 Installation
Explains the steps involved to install the Console plug-in.

5.1.1 System requirements
See Section 1.1, “System requirements” for the basic requirements to run Jalopy.

5.1.2 Installation
The plug-in comes as an executable Jar Archive (JAR) that contains a graphical setup wiz-
ard to let you easily install the software. Wizard installation is highly recommended and
explained in detail in Section 1.3, “Wizard Installation”.

If you would rather install the plug-in manually, you have to decompress and copy the
appropriate files into the different application and/or settings folders. To decompress the
contents of the installer JAR, you can often use the build-in support of your file manager
(e.g. Nautilus) or any other software that can handle the ZIP compression format (e.g. 7Zip,
WinZip or Stuffit Expander). If you don’t have access to one of the convenience tools, you
might resort to the jar command-line application that ships with your Java distribution.

When you’re upgrading from a prior version and want to keep your settings, first copy
or rename the current Jalopy settings directory to match the version number of the new
release. For instance, if your current settings directory is C:\Users\John Doo\.jalopy
\1.9 and you’re about to install Jalopy 1.9.4, either copy the directory contents or rename
it to C:\Users\John Doo\.jalopy\1.9.4.

Decompress the contents of the JAR file into a temporary directory. Afterwards create
the actual installation directory, e.g. C:\Program Files\Jalopy or /usr/local/ja-
va/jalopy whatever. Create a new subfolder /lib and copy the file jalopy-1.9.4.jar
from the temporary directory into the /lib folder. Copy the /bin folder from the tempo-
rary directory into the installation directory.

To invoke Jalopy, you can find wrapper scripts for the common platforms in the /bin
folder. You may want to add this folder to your path. If your platform is not covered, you
should make use of the -jar or -cp options of the Java application launcher (the java
command), since this requires no class path manipulation (see Section 5.3.1, “Synopsis”
below).

But if you don’t want to use any of these options, you can add jalopy-1.9.4.jar to
your class path as usual. For the Unix Bash shell, this means can be achieved using

% export CLASSPATH=${CLASSPATH}:<JALOPY_HOME>/lib/jalopy-1.9.4.jar

For Windows, use something like

% set CLASSPATH=%CLASSPATH%;<JALOPY_HOME>\lib\jalopy-1.9.4.jar

http://projects.gnome.org/nautilus/
http://www.7-zip.org/
http://www.winzip.com/
http://my.smithmicro.com/mac/stuffit/expander.html
http://java.sun.com/docs/books/tutorial/deployment/jar/unpack.html

CONFIGURATION 310

Please refer to your system documentation on how to apply these changes more perma-
nently.

5.2 Configuration
Although Jalopy ships with sensible default settings (mimicking the Sun Java coding con-
vention), you most likely want to configure the formatter to match your needs (adding
copyright headers, tune Javadoc handling and the like). For such, Jalopy comes with a
graphical configuration tool that lets you interactively customize the settings. See Chap-
ter 2, Configuration for an in-depth discussion of the available options.

To display the preferences dialog you should use the provided wrapper script for your
platform, called jalopy.xxx (available in the /bin folder of the distribution).
% jalopy --configure

Jalopy comes as an executable JAR file, you therefore can make use of the -jar option of
the Java launcher:
% java -jar jalopy-1.9.4.jar --configure

Or you give the class path directly to the launcher
% java -cp jalopy-1.9.4.jar Jalopy --configure

Of course, you can externally configure the class path yourself by adding all .jar files as
usual and then type
% java Jalopy --configure

on the console. If you should have any of the other plug-ins described in this manual in-
stalled, you can of course use their corresponding feature, e.g. invoke the preferences dialog
directly from within an IDE.

5.3 Usage
Presents the available command-line options along with some usage examples.

5.3.1 Synopsis
To start Jalopy from the command-line you may either use the provided launch script for
your platform
% jalopy [-options] filespec...

Or use the Java launcher to execute the Jalopy binary directly
% java -jar jalopy-1.9.4.jar [-options] filespec...

Or use the Java launcher to call the main class
% java -cp jalopy-1.9.4.jar Jalopy [-options] filespec...

Or manually configure the class path and use the Java launcher to invoke the main class
% java Jalopy [-options] filespec...

IMPORTANT Please note that for certain features, access to the binary .class in-
formation is required as mentioned in Appendix A, “Type Reso-
lution”. In order to achieve the same output as with any of the

311 CHAPTER 5 CONSOLE APPLICATION

IDE plug-ins, you should always define the project dependencies
via the --classpath option

Options
The command-line interface provides many options to control runtime behavior.

Table 5.1. Jalopy Console plug-in command-line options

Option Long Option Arguments Description Since

--classpath <filepath> Specifies the class path to use for type resolution. En-
tries are separated by semicolons. Please refer to Ap-
pendix A, “Type Resolution” for the list of features
which require type resolution. If you don’t use any of
these features, it’s not required to set anything here.
Otherwise the class path must contain all types that
are needed by your project. Specifying the Java run-
time classes is optional; if they are omitted, the run-
time classes of the running VM will be automatically
added. As a special convenience, specifying a direc-
tory is considered equivalent to specifying a list of all
the files in the directory with the extension .jar or .JAR

1.1

--configure Invokes the graphical configuration dialog 1.0

-c --convention <filepath> Specifies the absolute path to the exported code
convention whose settings should be used for for-
matting, e.g. “/work/quality/otng-jalopy.xml”.
Please note that specifying an exported code conven-
tion impacts your local profiles as Jalopy will import
the code convention into the corresponding profile.
If no profile with the name stored in the exported
code contention exists, it will be created. Specifying
a distinct profile to use via the -p,--profile option
is therefore useless in this case. When omitted, the
settings of the active profile will be used

1.0

-d --dest <filepath> Sets the destination directory to create/copy all for-
matting output into. Expects a valid directory name. If
the specified directory does not exist, it will be creat-
ed. When omitted, all input files will be overridden

1.0

-e --encoding <string> Specifies the encoding that controls how Jalopy in-
terprets text files containing characters beyond the
ASCII character set. Expects a Java supported char-
acter encoding name (like “US-ASCII”, “ISO-8859-1”
or “UTF-8”). Consult the release documentation for
your Java implementation to see what encodings are
supported. Please note that currently Jalopy does not
support any “UTF-16” encoding. When omitted, the
platform default encoding will be used

1.0

--filespec <filepath> Specifies the absolute path to a file that defines the
filespecs to use for formatting (see below). The file-
spec strings must be separated by line delimiters.
Empty lines are ignored. Please note that you can still
define filespecs directly on the command-line. When
omitted, the file specs defined on the command-line
will be used

1.7

-f --format <string> Sets the file format of the output files. The file format
controls what end-of-line character is used. Expects
either one of “UNIX”, “DOS”, “MAC”, “DEFAULT” or
“AUTO” (case insensitive). When omitted, the corre-
sponding code convention setting will be used

1.0

--force Sets whether the formatting of files should be forced,
even if a file is up-to-date. When omitted, the corre-
sponding code convention setting will be used

1.0

SYNOPSIS 312

Option Long Option Arguments Description Since

-h --help Displays a short help 1.0

--history <string> Sets the history policy to use. Either one of
“ADLER32”, “CRC32” or “NONE” can be used (case
insensitive). When omitted, the corresponding code
convention setting will used

1.0

--input <string> Specifies the encoding that controls how Jalopy inter-
prets input text files containing characters beyond the
ASCII character set. Expects a Java supported charac-
ter encoding name (like “US-ASCII”, “ISO-8859-1” or
“UTF-8”). Consult the release documentation for your
Java implementation to see what encodings are sup-
ported. Please note that Jalopy does not yet support
any “UTF-16” encoding. When omitted, the platform
default encoding will be used

1.6

-l --loglevel <string> Specifies the logging level for message output. Ex-
pects either one of “ERROR”, “WARN”, “INFO” or
“DEBUG” (case insensitive). When omitted, the cor-
responding code convention settings will be used

1.0

--look <string> Defines the Swing Look & Feel that should be used.
Expects either the fully qualified name of a Swing
Look & Feel that can be found on the class path. Or
the abbreviation for some well known Look & Feels:
Alloy, BlackStar, GreenDream, Liquid, Metal, Motif,
Nimbus, PGS, Plastic, Plastic3d, PlasticXP, Synthetica,
Windows (case-insensitive). Only meaningful in com-
bination with the --configure option. When omit-
ted, the default Look & Feel will be used (varies from
platform to platform, but can be configured via the
“swing.properties” preferences file)

1.0

--nobackup Indicates that no backup copies should be kept. When
omitted, the corresponding code convention setting
will be used

1.0

--nofail Indicates that processing should not stop when an
error occurred. When omitted, processing terminates
when an error occurs

1.0

--norepository Indicates that an alternative implementation with dif-
ferent characteristics should used for type resolution
and the disk-based type repository disabled. Only
meaningful when --classpath is defined. You may
want to use this option if you commonly format a sin-
gle file or only a small set of files in order to avoid the
maintenance overhead of the type repository. Please
be aware that the import collapsing requires the type
repository� When omitted, the disk based type repos-
itory will be used

1.6

--output <string> Specifies the character encoding that Jalopy uses
to write text files. Expects a Java supported charac-
ter encoding name (like “US-ASCII”, “ISO-8859-1” or
“UTF-8”). Consult the release documentation for your
Java implementation to see what encodings are sup-
ported. Please note that currently Jalopy does not
support any “UTF-16” encoding. When omitted, the
platform default encoding will be used

1.6

-o --override <filepath> or
<string>

Specifies local environment variable overrides. The
value might either be a file path pointing to a prop-
erties file with key/value pairs. Or you may specify
the key/value pair(s) directly using a key=value nota-
tion where the different pairs are separated by semi-
colons, e.g. -o "author=John Doo;project=FOZZY"
Please note that when you want to specify sever-

1.6

313 CHAPTER 5 CONSOLE APPLICATION

Option Long Option Arguments Description Since
al variables, the value string must be enclosed with
quotes� Please refer to Section 2.4, “Environment”
for more information about environment variables.
When omitted, only the environment variables de-
fined in the code convention will be used

--priority <integer> Sets the priority to use for worker threads. Expects
an integer between 1-10 (inclusive). Bigger number
means higher priority. Defaults to 5

1.9.2

--p --profile <string> Sets the Jalopy profile that should be activated during
the formatting run. Expects the name of an existing
profile, e.g. “default” for the default profile. The cur-
rently active profile will be restored after formatting.
When omitted, the currently active profile will be used
if no code convention is specified

1.2.1

--progress <string> Displays a progress bar during formatting. Runtime
messages will be stored in the file “jalopy.log” in the
current working directory

1.9.2

-q --quiet Suppresses noncritical messages. When omitted, the
message settings of the code convention will be used

1.0

-r --recursive Recursively formats all files in the specified directo-
ries. When omitted, only the files in the specified di-
rectories will be formatted

1.0

--test <boolean> Sets whether formatting output should actually be
written to disk. If set to “true” no output will be writ-
ten to disk. When omitted, all output will be written
to disk

1.0

-t --thread <integer> Specifies the number of processing threads to use.
Expects an integer argument between 1-8 (inclusive).
When omitted, the corresponding code convention
setting will be used

1.0

--track <filepath> Specifies the absolute path to a file where Jalopy will
keep track of those files that would be actually format-
ted during a run. The file path strings will be separated
by the platform line delimiter. Implies --test. When
omitted, no track file will be written

1.4

Filespec
Filespecs define the source files and/or directories that should be formatted. You can spec-
ify as many filespecs as you want, where filespec describes either file paths, directories or
filter expressions. If no filespec is given and no --filespec option specified, Jalopy starts
listening on STDIN.

You can use any valid regular expression as a filter expression. Jalopy uses Java’s build-
in regular expression engine which is roughly equivalent with Perl 5 regular expres-
sions. The syntax is explained here: http://java.sun.com/javase/6/docs/api/java/util/regex/
Pattern.html. For a more precise description of the behavior of regular expression constructs
consult Mastering Regular Expressions [Friedl97].

5.4 Examples

Example 5.1. Sample command-line usage

% jalopy -r /dev/foo/src/java

http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html
http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html

EXAMPLES 314

Formats all source files found in directory /dev/foo/src/java and all subdirectories. The
settings from the active profile are used.

Example 5.2. Sample command-line usage

% jalopy -d /test/foo -f DOS File1.java File1.java

Formats the two files File1.java and File2.java and writes the new files into directory
/test/foo. Uses the settings from the active profile, but sets DOS as the file format used
to write the files.

Example 5.3. Sample command-line usage

% jalopy -c /quality/foo.xml -r -d /test/foo ^A.*java

Formats all Java source files found in the current directory and all subfolders whose name
start with a capital 'A' and writes the new files into directory /test/foo. The settings of
the code convention /quality/foo.xml are used.

Example 5.4. Sample command-line usage

% type C:\Sources\Foo.java | jalopy > Foo.java

Formats the file C:\Sources\Foo.java read from STDIN and outputs its formatted con-
tents to the file Foo.java in the current directory using the active profile.

Example 5.5. Sample command-line usage

% java -cp /usr/local/jalopy/jalopy-1.9.4.jar Jalopy \
--convention=/usr/local/jalopy/jalopy.xml --norepository \
--filespec=/tmp/3bD0W8.lst --track=/tmp/tXO7tE.lst

Formats all files specified in /tmp/3bD0W8.lst according to the given code convention,
uses classpath type resolution, and writes the paths of all files that were actually modified
to the track file /tmp/tXO7tE.lst.lst. This is the typical invocation pattern when using
Jalopy in a SCM pre-commit trigger to verify that all files have been formatted prior to
check-in.

315

Chapter 6. Eclipse Plug-in

Describes the installation and usage of the Jalopy Eclipse plug-in. Eclipse is an open plat-
form for tool integration built by an open community of tool providers. Operating under
an open source paradigm, with a common public license that provides royalty free source
code and world wide redistribution rights, the Eclipse platform provides tool developers
with ultimate flexibility and control over their software technology.

Please note that the plug-in also supports other Eclipse based products, like IBM Web-
sphere Application Developer (WSAD), IBM Rational Application Developer (RAD),
JBoss Developer Studio, CodeGear JBuilder, Genuitec MyEclipse etc.

6.1 Installation
Explains the steps involved to install the Eclipse plug-in.

6.1.1 System requirements
The plug-in requires Eclipse 3.0 or later. See Section 1.1, “System requirements” for the
basic requirements to run Jalopy.

6.1.2 Setup
The plug-in comes as an executable Jar Archive (JAR) that contains a graphical setup wiz-
ard to let you easily install the software. Wizard installation is highly recommended and
explained in detail in Section 1.3, “Wizard Installation”.

If you would rather install the plug-in manually, you have to decompress and copy the
appropriate files into the different application and/or settings folders. To decompress the
contents of the installer JAR, you can often use the build-in support of your file manager
(e.g. Nautilus) or any other software that can handle the ZIP compression format (e.g. 7Zip,
WinZip or Stuffit Expander). If you don’t have access to one of the convenience tools, you
might resort to the jar command-line application that ships with your Java distribution.

When you’re upgrading from a prior version and want to keep your settings, first copy
or rename the current Jalopy settings directory to match the version number of the new
release. For instance, if your current settings directory is C:\Users\John Doo\.jalopy
\1.9 and you’re about to install Jalopy 1.9.4, either copy the directory contents or rename
it to C:\Users\John Doo\.jalopy\1.9.4.

Make sure Eclipse is not running and remove any present com.triemax.

jalopy_1.9.4 directory in your Eclipse plugin folder. This folder is usually located in the
root directory of your Eclipse installation, e.g. C:\Program Files\Eclipse\plugins\.

Copy the Jalopy plug-in folder com_triemax.jalopy_1.9.4 from the temporary di-
rectory into the Eclipse plugin folder. Then place the two JAR files jalopy-1.9.4.jar
and jalopy-eclipse-1.9.4.jar from the temporary directory into the Jalopy plug-in
folder.

http://projects.gnome.org/nautilus/
http://www.7-zip.org/
http://www.winzip.com/
http://my.smithmicro.com/mac/stuffit/expander.html
http://java.sun.com/docs/books/tutorial/deployment/jar/unpack.html

CONFIGURATION 316

6.2 Configuration
Although Jalopy ships with sensible default settings (mimicking the Sun Java coding con-
vention), you most likely want to configure the formatter to match your needs (adding
copyright headers, tune Javadoc handling and the like). For such, Jalopy provides a config-
uration tool that lets you interactively craft and customize the code convention settings.

The Jalopy preferences are available through the Eclipse preferences dialog. In order to
configure Jalopy, on Mac OS X you use Eclipse > Preferences... from the global Menubar
and select the Jalopy item on the left pane to display the main preferences page. On other
platforms, the dialog is available through Window > Preferences... from the application
menu. In order to quickly locate the item, you might want to enter “Jalopy” as the filter
text in the search field at the top of the left pane.

6.2.1 Profiles
The main preferences page lets you manage your Jalopy profiles. A profile stores the actual
code convention that defines the formatting style, as well as user-specific data like file and
dialog histories. You can edit, add, remove, activate, map and share any number of profiles.
For a detailed explanation of the available actions, please refer to Section 2.1.1.1, “Main
window” that provides generic information about the configuration dialog that applies to
all provided IDE plug-ins.

Figure 6.1. Main Jalopy Preferences page

Jalopy profiles are shared for the local user and not workspace specific. This allows the
settings to be reused across different applications and furthermore enables your team to
easily work with different tools while still enforcing the same source code style.

317 CHAPTER 6 ECLIPSE PLUG-IN

NOTE Due to technical restrictions it is currently not possible to edit profiles
from within Eclipse when running on Mac OS X. When using Mac OS
X, you need to invoke the Jalopy preferences dialog from outside Eclipse.
Simply install the Console plug-in and invoke the dialog as described
in Section 5.2, “Configuration”. Configure your code convention and
afterwards export it to a file. From within Eclipse you can then import
this configuration or maybe even better, enable synchronization to auto-
matically pick up changes to your central configuration

6.2.2 Messages
Lets you configure how runtime messages are displayed. The Messages preferences are
workspace specific and not stored as part of a Jalopy profile. You can chose between two
different views.

Figure 6.2. Messages preferences page

Use custom Message view
The custom Jalopy message view uses a tree-based viewer that is optimized for displaying
large amounts of messages in an easily navigatable format.

Messages can be grouped by severity and/or package name via the pull-down menu on
the upper right of the view to ease navigation. The severity level is also color-coded. Errors
are displayed in red, warnings in blue. Elements are further annotated with icons to indicate
their type. As a convenience, you can link the Message view with the active editor. Linking
means that whenever an editor is selected, the Message view automatically jumps to the first
message of the corresponding file, if any. Clicking on a message will open the corresponding
file or activate the corresponding editor. If the message carries position information, the
cursor will jump to this location.

MESSAGES 318

Figure 6.3. Jalopy Message View

Use build-in Problems view
It’s also possible to have messages displayed in the standard Eclipse Problems view if that
better suits your working habits. Jalopy uses the custom type “Jalopy Issue“ that you might
use to configure a custom filter configuration for the view.

319 CHAPTER 6 ECLIPSE PLUG-IN

Figure 6.4. Problems view

6.2.3 Synchronize
The Synchronize preference page lets you specify an external settings file with exported code
conventions to automatically synchronize with in order to keep your local settings always
up-to-date. The Synchronize preferences are workspace specific and not stored as part of
a Jalopy profile.

In the text field you can enter the resource path to the settings file you plan to synchro-
nize with. This should usually be the URL of a shared server. To browse for local files, you
can press the Browse... button and open a file dialog.

TIP You can provide the resource path right during installation as described
in Section 1.3.6, “Configure plug-in Defaults”. This way individual de-
velopers are not required to configure anything at all on their machines

UPDATES 320

Figure 6.5. Jalopy Synchronize Preferences Page

Enable local cache
By default, Jalopy checks the specified settings file for changes each time it is about to for-
mat. This can be prohibitive when the code convention sits on a server without fast network
access. In order to avoid long delays in such situations, you can enable local caching. Jalopy
then only checks once per day for changes.

6.2.4 Updates
The Update preference page lets you configure automatic update checking and notification.
Automatic update checks for and informs about new releases. The Update preferences are
workspace specific and not stored as part of a Jalopy profile.

321 CHAPTER 6 ECLIPSE PLUG-IN

Figure 6.6. Jalopy Updates Preferences Page

Automatically find new updates and notify me
To enable automatic update notification, check this option. When disabled, you won’t ever
be notified about updates.

Search for updates on each program startup
When selected, update checking is performed only once during each session—on applica-
tion startup.

Search for updates on the following schedule
When selected, you can specify day and hour when update checking should be performed
periodically.

Notify me once about updates
When selected, the update notification appears only once during a session.

Remind me about updates every
When selected, you can define the time interval when update notification should remind
you about updates.

TIP You can define whether the IDE plug-ins should check for updates right
during installation as outlined in Section 1.3.6, “Configure plug-in De-
faults”

KEYBOARD ACCELERATOR 322

6.2.5 Keyboard accelerator
The Format with Jalopy action can also be triggered via a keyboard shortcut. The default
keyboard accelerator is Ctrl-Shift-F10, but it is recommend to re-configure the shortcut
to something more accessible. To change the binding, open the Eclipse Keys preference
page via the application menu, Window > Preferences > General > Keys (on Mac OS X,
it’s Preferences... > General > Keys), and enter “Jalopy” in the search field to display the
Jalopy related actions. Select Format with Jalopy and adjust the binding as desired. Shift-
Alt-F would be a good choice, but is already used with the default scheme. You would have
to either unbind it or re-configure the original action, before you can use it for Jalopy.

Figure 6.7. Keys preferences page

Please be aware that the shortcut works globally, but is mapped to different actions depend-
ing on the current context and therefore might yield different results when used in different
views. In the Package Explorer, the shortcut might trigger formatting of a whole project,
while in the Outline view only the selected element of the current file is formatted. Please
make sure that you are in the desired context and have the desired elements selected when
pressing the shortcut.

6.3 Usage
Describes how the plug-in integrates into the Eclipse IDE.

6.3.1 Actions
The software naturally adds new menu items to the menu bar and pop-up menus of different
editors and views to be able to trigger formatting manually, but also allows automated
formatting.

323 CHAPTER 6 ECLIPSE PLUG-IN

Format on Save
While manual formatting can become quite a habit, it may be best to automatically ensure
proper formatting in order to free developers from the burden to keep their code always
in compliance with the company rules. Jalopy provides a Format on Save feature to have
formatting automatically applied whenever a dirty file is saved. To activate Format on Save,
open the Jalopy preferences and enable the corresponding option as described in Section
2.2.3, “Format on Save”.

Editor pop-up menu
To format the currently active editor, open the pop-up menu by right-clicking with your
mouse or pressing the Shift-F10 keyboard shortcut, and select the “Format with Jalopy”
item.

Figure 6.8. Editor pop-up menu

If there is some text selected in the editor, only this section will be formatted (selective for-
matting). This can be helpful when editing portions of very large files, as selective format-
ting can speed up processing considerably. It comes especially handy when you want to
limit formatting to a specific file portion in order to avoid unnecessary differences when
editing a file that has not (yet) been formatted according to the company code conventions.

ACTIONS 324

View pop-up menus
The action is also available through the pop-up menus of different views like the Navigator
and Package Explorer views. To format files, select the element that should be formatted,
open the pop-up menu and choose the “Format with Jalopy” item. Depending on the se-
lected element, the action triggers formatting for whole working sets, projects, folder and
package hierarchies, or only one or several source files.

Package Explorer pop-up menu

Figure 6.9. Package Explorer pop-up menu

Formatting is done in the background if the corresponding workspace option is enabled
(available through Window > Preferences > General > Always run in background). Jalopy
locks all source files that will be formatted during a run and unlocks them as soon as they
were formatted. Locked editors are displayed with a gray veil to indicate locking that van-
ishes as soon as formatting is done for the file. This way you can continue coding while
formatting takes place, but you shouldn’t perform huge tasks like refactoring etc. that might
interfere with the workspace update.

325 CHAPTER 6 ECLIPSE PLUG-IN

Outline pop-up menu
Similar to selective formatting in the editor which allows to limit formatting to arbitrary code
sections, it can be useful to be able to limit formatting on a more structural level. Jalopy
therefore integrates with the Outline view where you can select the single code element
(field, method etc.) that should be formatted exclusively.

Figure 6.10. Outline pop-up menu

Code Clean Up
Jalopy integrates with the Eclipse Code Clean Up infrastructure to let you perform format-
ting as part of your clean up routine. To enable formatting during clean up, open the Eclipse
Clean Up settings page, select a profile, press the Edit... button and go to the Jalopy tab to
enable the “Format with Jalopy“ option. The preview uses the current Jalopy profile.

Since 1.9.4

ACTIONS 326

Figure 6.11. Code CleanUp Configuration

Please note that Jalopy can perform many things much in the same way as individual clean
ups. You should make sure that you only enable such actions either in Jalopy or in Eclipse
in order to avoid unnecessary runtime overhead. Especially import optimization is costly.

Table 6.1. Features available with both Jalopy and dedicated Clean Ups

Section Option Remarks

Code Organizing Remove trailing whitespace Implicitly done as part of formatting

Organize imports Seems to be faster with Jalopy

Sort members Much more flexible with Jalopy

Code Style Use blocks in if/while/for/do statements Jalopy also supports switch blocks

Use parentheses in expressions

Use 'final' where possible Only for parameters and local variables

Missing Code Add missing Annotations Only available for @Override

Add serial version ID

Unnecessary Code Remove unused imports Implicitly done as part of import opti-
mization

327

Chapter 7. IntelliJ IDEA Plug-in

Describes the installation and usage of the Jalopy IntelliJ IDEA plug-in. IntelliJ IDEA is
an intelligent Java IDE intensely focused on developer productivity. It provides a robust
combination of enhanced development tools, including: refactoring, J2EE support, Ant,
JUnit, and CVS integration. Packaged with an intelligent Java editor, coding assistance and
advanced code automation tools, IDEA enables Java programmers to boost their produc-
tivity while reducing routine time consuming tasks.

7.1 Installation
Explains the steps involved to install the IDEA plug-in.

7.1.1 System requirements
The plug-in requires IDEA 7.0 or higher. See Section 1.1, “System requirements” for the
basic requirements to run Jalopy.

7.1.2 Setup
The plug-in comes as an executable Jar Archive (JAR) that contains a graphical setup wiz-
ard to let you easily install the software. Wizard installation is highly recommended and
explained in detail in Section 1.3, “Wizard Installation”.

If you would rather install the plug-in manually, you have to decompress and copy the
appropriate files into the different application and/or settings folders. To decompress the
contents of the installer JAR, you can often use the build-in support of your file manager
(e.g. Nautilus) or any other software that can handle the ZIP compression format (e.g. 7Zip,
WinZip or Stuffit Expander). If you don’t have access to one of the convenience tools, you
might resort to the jar command-line application that ships with your Java distribution.

When you’re upgrading from a prior version and want to keep your settings, first copy
or rename the current Jalopy settings directory to match the version number of the new
release. For instance, if your current settings directory is C:\Users\John Doo\.jalopy
\1.9 and you’re about to install Jalopy 1.9.4, either copy the directory contents or rename
it to C:\Users\John Doo\.jalopy\1.9.4.

Make sure IDEA is not running and remove any present Jalopy files in your IDEA Plu-
gin folder. The IDEA Plugin folder is located in the root directory of your IDEA installa-
tion, e.g. C:\Program Files\IDEA\plugins. Check for a jalopy/lib subdirectory. If
it exists, delete its contents. Otherwise create it.

Then copy the two JAR files jalopy-1.9.4.jar and jalopy-idea-1.9.4.jar into
this plugins/jalopy/lib folder.

7.2 Configuration
Although Jalopy ships with sensible default settings (mimicking the Sun Java coding con-
vention), you most likely want to configure the formatter to match your needs (adding

http://projects.gnome.org/nautilus/
http://www.7-zip.org/
http://www.winzip.com/
http://my.smithmicro.com/mac/stuffit/expander.html
http://java.sun.com/docs/books/tutorial/deployment/jar/unpack.html

PROFILES 328

copyright headers, tune Javadoc handling and the like). For such, Jalopy provides a config-
uration tool that lets you interactively craft and customize the code convention settings.

The Jalopy preferences are available through the IDEA preferences dialog. In order to
access the preferences, on Mac OS X you use IntelliJ IDEA > Preferences... and select the
Jalopy item in the window. On other platforms the dialog is available through File > Set-
tings.... In order to quickly locate the item, you might want to enter “Jalopy” as the filter
text in the search field at the top of the left pane.

7.2.1 Profiles
The main preferences page lets you manage your Jalopy profiles. A profile stores the actual
code convention that defines the formatting style, as well as user-specific data like file and
dialog histories. You can edit, add, remove, activate, map and share any number of profiles.
For a detailed explanation of the available actions, please refer to Section 2.1.1.1, “Main
window” that provides generic information about the configuration dialog that applies to
all provided IDE plug-ins.

Figure 7.1. Main Jalopy Preferences page

Jalopy profiles are shared for the local user and not application specific. This allows the
settings to be reused across different applications and furthermore enables your team to
easily work with different tools while sharing the same source code style.

7.2.2 Synchronize
The Synchronize preference page lets you specify an external settings file with exported code
conventions to automatically synchronize with in order to keep your local settings always
up-to-date. The Synchronize preferences are workspace specific and not stored as part of
a Jalopy profile.

329 CHAPTER 7 INTELLIJ IDEA PLUG-IN

In the text field you can enter the resource path to the settings file you plan to synchro-
nize with. This should usually be the URL of a shared server. To browse for local files, you
can press the Browse... button and open a file dialog.

TIP You can provide the resource path right during installation as described
in Section 1.3.6, “Configure plug-in Defaults”. This way individual de-
velopers are not required to configure anything at all on their machines

Figure 7.2. Jalopy Synchronize Preferences page

Enable local cache
By default, Jalopy checks the specified settings file for changes each time it is about to for-
mat. This can be prohibitive when the code convention sits on a server without fast network
access. In order to avoid long delays in such situations, you can enable local caching. Jalopy
then only checks once per day for changes.

7.2.3 Update
The Update preference page lets you configure automatic update checking and notification.
Automatic update checks for and informs about new releases. The Update preferences are
application specific and not stored as part of a Jalopy profile.

UPDATE 330

Figure 7.3. Jalopy Update Preferences page

Automatically find new updates and notify me
To enable automatic update notification, check this option. When disabled, you won’t ever
be notified about updates.

Search for updates on each program startup
When selected, update checking is performed only once during each session—on applica-
tion startup.

Search for updates on the following schedule
When selected, you can specify day and hour when update checking should be performed
periodically.

Notify me once about updates
When selected, the update notification appears only once during a session.

Remind me about updates every
When selected, you can define the time interval when update notification should remind
you about updates.

TIP You can define whether the IDE plug-ins should check for updates right
during installation as outlined in Section 1.3.6, “Configure plug-in De-
faults”

331 CHAPTER 7 INTELLIJ IDEA PLUG-IN

7.2.4 Keyboard Shortcut
The Format with Jalopy action can also be triggered via a keyboard shortcut. The default
keyboard shortcut is Ctrl-Shift-F11, but it is recommend to re-configure the shortcut to
something more accessible. To change the shortcut, open the IntelliJ IDEA Keymap prefer-
ence page via the application menu, File > Settings > Keymap (on Mac OS X Preferences...
> Settings > Keymap) and enter “Jalopy” in the search field to display the Jalopy related
actions. Select the Jalopy binding and specify your preferred keyboard shortcut. Shift-Alt-
F would be a good choice, but is already used with the default scheme and would have to
be overridden.

Figure 7.4. IDEA Keymap preferences

Please be aware that the shortcut works globally, but is mapped to different actions depend-
ing on the current context and therefore might yield different results when used in different
views, i.e. if the editor has the focus, the shortcut triggers the formatting of the active editor.
If the Project tool window contains the focus, the shortcut triggers the formatting of all
selected nodes in the window. Please make sure that you are in the desired context and have
the desired elements selected when pressing the shortcut.

7.3 Usage
Describes how the plug-in integrates with IntelliJ IDEA.

7.3.1 Actions
The software naturally adds new menu items to the menu bar and pop-up menus of different
editors and views to be able to trigger formatting manually, but also allows automated
formatting.

ACTIONS 332

Format on Save
While manual formatting can become quite a habit, it may be best to automatically ensure
proper formatting in order to free developers from the burden to keep their code always
in compliance with the company rules. Jalopy provides a Format on Save feature to have
formatting automatically applied whenever a dirty file is saved. To activate Format on Save,
open the Jalopy preferences and enable the corresponding option as described in Section
2.2.3, “Format on Save”.

Code Editor Pop-up Menu
To format the currently active editor, open the pop-up menu by right-clicking with your
mouse or pressing the Shift-F10 keyboard shortcut, and select the “Format with Jalopy”
item. Alternatively, you can press the configured keyboard accelerator for the format action.

Figure 7.5. Code editor pop-up menu item

If there is some text selected in the editor, only this section will be formatted (selective for-
matting). This can be helpful when editing portions of very large files, as selective format-
ting can speed up processing considerably. It comes especially handy when you want to
limit formatting to a specific file portion in order to avoid unnecessary differences when
editing a file that has not (yet) been formatted according to the company code conventions.

Tool Windows Pop-up Menu
The action is also available through the pop-up menus of certain tool windows. Current-
ly an item is added to the Project, Structure, Commander and Hierarchy tool windows.
Depending on the selected element, the action triggers formatting for whole working sets,
projects, folder and package hierarchies, or only one or several source files.

333 CHAPTER 7 INTELLIJ IDEA PLUG-IN

Figure 7.6. Tool window pop-up menu item

7.3.2 Runtime Messages
Jalopy displays all runtime messages in its own tool window. Messages are shown in a tree
control, with each branch containing the messages for a specific file, and individual messages
displayed as leafs. File messages show the number of leaves and the warning and error count.

The message types are differentiated with icons and by color: Errors are red with an error
icon, warnings are shown in blue and display a warning sign, informational messages are
black and carry a file icon and debugging messages are black and prepended by a bug icon.

RUNTIME MESSAGES 334

Figure 7.7. Jalopy Tool Window

Clicking on a file name will open that file, clicking on a message that contains location
information will open the file containing the message and move the caret to the nominated
location.

335 CHAPTER 7 INTELLIJ IDEA PLUG-IN

Figure 7.8. Jalopy Tool Window Context Menu

The view provides a context menu with some useful actions.

Copy Copies the textual contents of the selected messages into the System clipboard. If a
message contains children, the contents of all children are copied as well

Clear Removes all selected messages

Clear All Removes all messages currently being displayed in the window

Select All Selects all messages currently being displayed in the window

337

Chapter 8. JDeveloper Extension

Describes the installation and usage of the Jalopy JDeveloper plug-in Extension. Oracle
JDeveloper is an award-winning, comprehensive Java and Web services IDE. Optimized to
run with Oracle Application Server and Oracle Database, JDeveloper is committed to open
standards and platforms, supporting all major J2EE application servers and databases, and
providing pure implementations for Struts, CVS, Ant and JUnit.

8.1 Installation
Explains the steps involved to install the JDeveloper plug-in.

8.1.1 System requirements
The JDeveloper plug-in requires JDeveloper 10g (10.1.3) or later. See Section 1.1, “System
requirements” for the basic requirements to run Jalopy.

8.1.2 Setup
The plug-in comes as an executable Jar Archive (JAR) that contains a graphical setup wiz-
ard to let you easily install the software. Wizard installation is highly recommended and
explained in detail in Section 1.3, “Wizard Installation”.

If you would rather install the plug-in manually, you have to decompress and copy the
appropriate files into the different application and/or settings folders. To decompress the
contents of the installer JAR, you can often use the build-in support of your file manager
(e.g. Nautilus) or any other software that can handle the ZIP compression format (e.g. 7Zip,
WinZip or Stuffit Expander). If you don’t have access to one of the convenience tools, you
might resort to the jar command-line application that ships with your Java distribution.

When you’re upgrading from a prior version and want to keep your settings, first copy
or rename the current Jalopy settings directory to match the version number of the new
release. For instance, if your current settings directory is C:\Users\John Doo\.jalopy
\1.9 and you’re about to install Jalopy 1.9.4, either copy the directory contents or rename
it to C:\Users\John Doo\.jalopy\1.9.4.

Make sure JDeveloper is not running and remove any prior Jalopy JAR files from your
JDeveloper extension folder. The JDeveloper extension folder is located under the root di-
rectory of your JDeveloper installation, e.g. C:\Program Files\JDeveloper\jdev\lib
\ext. Remove all JAR files starting with jalopy-. Now decompress the contents of the in-
staller JAR file into a temporary directory and copy the two JAR files jalopy-1.9.4.jar
and jalopy-jdev-1.9.4.jar from the temporary directory into the JDeveloper exten-
sion folder.

8.2 Configuration
Although Jalopy ships with sensible default settings (mimicking the Sun Java coding con-
vention), you most likely want to configure the formatter to match your needs (adding

http://projects.gnome.org/nautilus/
http://www.7-zip.org/
http://www.winzip.com/
http://my.smithmicro.com/mac/stuffit/expander.html
http://java.sun.com/docs/books/tutorial/deployment/jar/unpack.html

PROFILE PREFERENCES 338

copyright headers, tune Javadoc handling and the like). For such, Jalopy provides a config-
uration tool that lets you interactively craft and customize the code convention settings.

The Jalopy preferences are available through the JDeveloper preferences dialog. In order
to configure Jalopy, on Mac OS X you use JDeveloper > Preferences... from the global
Menubar and select the “Jalopy“ item from the tree view on the left. On other platforms,
the dialog is available through Tools > Preferences.. from the application menu.

8.2.1 Profile preferences
The main preferences page lets you manage your Jalopy profiles. A profile stores the actual
code convention that defines the formatting style, as well as user-specific data like file and
dialog histories. You can edit, add, remove, activate, map and share any number of profiles.
For a detailed explanation of the available actions, please refer to Section 2.1.1.1, “Main
window” that provides generic information about the configuration dialog that applies to
all provided IDE plug-ins.

Figure 8.1. Jalopy Profile Preferences page

Jalopy profiles are shared for the local user and not application specific. This allows the
settings to be reused across different applications and furthermore enables your team to
easily work with different tools while sharing the same source code style.

8.2.2 Synchronize preferences
The Synchronize preference page lets you specify an external settings file with exported code
conventions to automatically synchronize with in order to keep your local settings always
up-to-date. The Synchronize preferences are workspace specific and not stored as part of
a Jalopy profile.

In the text field you can enter the resource path to the settings file you plan to synchro-
nize with. This should usually be the URL of a shared server. To browse for local files, you
can press the Browse... button and open a file dialog.

339 CHAPTER 8 JDEVELOPER EXTENSION

TIP You can provide the resource path right during installation as described
in Section 1.3.6, “Configure plug-in Defaults”. This way individual de-
velopers are not required to configure anything at all on their machines

Figure 8.2. Jalopy Synchronize Preferences page

Enable local cache
By default, Jalopy checks the specified settings file for changes each time it is about to for-
mat. This can be prohibitive when the code convention sits on a server without fast network
access. In order to avoid long delays in such situations, you can enable local caching. Jalopy
then only checks once per day for changes.

8.2.3 Update preferences
The Update preference page lets you configure automatic update checking and notification.
Automatic update checks for and informs about new releases. The Update preferences are
application specific and not stored as part of a Jalopy profile.

KEYBOARD ACCELERATOR 340

Figure 8.3. Jalopy Update Preferences page

Automatically find new updates and notify me
To enable automatic update notification, check this option. When disabled, you won’t ever
be notified about updates.

Search for updates on each program startup
When selected, update checking is performed only once during each session—on applica-
tion startup.

Search for updates on the following schedule
When selected, you can specify day and hour when update checking should be performed
periodically.

Notify me once about updates
When selected, the update notification appears only once during a session.

Remind me about updates every
When selected, you can define the time interval when update notification should remind
you about updates.

TIP You can define whether the IDE plug-ins should check for updates right
during installation as outlined in Section 1.3.6, “Configure plug-in De-
faults”

8.2.4 Keyboard Accelerator
The Format with Jalopy action can also be triggered via a keyboard shortcut. The default
keyboard accelerator is Ctrl-Shift-F10, but it is recommend to re-configure the shortcut
to something more accessible. To change the binding, open the JDeveloper Shortcut Keys

341 CHAPTER 8 JDEVELOPER EXTENSION

preference page via the application menu, Tools > Preferences... > Accelerators and enter
“Jalopy” in the search field to display the Jalopy related actions. Select the “Jalopy” cate-
gory and specify your preferred keyboard accelerator for the provided actions. Shift-Alt-F
would be a good choice, but is already used with the default scheme and would have to
be overridden.

Figure 8.4. JDeveloper accelerator preferences

Please be aware that the accelerator works globally, but is mapped to different actions de-
pending on the current context and therefore might yield different results when used in
different views, i.e. if the editor view has the focus, the accelerator triggers the formatting
of the active editor. If the System Navigator contains the focus, the accelerator triggers the
formatting of all selected nodes in the Navigator. Please make sure that you are in the de-
sired context and have the desired elements selected when pressing the shortcut.

8.3 Usage
Describes how the plug-in integrates into JDeveloper.

8.3.1 Actions
The software naturally adds new menu items to the menu bar and pop-up menus of different
editors and views to be able to trigger formatting manually, but also allows automated
formatting.

Format on Save
While manual formatting can become quite a habit, it may be best to automatically ensure
proper formatting in order to free developers from the burden to keep their code always
in compliance with the company rules. Jalopy provides a Format on Save feature to have
formatting automatically applied whenever a dirty file is saved. To activate Format on Save,

ACTIONS 342

open the Jalopy preferences and enable the corresponding option as described in Section
2.2.3, “Format on Save”.

Editor Pop-up Menu
The software adds a new menu item into the pop-up menu of Java code editors. To format
the currently active editor, open the pop-up menu and choose the “Format with Jalopy”
item. Alternatively, you can press the configured keyboard accelerator.

Figure 8.5. JDeveloper Editor Pop-up Menu

If there is some text selected in the editor, only this section will be formatted (selective for-
matting). This can be helpful when editing portions of very large files, as selective format-
ting can speed up processing considerably. It comes especially handy when you want to
limit formatting to a specific file portion in order to avoid unnecessary differences when
editing a file that has not (yet) been formatted according to the company code conventions.

Navigator Pop-up Menu
The software also adds a new menu item into the context pop-up menu of the Navigator.
Depending on the selected element, the action triggers formatting for whole workspaces,
projects, folder and package hierarchies, or only one or several source files.

343 CHAPTER 8 JDEVELOPER EXTENSION

Figure 8.6. JDeveloper Navigator Pop-up Menu

8.3.2 Runtime Messages
Jalopy displays all runtime messages in its own log window. Messages are shown in a tree
control, with each branch containing the messages for a specific file, and individual messages
displayed as leafs. File messages displays the number of leaves and the warning and error
count.

The message types are differentiated with icons and by color: Errors are red with an error
icon, warnings are shown in blue and display a warning sign, informational messages are
black and carry a file icon and debugging messages are black and prepended by a bug icon.

RUNTIME MESSAGES 344

Figure 8.7. Jalopy Log Window

Clicking on a file name will open that file, clicking on a message that contains location
information will open the file containing the message and move the caret to the nominated
location.

345 CHAPTER 8 JDEVELOPER EXTENSION

Figure 8.8. Jalopy Log Window Context Menu

The view provides a context menu with some useful actions.

Copy Copies the textual contents of the selected messages into the System clipboard. If a
message contains children, the contents of all children are copied as well

Clear Removes all selected messages

Clear All Removes all messages currently being displayed in the window

Select All Selects all messages currently being displayed in the window

347

Chapter 9. jEdit Plug-in

Describes the installation and usage of the Jalopy jEdit plug-in. jEdit is a mature
programmer’s text editor written in Java that provides auto indent and syntax highlighting
for more than 130 languages and is easily extensible with its plug-in architecture.

9.1 Installation
Explains the steps involved to install the jEdit plug-in.

9.1.1 System requirements
The Jalopy jEdit plug-in requires jEdit 4.3 or later. See Section 1.1, “System requirements”
for the basic requirements to run Jalopy.

9.1.2 Installation
The plug-in comes as an executable Jar Archive (JAR) that contains a graphical setup wiz-
ard to let you easily install the software. Wizard installation is highly recommended and
explained in detail in Section 1.3, “Wizard Installation”.

If you would rather install the plug-in manually, you have to decompress and copy the
appropriate files into the different application and/or settings folders. To decompress the
contents of the installer JAR, you can often use the build-in support of your file manager
(e.g. Nautilus) or any other software that can handle the ZIP compression format (e.g. 7Zip,
WinZip or Stuffit Expander). If you don’t have access to one of the convenience tools, you
might resort to the jar command-line application that ships with your Java distribution.

When you’re upgrading from a prior version and want to keep your settings, first copy
or rename the current Jalopy settings directory to match the version number of the new
release. For instance, if your current settings directory is C:\Users\John Doo\.jalopy
\1.9 and you’re about to install Jalopy 1.9.4, either copy the directory contents or rename
it to C:\Users\John Doo\.jalopy\1.9.4.

Make sure jEdit is not running and remove any prior Jalopy JAR files in your jEdit
Plugin folder. The jEdit Plugin folder is located under the root directory of your jEdit
installation, e.g. C:\Program Files\jEdit\jars. Remove all JAR files whose names
start with jalopy-. Now decompress the contents of the installer JAR file into a temporary
directory and copy the two JAR files jalopy-1.9.4.jar and jalopy-jedit-1.9.4.jar
from the temporary directory into the jEdit Plugin folder.

9.2 Integration
Describes how the plug-in integrates into jEdit.

http://projects.gnome.org/nautilus/
http://www.7-zip.org/
http://www.winzip.com/
http://my.smithmicro.com/mac/stuffit/expander.html
http://java.sun.com/docs/books/tutorial/deployment/jar/unpack.html

MENU BAR 348

9.2.1 Menu bar
The software adds a new menu item group into the Plugins menu of the main view. Available
are two new menu items:

Figure 9.1. jEdit menu bar items

• Plugins > Jalopy > Format active Buffer

Formats the contents of the active text area. Note that this menu item reflects the state
of the text area: it will only be enabled if the current edit mode is supported by Jalopy.

• Plugins > Jalopy > Jalopy Options....

Displays the Jalopy options dialog. Use this item if you want to change your settings to
control the layout of any formatted code.

Please note that all options are available under jEdit’s Plugins > Plugin Options... dialog as
well, but the Jalopy dialog provides the advantage of a live-preview that makes editing the
options somewhat easier. You find the Jalopy settings system and options dialog described
in detail in Chapter 2, Configuration.

9.2.2 Dockable window
Jalopy displays all runtime messages in its own dockable window that works similar like to
the ErrorList plug-in, but is not limited to just display errors and warnings. Messages are
shown in a tree control, with each branch containing the messages for a specific file, and
individual messages displayed as leafs. File messages display the number of leaves and the
warning and error count.

The message types are differentiated with icons and by color: Errors are red with an error
icon, warnings are shown in blue and display a warning sign, informational messages are
black and carry a file icon and debugging messages are black and prepended by a bug icon.

349 CHAPTER 9 JEDIT PLUG-IN

Figure 9.2. jEdit dockable window

Clicking on a file name will open that file, clicking on a message that contains location
information will open the file containing the message and move the caret to the nominated
location.

Figure 9.3. jEdit dockable window

The view provides a context menu with some useful actions.

Copy Copies the textual contents of the selected messages into the System clipboard. If a
message contains children, the contents of all children are copied as well

Clear Removes all selected messages

KEYBOARD SHORTCUTS 350

Clear All Removes all messages currently being displayed in the window

Select All Selects all messages currently being displayed in the window

9.2.3 Keyboard shortcuts
You can define keyboard shortcuts for the different menu and dockable window actions via
the jEdit Shortcut options: Utilities > Global Options... > jEdit > Shortcuts. In the Edit
Shortcuts combo box, select Plugin: Jalopy Source Code Formatter to display the available
actions.

Figure 9.4. Define keyboard shortcuts

9.2.4 Context menu
You can add the different menu and dockable window actions to the context menu of the
text area via the jEdit Context Menu options: Utilities > Global Options... > jEdit > Context
Menu. Press the + button and, select the Command or macro option and choose Plugin:
Jalopy Source Code Formatter to display the available actions.

Figure 9.5. Add actions to context menu

351 CHAPTER 9 JEDIT PLUG-IN

9.2.5 File System Browser Plugins menu
Jalopy registers an action in the File System Browser Plugins menu to let you bulk format
files and/or directories selected in the browser. Please note that if nothing is selected in
the browser table component, the contents of the currently selected parent directory are
formatted.

Figure 9.6. File System Browser Plugins menu

9.3 Configuration
Although Jalopy ships with sensible default settings (mimicking the Sun Java coding con-
vention), you most likely want to configure the formatter to match your needs (adding
copyright headers, tune Javadoc handling and the like). For such, Jalopy comes with a
graphical configuration tool that lets you interactively customize the settings. See Chapter 2,
Configuration for an in-depth discussion of the available options to configure formatting
output. Please refer to Section 9.2, “Integration” for information on how to display the
configuration tool from within jEdit.

353

Chapter 10. Maven 1 Plug-in

Describes the installation and usage of the Jalopy Maven 1 plug-in. Maven is a software
project management and comprehension tool. Based on the concept of a project object
model (POM), Maven can manage a project’s build, reporting and documentation from a
central piece of information.

NOTE Maven 1 is in maintenance mode, i.e. development is restricted to sup-
port and bug fixes. You might be better of with the current release. Please
refer to the main Maven site for further information

10.1 Installation
Explains the steps involved in getting the Maven 1 plug-in up and running.

10.1.1 System requirements
The plug-in requires Maven 1.0 - 1.1. See Section 1.1, “System requirements” for the basic
requirements to run Jalopy. Please note that it won’t work with later versions. A different
plug-in is available for more recent Maven versions (see Chapter 11, Maven 2 Plug-in).

10.1.2 Setup
The plug-in comes as an executable Jar Archive (JAR) that contains a graphical setup wiz-
ard to let you easily install the software. Wizard installation is highly recommended and
explained in detail in Section 1.3, “Wizard Installation”.

If you would rather install the plug-in manually, you have to decompress and copy the
appropriate files into the different application and/or settings folders. To decompress the
contents of the installer JAR, you can often use the build-in support of your file manager
(e.g. Nautilus) or any other software that can handle the ZIP compression format (e.g. 7Zip,
WinZip or Stuffit Expander). If you don’t have access to one of the convenience tools, you
might resort to the jar command-line application that ships with your Java distribution.

When you’re upgrading from a prior version and want to keep your settings, first copy
or rename the current Jalopy settings directory to match the version number of the new
release. For instance, if your current settings directory is C:\Users\John Doo\.jalopy
\1.9 and you’re about to install Jalopy 1.9.4, either copy the directory contents or rename
it to C:\Users\John Doo\.jalopy\1.9.4.

Remove any jalopy-1.9.4.jar files from the /lib and /plugins directories of your
Maven installation, e.g from /home/John Doo/apps/maven-1.0.2/lib/ and /home/
John Doo/apps/maven-1.0.2/plugins/.

Copy the files jalopy-1.9.4.jar and jalopy-ant-1.9.4.jar from the temporary
directory into the /lib folder of your Maven installation. If you don’t have the Console
plug-in installed and want to be able to configure Jalopy from the command-line, copy
the contents of the /bin folder from the temporary directory to the /bin folder of your
Maven installation.

http://maven.apache.org/reference/glossary.html#POM
http://projects.gnome.org/nautilus/
http://www.7-zip.org/
http://www.winzip.com/
http://my.smithmicro.com/mac/stuffit/expander.html
http://java.sun.com/docs/books/tutorial/deployment/jar/unpack.html

CONFIGURATION 354

As a last step, copy the file jalopy-maven-1.9.4.jar from the temporary directory
into the /plugins folder of your Maven installation.

10.2 Configuration
Although Jalopy ships with sensible default settings (mimicking the Sun Java coding con-
vention), you most likely want to configure the formatter to match your needs (adding
copyright headers, tune Javadoc handling and the like). For such, Jalopy comes with a
graphical configuration tool that lets you interactively customize the settings. See Chap-
ter 2, Configuration for an in-depth discussion of the available options.

To display the configuration tool, you should use the matching wrapper script for your
platform. The wrapper scripts are called jalopy.xxx . Invoke the script with the --con-
figure option.

% jalopy --configure

If you don’t want to install the Console plug-in, you can make use of the -jar option of the
Java launcher, as Jalopy comes as an executable JAR file:

% java -jar <path_to>\jalopy-1.9.4.jar --configure

Or you give the class path directly to the launcher

% java -cp <path_to>\jalopy-1.9.4.jar Jalopy --configure

When you’re done configuring the settings, you should export the code convention as de-
scribed in Section 2.1.1.11, “Export code convention”. The exported settings file is typically
used as part of the Jalopy task configuration in the build script.

10.2.1 Properties
The plug-in allows some optional properties to control how formatting is applied.

Table 10.1. Jalopy Maven plug-in properties

Property Type Description Since Required

maven.jalopy.backup Boolean Sets whether backup copies of all processed
source files should be kept. If omitted, the cor-
responding code convention setting will be used
(see Section 2.2.2.2, “Backup”).

1.5 No

maven.jalopy.convention String Sets the location to the code convention file to
use—given either relative to the project’s base di-
rectory or as an absolute local path or Internet ad-
dress (refer to Section 2.1.1.10, “Import code con-
vention” for information how to export your set-
tings). If omitted, the current settings are used, if
available. Otherwise the Jalopy build-in defaults
will be used.

1.5 No

maven.jalopy.destdir String Sets the destination directory to create/copy all
formatting output into. It can either be given as an
absolute path, or relative to the working directory.
If the directory does not exist, it will be created.
If omitted, all input files will be overridden.

1.5 No

maven.jalopy.encoding String Sets the encoding that controls how Jalopy inter-
prets text files containing characters beyond the
ASCII character set. Defaults to the platform de-
fault encoding.

1.5 No

355 CHAPTER 10 MAVEN 1 PLUG-IN

Property Type Description Since Required

maven.jalopy.failOnError Boolean Sets whether a run should be held if errors oc-
curred. Defaults to “true”.

1.5 No

maven.jalopy.fileFormat String Sets the file format of the output files. The file for-
mat controls what end of line character is used.
Either one of “UNIX”, “DOS”, “DEFAULT” or “AU-
TO” can be used (case insensitive). Defaults to
“AUTO”.

1.5 No

maven.jalopy.
filesetInclude

String Comma- or space-separated list of patterns of
source files that should be formatted. Defaults to
“**/*.java”.

1.5 No

maven.jalopy.
filesetExclude

String Comma- or space-separated list of patterns of
source files that should be excluded from for-
matting; no files (except default excludes) are ex-
cluded when omitted. The default is to format all
source files.

1.5 No

maven.jalopy.force Boolean Sets whether the formatting of files should be
forced, even if a file is up-to-date. Defaults to
“false”.

1.5 No

maven.jalopy.fork Boolean Sets whether the processing should be per-
formed in a separate VM. Defaults to “false”.

1.5 No

maven.jalopy.history String Sets the history policy to use. Either one of
“ADLER32”, “CRC32” or “NONE” can be used
(case insensitive). If omitted, the correspond-
ing code convention setting will used (see Sec-
tion 2.2.2.1, “History”).

1.5 No

maven.jalopy.
inputEncoding

String Sets the encoding that controls how Jalopy inter-
prets text files containing characters beyond the
ASCII character set. Defaults to the platform de-
fault encoding. Please note that this setting al-
ways overrides encoding.

1.6 No

maven.jalopy.javadoc String Indicates whether Javadoc related messages
should be printed. Defaults to “true”.

1.5 No

maven.jalopy.logLevel String Specifies the logging level for message output.
Either one of “ERROR”, “WARN”, “INFO” or “DE-
BUG” can be used (case insensitive). If omitted,
the current code convention settings will be used
(see Section 2.6.1, “Categories”).

1.5 No

maven.jalopy.log String Specifies the log file to use for logging output.
The format of the logging output is determined
by the extension of the given file. Valid exten-
sions are “.log” for a custom plain text format,
“.xml” for a plain XML format and “.html” for an
hierarchical HTML report. If omitted, the current
code convention setting will be used (see Sec-
tion 2.6.2, “Logging”).

1.5 No

maven.jalopy.
outputEncoding

String Sets the character encoding Jalopy uses to write
files. Defaults to the platform default encoding.
Please note that this setting always overrides en-
coding.

1.6 No

maven.jalopy.profile String Sets the Jalopy profile that should be activated
during the formatting run (refer to Section 2.1.1.1,
“Main window” for more information about pro-
files). The currently active profile will be restored
after formatting. Please note that the profile must
exist�

1.5 No

maven.jalopy.repository Boolean Indicates whether the type repository should be
used for type resolution. When disabled, an alter-
native implementation with different characteris-
tics is used. You may want to use this option if

1.6 No

USAGE 356

Property Type Description Since Required
you commonly format a single file or only a small
set of files in order to avoid the maintenance over-
head of the type repository. Please be aware that
the import expansion feature requires the type
repository. Defaults to “true”.

maven.jalopy.src
filesetInclude

Boolean For “src/java” directory. Comma- or space-
separated list of patterns of source files
that should be formatted. Defaults to
“${maven.jalopy.filesetInclude}”.

1.5 No

maven.jalopy.src.
filesetExclude

Boolean For “src/java” directory. Comma- or space-sep-
arated list of patterns of source files that
should be excluded from formatting. Defaults to
“{maven.jalopy.filesetExclude}”.

1.5 No

maven.jalopy.test Boolean Sets whether formatting output should actually
be written to disk. If set to “true” no output will
be written to disk. The default is “false”.

1.5 No

maven.jalopy.test.
filesetInclude

Boolean For “src/test” directory. Comma- or space-
separated list of patterns of source files
that should be formatted. Defaults to
“${maven.jalopy.filesetInclude}”.

1.5 No

maven.jalopy.test.
filesetExclude

Boolean For “src/test” directory. Comma- or space-sep-
arated list of patterns of source files that
should be excluded from formatting. Defaults to
“${maven.jalopy.filesetExclude}”.

1.5 No

maven.jalopy.threads Integer Specifies the number of processing threads to
use. Integer between 1 - 8. Defaults to '1'.

1.5 No

10.3 Usage
The Jalopy plug-in provides a standard goal to format your sources. For example, to format
all source files from the current project, run:

% maven triemax-jalopy

You’ll notice that all of the code is compiled before any formatting is applied. This is good
practice in order to ensure valid input. If you want to bypass the compilation, you can use
another goal:

% maven triemax-jalopy:format

10.3.1 Goals

Table 10.2. Jalopy Maven Jelly goals

Goal Description

triemax-jalopy Formats the source files according to coding convention. The source files will be
compiled before formatting takes place.

triemax-jalopy:format Formats the source files according to coding convention.

triemax-jalopy:taskdef Defines the Jalopy task to Ant and Jelly.

357

Chapter 11. Maven 2 Plug-in

Describes the installation and usage of the Jalopy Maven 2 plug-in. Maven is a software
project management and comprehension tool. Based on the concept of a project object
model (POM), Maven can manage a project’s build, reporting and documentation from a
central piece of information.

11.1 Installation
Explains the steps involved in getting the Maven 2 plug-in up and running.

11.1.1 System requirements
The plug-in requires Maven 2.0 or later. See Section 1.1, “System requirements” for the
basic requirements to run Jalopy. Please note that a different plug-in is available for older
Maven releases (see Chapter 10, Maven 1 Plug-in).

11.1.2 Setup
The plug-in comes as an executable Jar Archive (JAR) that contains a graphical setup wiz-
ard to let you easily install the software. Wizard installation is highly recommended and
explained in detail in Section 1.3, “Wizard Installation”.

If you would rather install the plug-in manually, you have to decompress and copy the
appropriate files into the different application and/or settings folders. To decompress the
contents of the installer JAR, you can often use the build-in support of your file manager
(e.g. Nautilus) or any other software that can handle the ZIP compression format (e.g. 7Zip,
WinZip or Stuffit Expander). If you don’t have access to one of the convenience tools, you
might resort to the jar command-line application that ships with your Java distribution.

When you’re upgrading from a prior version and want to keep your settings, first copy
or rename the current Jalopy settings directory to match the version number of the new
release. For instance, if your current settings directory is C:\Users\John Doo\.jalopy
\1.9 and you’re about to install Jalopy 1.9.4, either copy the directory contents or rename
it to C:\Users\John Doo\.jalopy\1.9.4.

First copy the Jalopy Maven plug-in folder triemax from the temporary directory into
the Maven 2 repository directory. This might either be the local repository (e.g. C:\Docu-
ments And Settings\John Doo\.m2\repository\ on a Windows XP system) or the
repository directory of your internal repository in case you’re using a shared repository for
your organization.

Copy the file jalopy-1.9.4.jar below the triemax/jalopy/1.9.4/ folder in your
Maven repository, and jalopy-maven-1.9.4.jar from the temporary directory into the
triemax/jalopy-maven/1.9.4/ folder of your Maven 2 repository. After all steps have
been performed, you should have a folder structure like the following:

http://maven.apache.org/guides/introduction/introduction-to-the-pom.html
http://projects.gnome.org/nautilus/
http://www.7-zip.org/
http://www.winzip.com/
http://my.smithmicro.com/mac/stuffit/expander.html
http://java.sun.com/docs/books/tutorial/deployment/jar/unpack.html

CONFIGURATION 358

.m2
 repository
 ...
 triemax
 jalopy
 1.9.4-108
 jalopy-1.9.4-108.jar
 jalopy-1.9.4-108.pom
 jalopy-maven
 1.9.4-108
 jalopy-maven-1.9.4-108.jar
 jalopy-maven-1.9.4-108.pom
 maven-metadata-local.xml
 maven-metadata-central.xml
 ...

11.2 Configuration
Although Jalopy ships with sensible default settings (mimicking the Sun Java coding con-
vention), you most likely want to configure the formatter to match your needs (adding
copyright headers, tune Javadoc handling and the like). For such, Jalopy comes with a
graphical configuration tool that lets you interactively customize the settings. See Chap-
ter 2, Configuration for an in-depth discussion of the available options.

To display the configuration tool described in Section 2.1.1, “Preferences GUI”, you
can utilize the configure goal from within Maven. Either using the complete notation

% mvn triemax:jalopy-maven:configure

or just the shorthand

% mvn jalopy:configure

If you should have any of the other plug-ins described in this manual installed, you can
of course use their corresponding feature, e.g. invoke the preferences dialog directly from
within an IDE. When you’re done configuring the settings, you should export the code
convention as described in Section 2.1.1.11, “Export code convention”. The exported set-
tings file is typically used as part of the Jalopy plug-in configuration in the build script.

11.3 Usage
In order to integrate Jalopy into your build process, you need to edit your pom.xml and
add the Jalopy plug-in below the <plugins> section:

359 CHAPTER 11 MAVEN 2 PLUG-IN

<project>
 ...
 <plugins>
 <plugin>
 <groupId>triemax</groupId>
 <artifactId>jalopy-maven</artifactId>
 <version>1.9.4-108</version>
 <configuration>
 <compile>true</compile>
 ...
 </configuration>
 <executions>
 <execution>
 <phase>process-sources</phase>
 <goals>
 <goal>format</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 ...
 </plugins>
 ...
</project>

This would execute Jalopy during the process-sources phase, which is probably the most
appropriate for standard use. Please note that you typically should apply formatting before
the compile phase in order to ensure that formatting does not cause discrepancies between
the location information in the compiled .class files and the actual source code. Because
Jalopy might still need access the binary project information, you should configure Jalopy to
compile the project before formatting as shown above. See Appendix A, “Type Resolution”
for the list of features that require access to the class path.

For more information about the Maven build lifecycle, please refer to the “Maven Build
Lifecycle Guide” on the Maven home page. It contains a reference of the available build
phases. If you don’t want to have the format goal execute during the build, you simply don’t
bind the goal to a specific phase:
<project>
 ...
 <plugins>
 <plugin>
 <groupId>triemax</groupId>
 <artifactId>jalopy-maven</artifactId>
 <configuration>
 ...
 </configuration>
 </plugin>
 ...
 </plugins>
</project>

Formatting can be manually triggered from the command-line using either

% mvn triemax:jalopy-maven:format

or the shorthand

% mvn jalopy:format

Configuration
Naturally the plug-in provides a few parameters to configure its behavior.

http://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html
http://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html

CONFIGURATION 360

Table 11.1. Jalopy Maven plug-in parameters

Property Type Description Since

backup Boolean Sets whether backup copies of all processed source files should
be kept. When omitted, the corresponding code convention set-
ting will be used (see Section 2.2.2.2, “Backup”)

1.7

classpathElements List Defines the class path to use for type resolution. See Ap-
pendix A, “Type Resolution” for the list of features that require
access to the class path. By default, the project class path,
${project.compileClasspathElements}, is used. There should
seldom be a need to configure it differently

1.7

compile Boolean Sets whether the project should be compiled before formatting.
This is useful if you want to utilize any of the features that require
type resolution (refer to Appendix A, “Type Resolution” for the
complete list), because then Jalopy needs to have access to the
binary class files. Formatting after the compile phase is usually a
bad idea, as formatting might change the line offsets and render
stacktrace information unusable

1.9.4

convention String Sets the location of the code convention file to use—given ei-
ther relative to the project’s base directory or as an absolute
local path or Internet address (refer to Section 2.1.1.10, “Im-
port code convention” for information how to export your set-
tings). When omitted and not specified otherwise (see pro-
file below), the settings of the current profile are used. Since
Jalopy 1.9.3, it’s also possible to load conventions from the
class path. This can be achieved with the following syntax:
<convention>classpath:[path]<convention> where [path] de-
notes the relative path to the resource in the artifact, e.g.
jalopy.xml if the settings file can be found at the root level, or
config/jalopy/sonar.xml when located in a nested folder

1.7

destDir File Sets the destination directory to create/copy all formatting out-
put into. If the given directory does not exist, it will be created.
When omitted, all input files will simply be overridden

1.7

encoding String Sets the encoding that controls how Jalopy interprets text files
containing characters beyond the ASCII character set. Defaults
to the platform default encoding

1.7

environment Map Defines temporary environment variables overrides 1.7

excludes List A list of exclusion filters. Uses the standard Maven pattern syn-
tax. Please note that Jalopy ignores all files it cannot format by
default, so exclusions are only necessary if you want to omit
formatting for certain files, like e.g. test data files etc.

1.7

failOnError Boolean Sets whether a run should be held if errors occurred. Defaults
to “true”

1.7

fileFormat String Sets the file format of the output files. The file format controls
what end of line character is used. Either one of “UNIX”, “DOS”,
“DEFAULT” or “AUTO” can be used (case insensitive). Defaults
to “AUTO”

1.7

force Boolean Sets whether the formatting of files should be forced, even if a
file is up-to-date. Defaults to “false”

1.7

fork Boolean Sets whether the processing should be performed in a separate
VM. Defaults to “false”

1.7

history String Sets the history policy to use. Either one of “ADLER32”,
“CRC32” or “NONE” can be used (case insensitive). If omitted,
the corresponding code convention setting will used (see Sec-
tion 2.2.2.1, “History”)

1.7

includes List A list of inclusion filters for formatting. Uses the standard Maven
pattern syntax. Please note that Jalopy ignores all files it cannot
format by default, so inclusions are only necessary if you want
to omit formatting for certain files, like e.g. test data files etc.

1.7

361 CHAPTER 11 MAVEN 2 PLUG-IN

Property Type Description Since

inputEncoding String Sets the encoding that controls how Jalopy interprets text files
containing characters beyond the ASCII character set. Defaults
to the platform default encoding. Please note that this setting
always overrides encoding

1.7

javadoc String Indicates whether Javadoc related messages should be printed.
Defaults to “true”

1.7

logLevel String Specifies the logging level for message output. Either one of
“ERROR”, “WARN”, “INFO” or “DEBUG” can be used (case in-
sensitive). When omitted, the current code convention settings
will be used (see Section 2.6.1, “Categories”)

1.7

logFile File Specifies the log file to use for logging output. The format of
the logging output is determined by the extension of the given
file. Valid extensions are “.log” for a custom plain text format,
“.xml” for a plain XML format and “.html” for a hierarchical
HTML report. When omitted, the current code convention set-
ting will be used (see Section 2.6.2, “Logging”)

1.7

outputEncoding String Sets the character encoding Jalopy uses to write files. Defaults
to the platform default encoding. Please note that this setting
always overrides encoding

1.7

profile String Sets the Jalopy profile that should be used during the formatting
run (refer to Section 2.1.1.1, “Main window” for more informa-
tion about profiles). The currently active profile will be restored
after formatting. Please note that if no convention is specified,
the profile must exist�

1.7

repository Boolean Indicates whether the disk-based type repository should be
used for type resolution. You may want to set this to “false“ if
you commonly format a single file or only a small set of files in
order to avoid the maintenance overhead of the type repository.
Please be aware that the import collapsing feature requires the
type repository. Defaults to “true”

1.7

skip Boolean Indicates whether the current project should be skipped, i.e. no
formatting applied. Defaults to “false”

1.9.4

sources List The source directories containing the sources to be formatted.
When omitted, uses the directories defined for the compiler,
${project.compileSourceRoots}, instead

1.7

test Boolean Sets whether formatting output should actually be written to
disk. If set to “true” no output will be written to disk. The default
is “false”

1.7

threads Integer Specifies the number of processing threads to use. Integer be-
tween 1 - 8. Defaults to '1'

1.7

trackFile File Specifies the file path to a file where Jalopy keeps track of those
files that would be actually formatted during a run. The file path
strings will be separated by the platform line delimiter. Implies
test. When omitted, no track file will be written

1.9.4

You can display the parameter descriptions from the command line as follows:

$ mvn help:describe -Dcmd=jalopy:format -Ddetail

To configure the plug-in, you specify elements named after the available parameters where
the contents of an element is the value to be assigned to the parameter.

EXAMPLE 362

<plugin>
 <groupId>triemax</groupId>
 <artifactId>jalopy-maven</artifactId>
 <configuration>
 <threads>4</threads>
 <profile>test</profile>
 </configuration>
 ...
</plugin>

For parameters of type List you would use multiple element tags to add the different values
to the list.
<plugin>
 <groupId>triemax</groupId>
 <artifactId>jalopy-maven</artifactId>
 <configuration>
 <includes>
 <include>com/foo/siri/**</include>
 <include>com/foo/lana/**</include>
 </includes>
 <excludes>
 <exclude>**/*.sqlj</exclude>
 <exclude>**/*Test/**</exclude>
 </excludes>
 ...
 </configuration>
</plugin>

Configuring Maps works similar: elements are named after the keys and the element con-
tents is the value to be assigned to the key.
<plugin>
 <groupId>triemax</groupId>
 <artifactId>jalopy-maven</artifactId>
 <configuration>
 <environment>
 <lead>John Doo</lead>
 <office>Alta Nova</office>
 </environment>
 ...
 </configuration>
</plugin>

Parameters might be temporarily overridden from the command-line using system proper-
ties following the “jalopy.parameter” notation. This works for all parameters besides those
that use Java Collection types, e.g. environment or excludes. Such parameters can only
be configured from the POM.

$ mvn -Djalopy.threads=8 -Djalopy.compile=false ...

For a complete sample POM, please refer to Section 11.4, “Example” below.

11.4 Example
Below you find a complete POM that makes sure that the binary project information is ac-
cessible before formatting, disables logging of Javadoc related messages, only displays mes-
sages with warning severity or higher, activates the profile “test” during formatting and im-
ports the code convention jalopy.xml from the build-config artifact. Formatting is applied
to all Java source files of the project that are not located below the “testdata” folder.

363 CHAPTER 11 MAVEN 2 PLUG-IN

Example 11.1. Maven POM
<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.google.guava</groupId>
 <artifactId>guava</artifactId>
 <packaging>jar</packaging>
 <version>r05-SNAPSHOT</version>
 <name>Guava: Google Core Libraries for Java 1.5</name>
 <url>http://code.google.com/p/guava-libraries</url>
 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 </properties>
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <source>1.5</source>
 <target>1.5</target>
 </configuration>
 </plugin>
 <plugin>
 <groupId>triemax</groupId>
 <artifactId>jalopy-maven</artifactId>
 <version>1.9.4-108</version>
 <configuration>
 <compile>true</compile>
 <convention>classpath:jalopy.xml</convention>
 <javadoc>false</javadoc>
 <logLevel>warn</logLevel>
 <environment>
 <lead>John Doo</lead>
 <office>Alta Nova</office>
 </environment>
 <excludes>
 <exclude>**/testdata/**</exclude>
 </excludes>
 <includes>
 <include>**/*.java</include>
 </includes>
 <sources>
 <source>/work/foo/main/src/java</source>
 <source>/work/foo/test/src/java</source>
 </sources>
 </configuration>
 <dependencies>
 <!-- Import the artifact that provides the code convention -->
 <dependency>
 <groupId>com.mycompany</groupId>
 <artifactId>build-config</artifactId>
 <version>1.0.2</version>
 </dependency>
 </dependencies>
 <executions>
 <execution>
 <phase>process-sources</phase>
 <goals>
 <goal>format</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 <finalName>${project.artifactId}-${project.version}</finalName>

EXAMPLE 364

 <sourceDirectory>src</sourceDirectory>
 <testSourceDirectory>tests_disabled</testSourceDirectory>
 </build>
</project>

365

Chapter 12. NetBeans Module

Describes the installation and usage of the Jalopy NetBeans plug-in module. NetBeans is
the original full-featured, free and open source IDE for Java software developers to create
cross-platform desktop, mobile and web applications based on industry standards utilizing
the latest technologies.

12.1 Installation
Explains the steps involved to install the NetBeans plug-in module.

12.1.1 System requirements
The plug-in works with NetBeans releases 5.0 or later. See Section 1.1, “System require-
ments” for the basic requirements to run Jalopy.

12.1.2 Setup
The plug-in comes as an executable Jar Archive (JAR) that contains a graphical setup wizard
to let you easily install the software. Wizard installation is mandatory and explained in detail
in Section 1.3, “Wizard Installation”.

12.2 Configuration
Although Jalopy ships with sensible default settings (mimicking the Sun Java coding con-
vention), you most likely want to configure the formatter to match your needs (adding
copyright headers, tune Javadoc handling and the like). For such, Jalopy provides a config-
uration tool that lets you interactively craft and customize the code convention settings.

The Jalopy preferences are available through the NetBeans options dialog. In order to
configure Jalopy, on Mac OS X you use NetBeans > Preferences... from the global Menubar
and select the “Jalopy“ item from the button bar at the top. On other platforms, the dialog
is available through Tools > Options from the application menu.

12.2.1 Profiles
The main options page lets you manage your Jalopy profiles. A profile stores the actual
code convention that defines the formatting style, as well as user-specific data like file and
dialog histories. You can edit, add, remove, activate, map and share any number of profiles.
For a detailed explanation of the available actions, please refer to Section 2.1.1.1, “Main
window” that provides generic information about the configuration dialog that applies to
all provided IDE plug-ins.

SYNCHRONIZE 366

Figure 12.1. Jalopy Profile options

Jalopy profiles are shared for the local user and not platform specific. This allows the settings
to be reused across different applications and furthermore enables your team to easily work
with different tools while still enforcing the same source code style.

12.2.2 Synchronize
To display the Synchronize page, select the “Synchronize“ option from the combo box at
the top of the Jalopy options page. Here you specify an external settings file with exported
code conventions to automatically synchronize with in order to keep your local settings
always up-to-date. The Synchronize preferences are not stored as part of a Jalopy profile.

In the text field you can enter the resource path to the settings file you plan to synchro-
nize with. This should usually be the URL of a shared server. To browse for local files, you
can press the Browse... button and open a file dialog.

TIP You can provide the resource path right during installation as described
in Section 1.3.6, “Configure plug-in Defaults”. This way individual de-
velopers are not required to configure anything at all on their machines

367 CHAPTER 12 NETBEANS MODULE

Figure 12.2. Jalopy Synchronize options

Enable local cache
By default, Jalopy checks the specified settings file for changes each time it is about to for-
mat. This can be prohibitive when the code convention sits on a server without fast network
access. In order to avoid long delays in such situations, you can enable local caching. Jalopy
then only checks once per day for changes.

12.2.3 Updates
To display the Updates page, select the “Updates“ option from the combo box at the top of
the Jalopy options page. Here you configure automatic update checking and notification.
Automatic update checks for and informs about new releases. The options are not stored
as part of a Jalopy profile.

UPDATES 368

Figure 12.3. Jalopy Update options

Automatically find new updates and notify me
To enable automatic update notification, check this option. When disabled, you won’t ever
be notified about updates.

Search for updates on each program startup
When selected, update checking is performed only once during each session—on applica-
tion startup.

Search for updates on the following schedule
When selected, you can specify day and hour when update checking should be performed
periodically.

Notify me once about updates
When selected, the update notification appears only once during a session.

Remind me about updates every
When selected, you can define the time interval when update notification should remind
you about updates.

TIP You can define whether the IDE plug-ins should check for updates right
during installation as outlined in Section 1.3.6, “Configure plug-in De-
faults”

369 CHAPTER 12 NETBEANS MODULE

12.2.4 Keyboard shortcuts
You can define keyboard shortcuts for the different Jalopy actions via the NetBeans Keymap
dialog. Open the options dialog via Tools > Options (NetBeans > Preferences... on Mac OS
X) and select the “Keymap” item.

Jalopy provides one action: “Format with Jalopy” in the “Source” category.

Figure 12.4. Keyboard shortcuts

To configure a keyboard shortcut, select an action and either press the Add... button to
add a keyboard shortcut. Or use the Remove button to remove an existing shortcut. For
compatibility reasons, the default keyboard shortcut for the “Format with Jalopy” action is
Strg+Shift+F10, but it is recommended to adjust the shortcut to something more accessible,
like Alt+Shift+F.

12.3 Usage
Describes how the plug-in integrates into NetBeans.

12.3.1 Actions
The software naturally adds new menu items to the menu bar and pop-up menus of different
editors and views to be able to trigger formatting manually, but also allows automated
formatting.

Format on Save
While manual formatting can become quite a habit, it may be best to automatically ensure
proper formatting in order to free developers from the burden to keep their code always
in compliance with the company rules. Jalopy provides a Format on Save feature to have
formatting automatically applied whenever a dirty file is saved. To activate Format on Save,

ACTIONS 370

open the Jalopy preferences and enable the corresponding option as described in Section
2.2.3, “Format on Save”.

Editor pop-up menu
To format the currently active editor, open the pop-up menu by right-clicking with your
mouse or pressing the Shift-F10 keyboard shortcut, and select the “Format with Jalopy”
item.

Figure 12.5. Jalopy editor pop-up menu item

If there is some text selected in the editor, only this section will be formatted (selective for-
matting). This can be helpful when editing portions of very large files, as selective format-
ting can speed up processing considerably. It comes especially handy when you want to
limit formatting to a specific file portion in order to avoid unnecessary differences when
editing a file that has not (yet) been formatted according to the company code conventions.

Explorer pop-up menu
Formatting can also be triggered via the pop-up menu of several views, like the Projects or
Files window. Note that the item only appears for folder nodes or Java source files.

371 CHAPTER 12 NETBEANS MODULE

Figure 12.6. Jalopy Format pop-up menu item

If it happens that a file has an open editor, this editor will be updated, not the actual file.
You have to save the editor first, to see the physical file updated.

12.3.2 Runtime Messages
Jalopy displays all runtime messages in its own dockable window. Messages are shown in
a tree control, with each branch containing the messages for a specific file, and individual
messages displayed as leafs. Grouping nodes display the number of leaves and the warning
and error count.

The message types are differentiated with icons and by color: Errors are red with an error
icon, warnings are shown in blue and display a warning sign, informational messages are
black and carry a file icon and debugging messages are black and prepended by a bug icon.

RUNTIME MESSAGES 372

Figure 12.7. Jalopy dockable window

Clicking on a file name will open that file, clicking on a message that contains location
information will open the file containing the message and move the caret to the nominated
location.

The view provides a context menu with some useful actions.

Copy Copies the textual contents of the selected messages into the System clipboard. If a
message contains children, the contents of all children are copied as well

Clear Removes all selected messages

Clear All Removes all messages currently being displayed in the window

Select All Selects all messages currently being displayed in the window

Part III. Appendices

375

Appendix A. What features require type
resolution?
For certain features Jalopy must resolve the type information in source files in order to determine what
action to take. Depending on the settings, it therefore might be essential that the class path is correctly
configured and the file/project clean before formatting is applied. This is usually a non-issue when
working in an IDE as here the project configuration and build-in type system is automatically leveraged
and requires no user intervention in order to make type resolution work. But for the headless plug-ins,
care must be taken to correctly setup their invocation. If you want to use any of the below mentioned
features, you must provide the correct class path in order to experience the desired results.

Table A.1. Features that require type resolution

Feature Reference

Insert serial version UID Section 2.8.5 (p. 56)

Insert @Override annotation Section 2.8.5 (p. 57)

Optimize imports Section 2.8.12.2 (p. 223)

Exclude Overridden/Implemented Section 2.8.14.3 (p. 248)

Generate @see tags Section 2.8.14.3 (p. 249)

Ignore Runtime exceptions Section 2.8.14.4.2 (p. 262)

377

Appendix B. Library Dependencies
Jalopy depends on the following freely available libraries:

Table B.1. Library dependencies

Name: ANTLR Parser Generator 2.7.2

Author: jGuru.com (MageLang Institute), project lead by Dr. Terence Parr

License: Custom (Public Domain)

Info: Contains some minor patches to make it work with Jalopy

URL: http://www.antlr.org/

Name: Apache Harmony

Author: Apache Software Foundation

License: Apache License 2.0

Info: Jalopy incorporates their java.util.Formatter implementation backported to Java 1.4

URL: http://harmony.apache.org/

Name: ASM 1.4.1

Author: Object Web Consortium, project lead by Eric Bruneton

License: BSD

Info: Jalopy incorporates only the minimal required functionality to read and perform basic analysis of Java class
files

URL: http://asm.objectweb.org/

Name: Jakarta Commons CLI 1.0

Author: Apache Software Foundation

License: Apache License 1.1

URL: http://jakarta.apache.org/commons/

Name: JGoodies Forms Framework 1.0.3

Author: JGoodies Karsten Lentzsch

License: BSD

Info: Contains a small patch to allow customization of paragraph separator

URL: http://www.jgoodies.com/

Name: JDBM 0.20

Author: Cees de Groot, Alex Boisvert

License: BSD

Info: Contains a small patch to not include the serializers in the database files upon serialization

URL: http://jdbm.sourceforge.net/

Name: JDOM XML API 1.0

Author: JDOM Group, lead by Jason Hunter and Brett McLaughlin

License: BSD/Apache style

URL: http://www.jdom.org/

Name: JSyntaxPane

http://www.antlr.org/
http://harmony.apache.org/
http://asm.objectweb.org/
http://jakarta.apache.org/commons/
http://www.jgoodies.com/
http://jdbm.sourceforge.net/
http://www.jdom.org/

378

Author: Ayman Al-Sairafi

License: Apache License 2.0

Info: Jalopy incorporates a patched version that uses ANTLR based lexers

URL: http://code.google.com/p/jsyntaxpane/

Name: log4j logging toolkit 1.2.8

Author: Apache Software Foundation

License: Apache License 1.1

URL: http://logging.apache.org/log4j/

Name: Maven Jalopy Plugin 1.3.1

Author: Apache Software Foundation

License: Apache License 2.0

Info: Jalopy incorporates the version of the Jalopy plug-in that ships with Maven updated to use the commercial
Jalopy formatting engine

URL: http://maven.apache.org/

Name: One-JAR 0.95

Author: Simon Tuffs

License: BSD

URL: http://one-jar.sourceforge.net/

Name: Progress 1.2

Author: Bernhard Picher

License: Creative Commons Attribution

Info: Backported to Java 1.4

URL: http://www.repher.at/

Name: SoftHashMap

Author: Dr. Heinz M. Kabutz

License: Unknown—used with express permission of the author

URL: http://www.javaspecialists.co.za/archive/Issue098.html

Name: TreeTable

Author: Oracle, Inc.

License: BSD

URL: http://java.sun.com/products/jfc/tsc/articles/bookmarks/

All libraries have been repackaged to avoid class path issues.

http://code.google.com/p/jsyntaxpane/
http://logging.apache.org/log4j/
http://maven.apache.org/
http://one-jar.sourceforge.net/
http://www.repher.at/pages/index.php?show=coding
http://www.javaspecialists.co.za/archive/Issue098.html
http://java.sun.com/products/jfc/tsc/articles/treetable2/index.html

379

Appendix C. Build-in XDoclet tags
The Javadoc formatter recognizes the following tags as XDoclet-tags.

Table C.1. Build-in XDoclet tags

@actionscript.class @actionscript.property

@ant.attribute @ant.element

@ant.ignore @ant.not-required

@ant.required @axis.method

@axis.service @bes.bean

@bes.cross-table @bes.datasource

@bes.ejb-local-ref @bes.ejb-ref

@bes.property @bes.relation

@bes.resource-env-ref @bes.resource-ref

@castor.class @castor.field

@castor.field-sql @castor.field-xml

@contrib.checkbox-group @contrib.choose

@contrib.control-checkbox @contrib.controlled-checkbox

@contrib.date-field @contrib.dump-object

@contrib.form-conditional @contrib.form-table

@contrib.inspector-button @contrib.mask-edit

@contrib.multiple-property-selection @contrib.numeric-field

@contrib.otherwise @contrib.palette

@contrib.selector @contrib.show-description

@contrib.show-engine @contrib.show-properties

@contrib.show-specification @contrib.show-template

@contrib.simple-table-column-component @contrib.simple-table-column-form-component

@contrib.table @contrib.table-columns

@contrib.table-form-pages @contrib.table-form-rows

@contrib.table-pages @contrib.table-rows

@contrib.table-values @contrib.table-view

@contrib.timeout @contrib.tree

@contrib.tree-data-view @contrib.tree-node-view

@contrib.tree-table @contrib.tree-table-data-view

@contrib.tree-table-node-view-delegator @contrib.tree-view

@contrib.validating-text-field @contrib.view-tabs

@contrib.when @contrib.x-tile

@dao.call @doc.param

@doc.tag @easerver.ejb-ref

@easerver.resource-ref @ejb.activation-config-property

@ejb.aggregate @ejb.bean

@ejb.create-method @ejb.dao

@ejb.data-object @ejb.destination-ref

@ejb.ejb-external-ref @ejb.ejb-ref

@ejb.ejb-service-ref @ejb.env-entry

@ejb.facade @ejb.facade-method

@ejb.finder @ejb.home

380

@ejb.home-method @ejb.interface

@ejb.interface-method @ejb.message-destination

@ejb.permission @ejb.persistence

@ejb.persistence-field @ejb.persistent-field

@ejb.pk @ejb.pk-field

@ejb.relation @ejb.remote-facade

@ejb.resource-env-ref @ejb.resource-ref

@ejb.security-identity @ejb.security-role-ref

@ejb.security-roles @ejb.select

@ejb.transaction @ejb.transaction-method

@ejb.util @ejb.value-object

@ejb.value-object-field @foo:bar

@generama.property @hibernate.any

@hibernate.any-column @hibernate.array

@hibernate.bag @hibernate.cache

@hibernate.class @hibernate.collection-cache

@hibernate.collection-composite-element @hibernate.collection-element

@hibernate.collection-id @hibernate.collection-index

@hibernate.collection-jcs-cache @hibernate.collection-key

@hibernate.collection-key-column @hibernate.collection-many-to-many

@hibernate.collection-one-to-many @hibernate.column

@hibernate.comment @hibernate.component

@hibernate.composite-element @hibernate.composite-id

@hibernate.composite-index @hibernate.composite-key

@hibernate.composite-map-key @hibernate.discriminator

@hibernate.discriminator-column @hibernate.element

@hibernate.filter @hibernate.filter-def

@hibernate.filter-param @hibernate.formula

@hibernate.generator-param @hibernate.id

@hibernate.idbag @hibernate.import

@hibernate.index @hibernate.index-column

@hibernate.index-many-to-any @hibernate.index-many-to-many

@hibernate.jcs-cache @hibernate.join

@hibernate.join-key @hibernate.joined-subclass

@hibernate.joined-subclass-key @hibernate.key

@hibernate.key-column @hibernate.key-many-to-one

@hibernate.key-property @hibernate.list

@hibernate.list-index @hibernate.loader

@hibernate.many-to-any @hibernate.many-to-any-column

@hibernate.many-to-many @hibernate.many-to-one

@hibernate.map @hibernate.map-key

@hibernate.map-key-many-to-many @hibernate.mapping

@hibernate.meta @hibernate.meta-value

@hibernate.natural-id @hibernate.one-to-many

@hibernate.one-to-one @hibernate.parent

@hibernate.primitive-array @hibernate.properties

@hibernate.property @hibernate.query

@hibernate.query-list @hibernate.set

381 APPENDIX C BUILD-IN XDOCLET TAGS

@hibernate.sql-delete @hibernate.sql-delete-all

@hibernate.sql-insert @hibernate.sql-query

@hibernate.sql-update @hibernate.subclass

@hibernate.subselect @hibernate.synchronize

@hibernate.timestamp @hibernate.tuplizer

@hibernate.type @hibernate.type-param

@hibernate.typedef @hibernate.typedef-param

@hibernate.union-subclass @hibernate.version

@hpas.bean @hpas.ejb-ref

@hpas.pool @javabean.attribute

@javabean.class @javabean.icons

@javabean.method @javabean.param

@javabean.parameter @javabean.property

@jboss.audit @jboss.audit-created-by

@jboss.audit-created-time @jboss.audit-updated-by

@jboss.audit-updated-time @jboss.cache-invalidation

@jboss.cache-invalidation-config @jboss.cluster-config

@jboss.clustered @jboss.cmp-field

@jboss.column-name @jboss.container-configuration

@jboss.create-table @jboss.declared-sql

@jboss.depends @jboss.destination-jndi-name

@jboss.dvc-property @jboss.ejb-local-ref

@jboss.ejb-ref-jndi @jboss.entity-command

@jboss.entity-command-attribute @jboss.finder-query

@jboss.jdbc-type @jboss.method-attributes

@jboss.not-persisted-field @jboss.persistence

@jboss.port-component @jboss.query

@jboss.read-ahead @jboss.read-only

@jboss.relation @jboss.relation-mapping

@jboss.relation-read-ahead @jboss.relation-table

@jboss.remove-table @jboss.resource-adapter

@jboss.resource-env-ref @jboss.resource-manager

@jboss.resource-ref @jboss.security-proxy

@jboss.service @jboss.sql-type

@jboss.subscriber @jboss.target-relation

@jboss.unknown-pk @jdo.class

@jdo.fetchgroup @jdo.field

@jdo.persistence-capable @jdo.query

@jmx.managed-attribute @jmx.managed-constructor

@jmx.managed-operation @jmx.managed-parameter

@jmx.mbean @jmx.mlet-entry

@jmx.notification @jonas.bean

@jonas.cmp-field-jdbc-mapping @jonas.ejb-ref

@jonas.finder-method-jdbc-mapping @jonas.is-modified-method-name

@jonas.jdbc-mapping @jonas.max-cache-size

@jonas.message-driven-destination @jonas.min-pool-size

@jonas.passivation-timeout @jonas.resource

@jonas.resource-env @jonas.session-timeout

382

@jonas.shared @jrun.always-dirty

@jrun.cluster-home @jrun.cluster-object

@jrun.commit-option @jrun.ejb-local-ref

@jrun.ejb-ref @jrun.instance-pool

@jrun.jdbc-mappings @jrun.jndi-name

@jrun.message-driven-destination @jrun.message-driven-subscription

@jrun.resource-env-ref @jrun.resource-ref

@jrun.timeout @jrun.tx-domain

@jsf.bean @jsf.converter

@jsf.managed-property @jsf.navigation

@jsf.render-kit @jsf.validator

@jsf.validator-attribute @jsp.attribute

@jsp.tag @jsp.validator-init-param

@jsp.variable @kodo.table

@lido.future @mock.generate

@msg.bundle @msg.message

@mvcsoft.col-name @mvcsoft.entity

@mvcsoft.exclude-from-optimistic-lock @mvcsoft.fault-group

@mvcsoft.high-low-key @mvcsoft.jdbc-type

@mvcsoft.lightweight @mvcsoft.query

@mvcsoft.relation @mvcsoft.sql-type

@mvcsoft.unknown-key @mvcsoft.uuid-key

@mvcsoft.wrap @oc4j.bean

@oc4j.field-persistence-manager @oc4j.field-persistence-manager-property

@oc4j.persistence @orion.bean

@orion.field-persistence-manager-property @orion.persistence

@portlet.portlet @portlet.portlet-info

@portlet.portlet-init-param @portlet.preference

@portlet.preferences-validator @portlet.security-role-ref

@portlet.supports @pramati.bean

@pramati.destination-mapping @pramati.ejb-local-ref

@pramati.ejb-ref @pramati.persistence

@pramati.resource-env-ref @pramati.resource-mapping

@pramati.server-session @pramati.thread-pool

@qtags.alias @qtags.allowed-value

@qtags.default @qtags.deprecated

@qtags.ignore @qtags.list-token

@qtags.location @qtags.once

@qtags.required @qtags.verbatim

@resin-ejb.cmp-field @resin-ejb.entity-bean

@resin-ejb.entity-method @resin-ejb.message-bean

@resin-ejb.relation @soap.method

@soap.service @spring.bean

@spring.constructor-arg @spring.property

@spring.validator @spring.validator-args

@spring.validator-var @sql.table

@struts.action @struts.action-exception

@struts.action-forward @struts.action-set-property

383 APPENDIX C BUILD-IN XDOCLET TAGS

@struts.dynaform @struts.dynaform-field

@struts.form @struts.form-field

@struts.tiles @struts.tiles-put

@struts.validator @struts.validator-args

@struts.validator-var @sunone.bean

@sunone.bean-cache @sunone.bean-pool

@sunone.consistency @sunone.fetched-with

@sunone.finder @sunone.persistence-manager

@sunone.pool-manager @sunone.relation

@tacos.ajax-direct-link @tacos.ajax-field-observer

@tacos.ajax-form @tacos.ajax-link-submit

@tacos.ajax-submit @tacos.autocompleter

@tacos.date-picker @tacos.dialog

@tacos.dirty-form-warning @tacos.drop-target

@tacos.editor @tacos.fisheye-list

@tacos.floating-pane @tacos.inline-edit-box

@tacos.palette @tacos.partial-for

@tacos.progress-bar @tacos.refresh

@tacos.site-map @tacos.tree

@tapestry.action-link @tapestry.any

@tapestry.asset @tapestry.bean

@tapestry.binding @tapestry.block

@tapestry.body @tapestry.button

@tapestry.card @tapestry.checkbox

@tapestry.component @tapestry.component-specification

@tapestry.conditional @tapestry.context-asset

@tapestry.date-picker @tapestry.delegator

@tapestry.describe @tapestry.direct-link

@tapestry.do @tapestry.else

@tapestry.exception-display @tapestry.external-asset

@tapestry.external-link @tapestry.field-label

@tapestry.for @tapestry.foreach

@tapestry.form @tapestry.frame

@tapestry.generic-link @tapestry.go

@tapestry.hidden @tapestry.if

@tapestry.image @tapestry.image-submit

@tapestry.inherited-binding @tapestry.inject

@tapestry.inject-meta @tapestry.inject-object

@tapestry.inject-page @tapestry.inject-script

@tapestry.inject-state @tapestry.input

@tapestry.insert @tapestry.insert-text

@tapestry.invoke-listener @tapestry.link-submit

@tapestry.list-edit @tapestry.listener-binding

@tapestry.message-binding @tapestry.meta

@tapestry.on-event @tapestry.option

@tapestry.page-link @tapestry.page-specification

@tapestry.parameter @tapestry.postfield

@tapestry.private-asset @tapestry.property

384

@tapestry.property-selection @tapestry.property-specification

@tapestry.radio @tapestry.radio-group

@tapestry.render-block @tapestry.render-body

@tapestry.request-display @tapestry.reserved-parameter

@tapestry.rollover @tapestry.script

@tapestry.select @tapestry.selection-field

@tapestry.service-link @tapestry.set

@tapestry.set-message-property @tapestry.set-property

@tapestry.setvar @tapestry.shell

@tapestry.static-binding @tapestry.submit

@tapestry.text-area @tapestry.text-field

@tapestry.timer @tapestry.upload

@tapestry.valid-field @web.ejb-local-ref

@web.ejb-ref @web.env-entry

@web.filter @web.filter-init-param

@web.filter-mapping @web.interface-method

@web.listener @web.resource-env-ref

@web.resource-ref @web.security-role

@web.security-role-ref @web.servlet

@web.servlet-init-param @web.servlet-mapping

@weblogic.allow-concurrent-calls @weblogic.allow-remove-during-transaction

@weblogic.automatic-key-generation @weblogic.cache

@weblogic.cache-ref @weblogic.clients-on-same-server

@weblogic.clustering @weblogic.column-map

@weblogic.create-as-principal-name @weblogic.data-source-name

@weblogic.dbms-column-type @weblogic.delay-database-insert-until

@weblogic.dispatch-policy @weblogic.ejb-local-reference-description

@weblogic.ejb-reference-description @weblogic.enable-batch-operations

@weblogic.enable-bean-class-redeploy @weblogic.enable-call-by-reference

@weblogic.enable-dynamic-queries @weblogic.enable-tuned-updates

@weblogic.field-group @weblogic.finder

@weblogic.idempotent-methods @weblogic.iiop-security-descriptor

@weblogic.instance-lock-order @weblogic.invalidation-target

@weblogic.lifecycle @weblogic.lock-order

@weblogic.message-driven @weblogic.order-database-operations

@weblogic.passivate-as-principal-name @weblogic.persistence

@weblogic.pool @weblogic.pool-name

@weblogic.relation @weblogic.remove-as-principal-name

@weblogic.resource-description @weblogic.resource-env-description

@weblogic.run-as-identity-principal @weblogic.run-as-principal-name

@weblogic.select @weblogic.target-column-map

@weblogic.transaction-descriptor @weblogic.transaction-isolation

@weblogic.use-select-for-update @weblogic.verify-rows

@websphere.bean @websphere.bean-cache

@websphere.cmp @websphere.finder-query

@websphere.local-transaction @websphere.mapping

@websphere.mapping-constraint @websphere.mdb

@websphere.resource-ref @webwork.action

385 APPENDIX C BUILD-IN XDOCLET TAGS

@webwork.command @wsee.handler

@wsee.jaxrpc-mapping @wsee.port-component

@wsee.variable-mapping @xdoclet.merge-file

@xdoclet.taghandler @xwork.action

@xwork.exception-mapping @xwork.interceptor-ref

@xwork.param @xwork.result

387

Appendix D. ANTLR Software License

ANTLR 1989-2003 Developed by jGuru.com (MageLang Institute), http://www.ANTLR.org and
http://www.jGuru.com

We reserve no legal rights to the ANTLR—it is fully in the public domain. An individual or company
may do whatever they wish with source code distributed with ANTLR or the code generated by ANTLR,
including the incorporation of ANTLR, or its output, into commercial software.

We encourage users to develop software with ANTLR. However, we do ask that credit is given to us for
developing ANTLR. By “credit”, we mean that if you use ANTLR or incorporate any source code into
one of your programs (commercial product, research project, or otherwise) that you acknowledge this
fact somewhere in the documentation, research report, etc... If you like ANTLR and have developed a
nice tool with the output, please mention that you developed it using ANTLR. In addition, we ask that
the headers remain intact in our source code. As long as these guidelines are kept, we expect to continue
enhancing this system and expect to make other tools available as they are completed.

http://www.antlr.org
http://www.jguru.com

389

Appendix E. Apache Software License
1.1
Copyright (C) 1999 The Apache Software Foundation. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the following
acknowledgment: “This product includes software developed by the Apache Software Foundation
(http://www.apache.org/)“. Alternately, this acknowledgment may appear in the software itself, if
and wherever such third-party acknowledgments normally appear.

4. The names “Ant” and “Apache Software Foundation” must not be used to endorse or promote prod-
ucts derived from this software without prior written permission. For written permission, please
contact apache@apache.org.

5. Products derived from this software may not be called “Apache”, nor may “Apache” appear in their
name, without prior written permission of the Apache Software Foundation.

THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESSED OR IMPLIED WAR-
RANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSE-
QUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUB-
STITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS IN-
TERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHER-
WISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

This software consists of voluntary contributions made by many individuals on behalf of the Apache
Software Foundation. For more information on the Apache Software Foundation, please see http://
www.apache.org.

http://www.apache.org/
http://www.apache.org/
http://www.apache.org/

391

Appendix F. Apache Software License
2.0
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

“License” shall mean the terms and conditions for use, reproduction, and distribution as defined by
Sections 1 through 9 of this document.

“Licensor” shall mean the copyright owner or entity authorized by the copyright owner that is grant-
ing the License.

“Legal Entity” shall mean the union of the acting entity and all other entities that control, are con-
trolled by, or are under common control with that entity. For the purposes of this definition, “control”
means (i) the power, direct or indirect, to cause the direction or management of such entity, whether
by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares,
or (iii) beneficial ownership of such entity.

“You” (or “Your”) shall mean an individual or Legal Entity exercising permissions granted by this
License.

“Source” form shall mean the preferred form for making modifications, including but not limited
to software source code, documentation source, and configuration files.

“Object” form shall mean any form resulting from mechanical transformation or translation of a
Source form, including but not limited to compiled object code, generated documentation, and con-
versions to other media types.

“Work” shall mean the work of authorship, whether in Source or Object form, made available under
the License, as indicated by a copyright notice that is included in or attached to the work (an example
is provided in the Appendix below).

“Derivative Works” shall mean any work, whether in Source or Object form, that is based on (or
derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modi-
fications represent, as a whole, an original work of authorship. For the purposes of this License, Deriva-
tive Works shall not include works that remain separable from, or merely link (or bind by name) to the
interfaces of, the Work and Derivative Works thereof.

“Contribution” shall mean any work of authorship, including the original version of the Work and
any modifications or additions to that Work or Derivative Works thereof, that is intentionally submit-
ted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity
authorized to submit on behalf of the copyright owner. For the purposes of this definition, “submitted”
means any form of electronic, verbal, or written communication sent to the Licensor or its represen-
tatives, including but not limited to communication on electronic mailing lists, source code control
systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose
of discussing and improving the Work, but excluding communication that is conspicuously marked or
otherwise designated in writing by the copyright owner as "Not a Contribution."

“Contributor” shall mean Licensor and any individual or Legal Entity on behalf of whom a Contri-
bution has been received by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License.

Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare

392

Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such
Derivative Works in Source or Object form.

3. Grant of Patent License.

Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent
license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such
license applies only to those patent claims licensable by such Contributor that are necessarily infringed
by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such
Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-
claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the
Work constitutes direct or contributory patent infringement, then any patent licenses granted to You
under this License for that Work shall terminate as of the date such litigation is filed.

4. Redistribution.

You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium,
with or without modifications, and in Source or Object form, provided that You meet the following
conditions:

a. You must give any other recipients of the Work or Derivative Works a copy of this License; and

b. You must cause any modified files to carry prominent notices stating that You changed the files; and

c. You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent,
trademark, and attribution notices from the Source form of the Work, excluding those notices that
do not pertain to any part of the Derivative Works; and

d. If the Work includes a “NOTICE” text file as part of its distribution, then any Derivative Works
that You distribute must include a readable copy of the attribution notices contained within such
NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in
at least one of the following places: within a NOTICE text file distributed as part of the Derivative
Works; within the Source form or documentation, if provided along with the Derivative Works;
or, within a display generated by the Derivative Works, if and wherever such third-party notices
normally appear. The contents of the NOTICE file are for informational purposes only and do not
modify the License. You may add Your own attribution notices within Derivative Works that You
distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such
additional attribution notices cannot be construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide additional or dif-
ferent license terms and conditions for use, reproduction, or distribution of Your modifications, or for
any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work
otherwise complies with the conditions stated in this License.

5. Submission of Contributions.

Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the
Work by You to the Licensor shall be under the terms and conditions of this License, without any
additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed with Licensor regarding such Con-
tributions.

393 APPENDIX F APACHE SOFTWARE LICENSE 2 0

6. Trademarks.

This License does not grant permission to use the trade names, trademarks, service marks, or product
names of the Licensor, except as required for reasonable and customary use in describing the origin of
the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty.

Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Con-
tributor provides its Contributions) on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or
conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PAR-
TICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redis-
tributing the Work and assume any risks associated with Your exercise of permissions under this License.

8. Limitation of Liability.

In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or
consequential damages of any character arising as a result of this License or out of the use or inability
to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer
failure or malfunction, or any and all other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability.

While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee
for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent
with this License. However, in accepting such obligations, You may act only on Your own behalf and
on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against,
such Contributor by reason of your accepting any such warranty or additional liability.

395

Appendix G. ASM Software License
ASM: a very small and fast Java bytecode manipulation framework

Copyright (c) 2000, 2002, 2003 INRIA, France Telecom. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holders nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMIT-
ED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROF-
ITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LI-
ABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLI-
GENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

397

Appendix H. Common Public License
1.0

THE ACCOMPANYING PROGRAM IS PROVIDED UNDER THE TERMS OF THIS COM-
MON PUBLIC LICENSE (“AGREEMENT”). ANY USE, REPRODUCTION OR DISTRIBU-
TION OF THE PROGRAM CONSTITUTES RECIPIENT’S ACCEPTANCE OF THIS AGREE-
MENT.

1. DEFINITIONS

“Contribution” means:

a. in the case of the initial Contributor, the initial code and documentation distributed
under this Agreement, and

b. in the case of each subsequent Contributor:

i. changes to the Program, and

ii. additions to the Program;

where such changes and/or additions to the Program originate from and are distributed
by that particular Contributor. A Contribution 'originates' from a Contributor if it was
added to the Program by such Contributor itself or anyone acting on such Contributor’s
behalf. Contributions do not include additions to the Program which: (i) are separate
modules of software distributed in conjunction with the Program under their own li-
cense agreement, and (ii) are not derivative works of the Program.

“Contributor” means any person or entity that distributes the Program.

"Licensed Patents" mean patent claims licensable by a Contributor which are necessarily infringed by
the use or sale of its Contribution alone or when combined with the Program.

“Program” means the Contributions distributed in accordance with this Agreement.

“Recipient” means anyone who receives the Program under this Agreement, including all Contributors.

2. GRANT OF RIGHTS

a. Subject to the terms of this Agreement, each Contributor hereby grants Recipient a non-exclusive,
worldwide, royalty-free copyright license to reproduce, prepare derivative works of, publicly display,
publicly perform, distribute and sublicense the Contribution of such Contributor, if any, and such
derivative works, in source code and object code form.

b. Subject to the terms of this Agreement, each Contributor hereby grants Recipient a non-exclusive,
worldwide, royalty-free patent license under Licensed Patents to make, use, sell, offer to sell, import
and otherwise transfer the Contribution of such Contributor, if any, in source code and object code
form. This patent license shall apply to the combination of the Contribution and the Program if, at
the time the Contribution is added by the Contributor, such addition of the Contribution causes
such combination to be covered by the Licensed Patents. The patent license shall not apply to any
other combinations which include the Contribution. No hardware per se is licensed hereunder.

398

c. Recipient understands that although each Contributor grants the licenses to its Contributions set
forth herein, no assurances are provided by any Contributor that the Program does not infringe
the patent or other intellectual property rights of any other entity. Each Contributor disclaims any
liability to Recipient for claims brought by any other entity based on infringement of intellectual
property rights or otherwise. As a condition to exercising the rights and licenses granted hereunder,
each Recipient hereby assumes sole responsibility to secure any other intellectual property rights
needed, if any. For example, if a third party patent license is required to allow Recipient to distribute
the Program, it is Recipient’s responsibility to acquire that license before distributing the Program.

d. Each Contributor represents that to its knowledge it has sufficient copyright rights in its Contribu-
tion, if any, to grant the copyright license set forth in this Agreement.

3. REQUIREMENTS

A Contributor may choose to distribute the Program in object code form under its own license agree-
ment, provided that:

a. it complies with the terms and conditions of this Agreement; and

b. its license agreement:

i. effectively disclaims on behalf of all Contributors all warranties and conditions,
express and implied, including warranties or conditions of title and non-infringe-
ment, and implied warranties or conditions of merchantability and fitness for a
particular purpose;

ii. effectively excludes on behalf of all Contributors all liability for damages, includ-
ing direct, indirect, special, incidental and consequential damages, such as lost
profits;

iii. states that any provisions which differ from this Agreement are offered by that
Contributor alone and not by any other party; and

iv. states that source code for the Program is available from such Contributor, and
informs licensees how to obtain it in a reasonable manner on or through a medium
customarily used for software exchange.

When the Program is made available in source code form:

a. it must be made available under this Agreement; and

b. a copy of this Agreement must be included with each copy of the Program.

Contributors may not remove or alter any copyright notices contained within the Program.
Each Contributor must identify itself as the originator of its Contribution, if any, in a manner that

reasonably allows subsequent Recipients to identify the originator of the Contribution.

4. COMMERCIAL DISTRIBUTION

Commercial distributors of software may accept certain responsibilities with respect to end users, busi-
ness partners and the like. While this license is intended to facilitate the commercial use of the Pro-
gram, the Contributor who includes the Program in a commercial product offering should do so in
a manner which does not create potential liability for other Contributors. Therefore, if a Contributor
includes the Program in a commercial product offering, such Contributor (“Commercial Contributor”)

399 APPENDIX H COMMON PUBLIC LICENSE 1 0

hereby agrees to defend and indemnify every other Contributor (“Indemnified Contributor”) against
any losses, damages and costs (collectively “Losses”) arising from claims, lawsuits and other legal ac-
tions brought by a third party against the Indemnified Contributor to the extent caused by the acts
or omissions of such Commercial Contributor in connection with its distribution of the Program in
a commercial product offering. The obligations in this section do not apply to any claims or Losses
relating to any actual or alleged intellectual property infringement. In order to qualify, an Indemnified
Contributor must: a) promptly notify the Commercial Contributor in writing of such claim, and b)
allow the Commercial Contributor to control, and cooperate with the Commercial Contributor in, the
defense and any related settlement negotiations. The Indemnified Contributor may participate in any
such claim at its own expense.

For example, a Contributor might include the Program in a commercial product offering, Product
X. That Contributor is then a Commercial Contributor. If that Commercial Contributor then makes
performance claims, or offers warranties related to Product X, those performance claims and warranties
are such Commercial Contributor’s responsibility alone. Under this section, the Commercial Contrib-
utor would have to defend claims against the other Contributors related to those performance claims
and warranties, and if a court requires any other Contributor to pay any damages as a result, the Com-
mercial Contributor must pay those damages.

5. NO WARRANTY

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, THE PROGRAM IS PROVID-
ED ON AN “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, EI-
THER EXPRESS OR IMPLIED INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES
OR CONDITIONS OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Each Recipient is solely responsible for determining the appropri-
ateness of using and distributing the Program and assumes all risks associated with its exercise of rights
under this Agreement, including but not limited to the risks and costs of program errors, compliance
with applicable laws, damage to or loss of data, programs or equipment, and unavailability or interrup-
tion of operations.

6. DISCLAIMER OF LIABILITY

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, NEITHER RECIPIENT NOR
ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY DIRECT, INDIRECT, INCI-
DENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING WITH-
OUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND ON ANY THEORY OF LIA-
BILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLI-
GENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OR DISTRIBUTION
OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED HEREUNDER, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. GENERAL

If any provision of this Agreement is invalid or unenforceable under applicable law, it shall not affect the
validity or enforceability of the remainder of the terms of this Agreement, and without further action
by the parties hereto, such provision shall be reformed to the minimum extent necessary to make such
provision valid and enforceable.

If Recipient institutes patent litigation against a Contributor with respect to a patent applicable to
software (including a cross-claim or counterclaim in a lawsuit), then any patent licenses granted by that
Contributor to such Recipient under this Agreement shall terminate as of the date such litigation is
filed. In addition, if Recipient institutes patent litigation against any entity (including a cross-claim or

400

counterclaim in a lawsuit) alleging that the Program itself (excluding combinations of the Program with
other software or hardware) infringes such Recipient’s patent(s), then such Recipient’s rights granted
under Section 2(b) shall terminate as of the date such litigation is filed.

All Recipient’s rights under this Agreement shall terminate if it fails to comply with any of the ma-
terial terms or conditions of this Agreement and does not cure such failure in a reasonable period of
time after becoming aware of such noncompliance. If all Recipient’s rights under this Agreement ter-
minate, Recipient agrees to cease use and distribution of the Program as soon as reasonably practicable.
However, Recipient’s obligations under this Agreement and any licenses granted by Recipient relating
to the Program shall continue and survive.

Everyone is permitted to copy and distribute copies of this Agreement, but in order to avoid incon-
sistency the Agreement is copyrighted and may only be modified in the following manner. The Agree-
ment Steward reserves the right to publish new versions (including revisions) of this Agreement from
time to time. No one other than the Agreement Steward has the right to modify this Agreement. IBM
is the initial Agreement Steward. IBM may assign the responsibility to serve as the Agreement Steward
to a suitable separate entity. Each new version of the Agreement will be given a distinguishing version
number. The Program (including Contributions) may always be distributed subject to the version of the
Agreement under which it was received. In addition, after a new version of the Agreement is published,
Contributor may elect to distribute the Program (including its Contributions) under the new version.
Except as expressly stated in Sections 2(a) and 2(b) above, Recipient receives no rights or licenses to
the intellectual property of any Contributor under this Agreement, whether expressly, by implication,
estoppel or otherwise. All rights in the Program not expressly granted under this Agreement are reserved.

This Agreement is governed by the laws of the State of New York and the intellectual property laws of
the United States of America. No party to this Agreement will bring a legal action under this Agreement
more than one year after the cause of action arose. Each party waives its rights to a jury trial in any
resulting litigation.

401

Appendix I. Creative Commons
Attribution License
CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE
LEGAL SERVICES. DISTRIBUTION OF THIS LICENSE DOES NOT CREATE AN ATTOR-
NEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS INFORMATION
ON AN "AS-IS" BASIS. CREATIVE COMMONS MAKES NO WARRANTIES REGARDING
THE INFORMATION PROVIDED, AND DISCLAIMS LIABILITY FOR DAMAGES RESULT-
ING FROM ITS USE.

License
THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CRE-

ATIVE COMMONS PUBLIC LICENSE (“CCPL” OR “LICENSE”). THE WORK IS PROTECT-
ED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER
THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND
AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. THE LICENSOR GRANTS
YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE
OF SUCH TERMS AND CONDITIONS

1. Definitions

a. “Collective Work” means a work, such as a periodical issue, anthology or encyclopedia, in which the
Work in its entirety in unmodified form, along with a number of other contributions, constituting
separate and independent works in themselves, are assembled into a collective whole. A work that
constitutes a Collective Work will not be considered a Derivative Work (as defined below) for the
purposes of this License.

b. “Derivative Work” means a work based upon the Work or upon the Work and other pre-existing
works, such as a translation, musical arrangement, dramatization, fictionalization, motion picture
version, sound recording, art reproduction, abridgment, condensation, or any other form in which
the Work may be recast, transformed, or adapted, except that a work that constitutes a Collective
Work will not be considered a Derivative Work for the purpose of this License. For the avoidance
of doubt, where the Work is a musical composition or sound recording, the synchronization of the
Work in timed-relation with a moving image (“synching”) will be considered a Derivative Work for
the purpose of this License.

c. “Licensor” means the individual or entity that offers the Work under the terms of this License.

d. “Original Author” means the individual or entity who created the Work.

e. “Work” means the copyrightable work of authorship offered under the terms of this License.

f. “You” means an individual or entity exercising rights under this License who has not previously
violated the terms of this License with respect to the Work, or who has received express permission
from the Licensor to exercise rights under this License despite a previous violation.

2. Fair Use Rights. Nothing in this license is intended to reduce, limit, or restrict any rights arising from
fair use, first sale or other limitations on the exclusive rights of the copyright owner under copyright
law or other applicable laws.

402

3. License Grant. Subject to the terms and conditions of this License, Licensor hereby grants You a
worldwide, royalty-free, non-exclusive, perpetual (for the duration of the applicable copyright) license
to exercise the rights in the Work as stated below:

a. to reproduce the Work, to incorporate the Work into one or more Collective Works, and to reproduce
the Work as incorporated in the Collective Works;

b. to create and reproduce Derivative Works;

c. to distribute copies or phonorecords of, display publicly, perform publicly, and perform publicly by
means of a digital audio transmission the Work including as incorporated in Collective Works;

d. to distribute copies or phonorecords of, display publicly, perform publicly, and perform publicly by
means of a digital audio transmission Derivative Works.

e. For the avoidance of doubt, where the work is a musical composition:

i. Performance Royalties Under Blanket Licenses. Licensor waives the exclusive right to collect,
whether individually or via a performance rights society (e.g. ASCAP, BMI, SESAC), royalties for
the public performance or public digital performance (e.g. webcast) of the Work.

ii. Mechanical Rights and Statutory Royalties. Licensor waives the exclusive right to collect, whether
individually or via a music rights agency or designated agent (e.g. Harry Fox Agency), royalties
for any phonorecord You create from the Work (”cover version”) and distribute, subject to the
compulsory license created by 17 USC Section 115 of the US Copyright Act (or the equivalent
in other jurisdictions).

f. Webcasting Rights and Statutory Royalties. For the avoidance of doubt, where the Work is a
sound recording, Licensor waives the exclusive right to collect, whether individually or via a perfor-
mance-rights society (e.g. SoundExchange), royalties for the public digital performance (e.g. webcast)
of the Work, subject to the compulsory license created by 17 USC Section 114 of the US Copyright
Act (or the equivalent in other jurisdictions).

The above rights may be exercised in all media and formats whether now known or hereafter devised.
The above rights include the right to make such modifications as are technically necessary to exercise
the rights in other media and formats. All rights not expressly granted by Licensor are hereby reserved.

4. Restrictions. The license granted in Section 3 above is expressly made subject to and limited by the
following restrictions:

a. You may distribute, publicly display, publicly perform, or publicly digitally perform the Work only
under the terms of this License, and You must include a copy of, or the Uniform Resource Identifier
for, this License with every copy or phonorecord of the Work You distribute, publicly display, publicly
perform, or publicly digitally perform. You may not offer or impose any terms on the Work that
alter or restrict the terms of this License or the recipients' exercise of the rights granted hereunder.
You may not sublicense the Work. You must keep intact all notices that refer to this License and to
the disclaimer of warranties. You may not distribute, publicly display, publicly perform, or publicly
digitally perform the Work with any technological measures that control access or use of the Work
in a manner inconsistent with the terms of this License Agreement. The above applies to the Work
as incorporated in a Collective Work, but this does not require the Collective Work apart from the
Work itself to be made subject to the terms of this License. If You create a Collective Work, upon
notice from any Licensor You must, to the extent practicable, remove from the Collective Work any
credit as required by clause 4(b), as requested. If You create a Derivative Work, upon notice from

403 APPENDIX I CREATIVE COMMONS ATTRIBUTION LICENSE

any Licensor You must, to the extent practicable, remove from the Derivative Work any credit as
required by clause 4(b), as requested.

b. If you distribute, publicly display, publicly perform, or publicly digitally perform the Work or any
Derivative Works or Collective Works, You must keep intact all copyright notices for the Work
and provide, reasonable to the medium or means You are utilizing: (i) the name of the Original
Author (or pseudonym, if applicable) if supplied, and/or (ii) if the Original Author and/or Licensor
designate another party or parties (e.g. a sponsor institute, publishing entity, journal) for attribution
in Licensor’s copyright notice, terms of service or by other reasonable means, the name of such party
or parties; the title of the Work if supplied; to the extent reasonably practicable, the Uniform Resource
Identifier, if any, that Licensor specifies to be associated with the Work, unless such URI does not refer
to the copyright notice or licensing information for the Work; and in the case of a Derivative Work,
a credit identifying the use of the Work in the Derivative Work (e.g. “French translation of the Work
by Original Author” or “Screenplay based on original Work by Original Author”). Such credit may
be implemented in any reasonable manner; provided, however, that in the case of a Derivative Work
or Collective Work, at a minimum such credit will appear where any other comparable authorship
credit appears and in a manner at least as prominent as such other comparable authorship credit.

5. Representations, Warranties and Disclaimer UNLESS OTHERWISE MUTUALLY AGREED TO
BY THE PARTIES IN WRITING, LICENSOR OFFERS THE WORK AS-IS AND MAKES NO
REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE WORK, EX-
PRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION,
WARRANTIES OF TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR PURPOSE,
NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURA-
CY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE.
SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES,
SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN
NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPE-
CIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES ARISING
OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate automatically upon any breach by You
of the terms of this License. Individuals or entities who have received Derivative Works or Collective
Works from You under this License, however, will not have their licenses terminated provided such
individuals or entities remain in full compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8 will
survive any termination of this License.

b. Subject to the above terms and conditions, the license granted here is perpetual (for the duration
of the applicable copyright in the Work). Notwithstanding the above, Licensor reserves the right to
release the Work under different license terms or to stop distributing the Work at any time; provided,
however that any such election will not serve to withdraw this License (or any other license that has
been, or is required to be, granted under the terms of this License), and this License will continue
in full force and effect unless terminated as stated above.

8. Miscellaneous

404

a. Each time You distribute or publicly digitally perform the Work or a Collective Work, the Licensor
offers to the recipient a license to the Work on the same terms and conditions as the license granted
to You under this License.

b. Each time You distribute or publicly digitally perform a Derivative Work, Licensor offers to the
recipient a license to the original Work on the same terms and conditions as the license granted to
You under this License.

c. If any provision of this License is invalid or unenforceable under applicable law, it shall not affect the
validity or enforceability of the remainder of the terms of this License, and without further action
by the parties to this agreement, such provision shall be reformed to the minimum extent necessary
to make such provision valid and enforceable.

d. No term or provision of this License shall be deemed waived and no breach consented to unless
such waiver or consent shall be in writing and signed by the party to be charged with such waiver
or consent.

e. This License constitutes the entire agreement between the parties with respect to the Work licensed
here. There are no understandings, agreements or representations with respect to the Work not spec-
ified here. Licensor shall not be bound by any additional provisions that may appear in any com-
munication from You. This License may not be modified without the mutual written agreement of
the Licensor and You.

Creative Commons is not a party to this License, and makes no warranty whatsoever in connection with
the Work. Creative Commons will not be liable to You or any party on any legal theory for any damages
whatsoever, including without limitation any general, special, incidental or consequential damages aris-
ing in connection to this license. Notwithstanding the foregoing two (2) sentences, if Creative Com-
mons has expressly identified itself as the Licensor hereunder, it shall have all rights and obligations
of Licensor.

Except for the limited purpose of indicating to the public that the Work is licensed under the CCPL,
neither party will use the trademark “Creative Commons” or any related trademark or logo of Creative
Commons without the prior written consent of Creative Commons. Any permitted use will be in com-
pliance with Creative Commons' then-current trademark usage guidelines, as may be published on its
website or otherwise made available upon request from time to time.

Creative Commons may be contacted at http://creativecommons.org/.

http://creativecommons.org/

405

Appendix J. JDBM Software License
JDBM LICENSE v1.0

Redistribution and use of this software and associated documentation (“Software”), with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain copyright statements and notices. Redistributions must
also contain a copy of this document.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

3. The name “JDBM” must not be used to endorse or promote products derived from this Software
without prior written permission of Cees de Groot.

4. Products derived from this Software may not be called “JDBM” nor may “JDBM” appear in their
names without prior written permission of Cees de Groot.

5. Due credit should be given to the JDBM Project (http://jdbm.sourceforge.net/).

THIS SOFTWARE IS PROVIDED BY THE JDBM PROJECT AND CONTRIBUTORS “AS IS”
AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL CEES DE GROOT OR ANY CON-
TRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEM-
PLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROF-
ITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LI-
ABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLI-
GENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright 2000 (C) Cees de Groot. All Rights Reserved. Contributions are Copyright (C) 2000 by
their associated contributors.

http://jdbm.sourceforge.net/

407

Appendix K. JDOM Software License
Copyright (c) 2000-2003 Jason Hunter & Brett McLaughlin. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions, and
the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and
the disclaimer that follows these conditions in the documentation and/or other materials provided
with the distribution.

• The name “JDOM” must not be used to endorse or promote products derived from this software
without prior written permission. For written permission, please contact <license AT jdom DOT
org<.

• Products derived from this software may not be called “JDOM”, nor may “JDOM” appear in their
name, without prior written permission from the JDOM Project Management <pm AT jdom DOT
org>.

In addition, we request (but do not require) that you include in the end-user documentation provided
with the redistribution and/or in the software itself an acknowledgment equivalent to the following:

“This product includes software developed by the JDOM Project (http://
www.jdom.org/)”.

Alternatively, the acknowledgment may be graphical using the logos available at http://www.jdom.org/
pdf-images/logos/.

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WAR-
RANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE JDOM AUTHORS OR THE PROJECT CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUEN-
TIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTI-
TUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTER-
RUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

This software consists of voluntary contributions made by many individuals on behalf of the JDOM
Project and was originally created by Jason Hunter <jhunter AT jdom DOT org> and Brett McLaughlin
<brett AT jdom DOT org>.

For more information on the JDOM Project, please see http://www.jdom.org/.

http://www.jdom.org/
http://www.jdom.org/
http://www.jdom.org/pdf-images/logos/
http://www.jdom.org/pdf-images/logos/
http://www.jdom.org/

409

Appendix L. JGoodies Software License
Copyright (c) 2003 JGoodies Karsten Lentzsch. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of JGoodies Karsten Lentzsch nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMIT-
ED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROF-
ITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LI-
ABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLI-
GENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

411

Appendix M. One-JAR Software
License
Copyright (c) 2004, P. Simon Tuffs (http://www.simontuffs.com/). All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of P. Simon Tuffs nor the names of any contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMIT-
ED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROF-
ITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LI-
ABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLI-
GENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

http://www.simontuffs.com/

413

Appendix N. TreeTable Software
License
Copyright 1997-1999 Sun Microsystems, Inc. All Rights Reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

• Redistribution in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of Sun Microsystems, Inc. or the names of contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

This software is provided “AS IS”, without a warranty of any kind. ALL EXPRESS OR IMPLIED CON-
DITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WAR-
RANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-IN-
FRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE LI-
ABLE FOR ANY DAMAGES OR LIABILITIES SUFFERED BY LICENSEE AS A RESULT OF OR
RELATING TO USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE OR ITS
DERIVATIVES. IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY LOST
REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL,
INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE
THEORY OF LIABILITY, ARISING OUT OF THE USE OF OR INABILITY TO USE THIS
SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.

You acknowledge that this software is not designed, licensed or intended for use in the design, construc-
tion, operation or maintenance of any nuclear facility.

415

Resources
Ant, Apache Software Foundation, http://ant.apache.org/

Eclipse, Eclipse Foundation, http://www.eclipse.org/

JDeveloper, Oracle, Inc., http://www.oracle.com/technology/products/jdev

jEdit, jEdit community, http://www.jedit.org

IntelliJ IDEA, JetBrains s.r.o., http://www.jetbrains.com/idea/

Maven, Apache Software Foundation, http://maven.apache.org/

NetBeans, Oracle, Inc., http://www.netbeans.org/

http://ant.apache.org/
http://ant.apache.org/
http://www.eclipse.org/
http://www.eclipse.org/
http://www.oracle.com/technology/products/jdev
http://www.oracle.com/technology/products/jdev
http://www.jedit.org
http://www.jedit.org
http://www.jetbrains.com/idea/
http://www.jetbrains.com/idea/
http://maven.apache.org/
http://maven.apache.org/
http://www.netbeans.org/
http://www.netbeans.org/

417

Bibliography
[Bloch01]

Joshua Bloch. Effective Java. Programming Language Guide. Addison-Wesley, 2001. ISBN:
0-201-31005-8.

[Friedl97]
Mastering Regular Expressions. O’Reilly, 1997. ISBN: 1-56592-257-3.

[Kernighan88]
Brian Kernighan. Dennis Ritchie. The C Programming Language. Prentice-Hall, 1988. ISBN:
0-13-110362-8.

http://java.sun.com/docs/books/effective/
http://www.oreilly.com/catalog/regex/
http://vig.prenhall.com/catalog/academic/product/1,4096,0131103628,00.html

419

Index
Symbols
//J- //J+, 226
//J:KEEP+, 227
//JDOC-, 227
<classpath>, 306
<variable>, 306
@Override

Insert missing, 57
@return

Use description, 264

, 375

A
Accelerator

Keyboard, 340
Activate

Profile, 25
Add

Collection comment, 293
I18N comment for string literals, 292
Profile, 23

Adhere to custom naming conventions
Code Inspector, 291

Alias
Profile, 25
Wildcard, 26

Align
Anonymous inner class, 130
Array, 129
assert, 128
Assignments, 127
Chained method call, 127, 128
Declaration parameter, 126
Endline comment, 130
Enum constant, 126
Identifiers, 127
Right parenthesis, 129
Ternary, 128
Variables

Assignments, 127
Identifiers, 127

Always overwrite
hashCode(), 290
toString(), 290

Ampersand
Space after

Type parameter, 152
Space before

Type parameter, 152
Annotation, 284

Add pattern, 285
Blank lines, 190
Change pattern, 285
Insert, 285
Move pattern down, 286
Move pattern up, 286
Remove pattern, 286
Sort, 213
Space after assignment operator, 135
Space after left curly brace, 169
Space before assignment operator, 133
Space before right curly brace, 169
Wrap after left parenthesis, 100
Wrap after members, 102
Wrap before right parenthesis, 103
Wrap marker annotation, 99, 100

Annotation array
Space after comma, 143
Space before comma, 138

Annotation member argument
Space after comma, 143
Space before comma, 138

Anonymous inner class
Align, 130

Ant, 301, 415
<classpath>, 306
<variable>, 306
taskdef, 303

Apache Software License, 389, 391
Apply button, 19
Array

Align, 129
Brackets, 55
Keep line breaks, 83
Wrap after element, 112
Wrap all elements when exceed, 111
Wrap as needed, 111

Array access
Space after left bracket, 171, 171
Space before right bracket, 172

Array creator
Space after left bracket, 171
Space before left bracket, 171
Space before right bracket, 172
Space between empty bracket, 172

420

Array declaration
Space between empty bracket, 171, 172

Array initializer
Compact braces, 72
Space after comma, 146
Space after left curly brace, 169
Space before, 168
Space before comma, 141
Space before right curly brace, 170
Space between empty braces, 170

ASM Software License, 395
assert

Align, 128
Space after colon, 149
Space before colon, 147

Assignment operator
Blank lines, 197
Prefer wrap after, 105
Space after, 135, 135
Space before, 133, 133

Attribute
compact, 244

Auto-correct
Javadoc, 254

Block tags, 260
Description, 257

Auto-format
On code generation, 35
On commit, 35
On save, 35

Auto-generation, 247
disable for, 252
enable for, 252

Auto-switch
Profiles, 35

Avoid empty finally blocks
Code Inspector, 292

Avoid thread groups
Code Inspector, 292

B
Backup, 33

Directory, 33
Level, 33

Bitwise operator
Space after, 136
Space before, 134

Blank lines, 187
After left curly brace, 191, 192

After left curly brace endline, 192
After left curly brace newline, 193
Annotation, 190
Assignment, 197
Before right curly brace, 193
break, 194
Case block, 194
Class, 189
continue, 194
Control statement, 194
Declaration section, 189
Enum, 190
Footer, 196
Header, 196
Ignore block in switch, 200
Ignore break in switch, 200
Interface, 190
Javadoc, 195
keep, 197, 198
Last Import statement, 188
Method/Constructor, 191
Multi-line comment, 195
Package statement, 188
remove, 200
return, 194
Separator, 196
Single-line comment, 195
SQLJ clause, 196
Statement block, 194
Variable, 191

Bloch, Joshua, 417
Block

Blank lines, 194
Continuation, 125
indent, 122
Remove braces, 70

Block tag
add missing description, 265
Align attributes, 239
Align name/description, 238
compact comment, 243
configure order, 241
define custom, 275
format, 236
group, 237
indent description, 237
sort, 239
sort attributes, 239

Braces, 59

421 INDEX

Choose common style, 60
Comments, 75

Class, 76
Constructor, 77
for, 78
if-else, 77
Interface, 76
Method, 77
switch, 78
synchronized, 78
Threshold, 79
try/catch, 78
while, 77

Compact braces, 71
All statements, 74
Array initializer, 72
else if, 72, 72
Enum constant, 73
Enum declaration, 73
if, 71
Methods, 71
Narrow scope, 74
Only throw and return, 74
Single if, 71

Cuddle, 74
Obey brace style, 74

Empty braces, 74
Empty statement, 75
Global style, 59
Insert, 66

do...while, 67
for, 67
if, 66, 66
switch, 67
while, 67

Insert braces
Only when statement takes more than one
line, 68

Layout, 59
Remove, 69

Block, 70
do...while, 70
for, 69
if, 69, 69
switch, 70
while, 69

Strictly obey brace style, 64
Style, 60

Allman, 60

BSD, 60
C, 60
Choose common, 60
Global, 59
GNU, 61
K&R, 61
Sun, 61
Synchronize, 62

Styles, 59
Treat different, 63
Treat different if wrapped, 63
Treat statement blocks different if wrapped, 63
White Space, 64

After right curly brace, 64
Before left curly brace, 64
Before right curly brace, 64

Wrap after right brace, 62
Wrap before left brace, 62
Wrapping, 62

Brackets
Array, 55

break
Blank lines, 194
Ignore blank lines in switch, 200

C
Call after assignment

Prefer wrap within when exceed, 86
Call argument

Keep line breaks, 81
Call arguments

Prefer wrap when exceed, 86
Wrap after, 98
Wrap after when nested, 99

Cancel button, 19
case

Blank lines, 194
indent, 121
Space before colon, 148

catch
Space after left parenthesis, 160
Space before left parenthesis, 156
Space before right parenthesis, 164

Chained method call
Align, 127, 128

Check-in
Format during check-in, 35

Checkout read-only files, 31
Checkstyle

422

Import configuration, 27
Checksum, 32
Chunks, 198

By blank lines, 199
by comments, 198
By line wrap, 199

Class
Blank lines, 189
indent, 119
Wrap after, 90

CleanUp
Eclipse, 325

Code Convention, 29
Export, 28
Import, 26

Code generation
Format, 35

Code Inspector, 289
Checks, 290

Add collection comment, 293
Add I18N comment for string literals, 292
Adhere to custom naming conventions, 291
Always overwrite hashCode, 290
Always overwrite toString, 290
Avoid empty finally blocks, 292
Avoid thread groups, 292
Don’t check line length limit within pragma
comments, 293
Don’t ignore exceptions, 292
Don’t substitute another type, 290
Never declare throws Exception, 291
Never declare throws Throwable, 292
Never invoke wait outside a loop, 292
Obey contract when overriding equals, 290
Obey line length limit, 293
Refer to objects by their interfaces, 291
Replace structures with classes, 291
Use interfaces only to define types, 290
Use zero-length arrays, 291

Enable, 290
Naming, 294

Change constraints, 294
Pattern, 294

Command line, 309, 310
Arguments, 311
Options, 311

Comment
Braces, 75
Create @see tags, 249

Exclude overridden/implemented, 248
Header, 278
Indent, 124
Javadoc, 226

Format, 236
Generate, 248
Remove, 229

Keep first column as-is, 234
Move after block brace, 235
Multi-line, 225, 228, 231, 233

Reflow, 233
Pragma, 226
Separator, 214, 226

Line length, 219
Single-line, 225, 228, 231, 232

Reflow, 232
Trailing, 118
Use existing, 250
Use tabs in comments, 132
Wrap

Line length, 234
Space threshold, 234

Commit
Format during commit, 35

Common brace style, 60
Common Public License, 397
Compact

Javadoc elements, 242
Compact braces, 71

Array initializer, 72
else if, 72, 72
Enum constant, 73
Enum declaration, 73
if, 71
Methods, 71
Single if, 71

Compact declaration
Space after left curly brace, 169
Space before, 168
Space before right curly brace, 170
Space between empty braces, 170

Complement operator
Space after, 136

Compliance level, 51
Concat operator

Keep line breaks, 82
Space after, 137
Space before, 135

Conditional operator

423 INDEX

Space after colon, 149, 149, 149
Space after question mark, 151
Space before colon, 148, 148, 148
Space before question mark, 150

Configuration, 17
Configuration driver, 14
Configuration window, 19
Console, 309
Constructor

Blank lines, 191
Constructor call

Space after comma, 146
Space after left parenthesis, 160
Space before comma, 141
Space before left parenthesis, 156
Space before right parenthesis, 164
Space between empty parentheses, 167

Constructor declaration
Space after comma, 145
Space after left parenthesis, 157
Space before comma, 140
Space before left parenthesis, 154
Space before right parenthesis, 162
Space between empty parentheses, 166

Constructor declaration throws clause
Space after comma, 145
Space before comma, 140

Content view, 22
Context menu

jEdit, 350
Continuation, 124

Block, 125
Declaration parameter, 124
Operator, 125
return, 125

continue
Blank lines, 194

Control statement
Blank lines, 194

Convention
Name, 30, 30

Correct
first sentence punctuation, 256
HTML tags, 255

Count Lines, 281
Creative Commons Attribution License, 401
Creator call

Space after comma, 146
Space after left parenthesis, 161

Space before comma, 141
Space before left parenthesis, 157
Space before right parenthesis, 165
Space between empty parentheses, 167

Cuddled braces, 74, 118
Object brace style, 74

Custom Environment variable, 38
Custom ordering, 207
Custom tags, 277

Javadoc, 275
XDoclet, 277

D
Declaration

Sort, 201
Declaration parameter

Align, 126
Continuation, 124
Keep line breaks, 80
Wrap after, 95

Declaration section
blank lines, 189

Description section
Correction, 257

do...while
Insert braces, 67
Remove braces, 70

Dockable windows, 348
Don’t check line length limit within pragma com-
ments

Code Inspector, 293
Don’t ignore exceptions

Code Inspector, 292
Don’t substitute another type

Code Inspector, 290
Dotted expression

indent, 123
Never wrap, 105

E
Eclipse, 315, 415

CleanUp, 325
Profiles page, 316

Edit
Profile, 23

Editor pop-up
NetBeans, 370

else
Keep on same line, 53

424

else if
Keep on same line, 52

Empty braces, 74
Empty statement, 75
Encoding

Force, 34
Endline comment

Align, 130
Endline indent

Strictly obey 'Keep line breaks', 84
Endline indentation, 114
enum

Blank lines, 190
Compact braces, 73
Compact comments, 242
Javadoc template, 268

Enum constant
Align, 126
Space after comma, 143, 143
Space before comma, 138, 138
Wrap after, 94

Environment
Date pattern, 44
Time pattern, 44
Variable, 38

Environment variable
Custom, 38
Interpolation, 38
Local, 41
System, 40

Exclusion
Move pattern down, 46

Exclusions, 44
Add pattern, 45
Edit pattern, 46
Move pattern up, 46
Remove pattern, 46

Explorer pop-up
NetBeans, 370

Export
Code Convention, 28

Expression
Disable wrapping for complex expression, 85
Insert parentheses, 54
Space after left parenthesis, 161
Space before right parenthesis, 165

extends
Space after comma, 143
Space before comma, 139

Wrap before, 90
Wrap types, 91

Extension, 337

F
Favorites view, 23
Field name

Wrap before, 94
File extension, 37

Add, 37
Remove, 38

File System Browser, 351
File Type, 36

Add, 36
File extension, 37
Remove, 37

Fill character, 218
Final modifier

Insert, 57, 58
First column comment

Keep as-is, 234
Footer, 283

Blank lines, 196
for

Insert braces, 67
Remove braces, 69
Space after left parenthesis, 158
Space after semi, 150
Space before left parenthesis, 154
Space before right parenthesis, 163
Space before semi, 149

for incrementor
Space after comma, 147
Space before comma, 142

for initializer
Space after comma, 147
Space before comma, 142

Force formatting, 30
Format

Comments
Javadoc, 236
Multi-line, 231
Single-line, 231

portion, 323
Format only Javadoc, 54
Friedl, Jeffrey E. F., 417

G
Getter/Setter

425 INDEX

Generate comments, 248
Regex Pattern, 212

Global style
Braces, 59

Grouping, 221
Imports, 221

GUI
Apply button, 19
Cancel button, 19
Configuration window, 19
Help button, 19
Main window, 18
Preferences, 18
Save button, 19

H
hashCode

Always overwrite, 290
Header, 278

Blank lines, 196
Detection, 281

Count Lines, 281
Identify Keys, 282

Insert, 279
Keep tags, 280
Override, 279
Template, 283

Help, 21
Content view, 22
Favorites view, 23
Index view, 22

Help browser, 22
Help button, 19
History

Checksum, 32
Directory, 33
View, 33

HTML
correct tags, 255
define custom tags, 277
indent tags, 247

I
IDEA, 327

Profiles page, 328
Identify key

Add, 282
Change, 282
Remove, 283

Identify keys, 282
Identifying comments, 75
if

Insert braces, 66, 66
Keep on same line, 52
Remove braces, 69, 69
Space after left parenthesis, 158
Space before left parenthesis, 154
Space before right parenthesis, 162

implements
Space after comma, 144
Space before comma, 139
Wrap before, 92
Wrap types, 92

Implicit constructor
Insert, 58

Import
Checkstyle configuration, 27
Code Convention, 26

Imports, 219
Blank lines, 188
Grouping, 221, 221
On-demand import

Expand, 223
Optimize, 223
Single-type

Collapse, 224
Sort, 220
Sort order, 220
static

Grouping, 222
Wrap when exceed, 89

In-line tag
define custom, 276
disable wrapping, 246

Indentation, 112
Alignment, 126
block, 122
case, 121
Class declaration, 119
Continuation, 124
Dotted expression, 123
Endline

Strictly obey 'Keep line breaks', 84
first-column comment, 124
HTML tags, 247
Increase on hotspots, 116
Label, 122
Method declaration, 120

426

Policy
Endline, 114
Increase on all hotspots, 116
Mixed endline, 114
Standard, 113, 115

Size, 116
Sizes

Continuation, 117
Cuddled braces, 118
extends, 118
General, 117
implements, 118
Leading, 117
Tabular, 116
throws, 119
Trailing comment, 118

Strategies, 113
switch, 120
Tabs, 131
Ternary operands, 123

Index operator
Never wrap chained, 104

Index view, 22
Inner classes, 248
Insert

@Override, 57
Annotation, 285
Implicit constructor, 58
Separator comment, 214
Serial version UID, 56
Trailing Newline, 31

Installation, 3
Ant, 301
Console plug-in, 309
Defaults, 10
Driver file, 14
Eclipse plug-in, 315
IDEA plug-in, 327
JDeveloper plug-in, 337
jEdit plug-in, 347
Manual installation, 16
Maven 1, 353
Maven 2, 357
NetBeans Module, 365
Setup Wizard, 4
Silent installation, 14

IntelliJ IDEA, 415
interface

Blank lines, 190

Interpolation, 38
Introduction, ix

J
JavaBeans

format property, 251
Require property field, 211
Sort methods

By bean pattern, 203
Javadoc, 236

Blank lines, 195
Block tag, 236, 275

add from template, 263
add missing description, 265
add type parameter tags for methods, 264
Align attributes, 239
Align name/description, 238
Auto-correct, 259
Auto-correction when @param or @return,
260
Auto-correction when generation, 260
Auto-correction when no @see, 261
Auto-correction when no runtime exception
or error, 262
configure order, 241
group, 237
include body, 261
indent description, 237
keep tags, 263
mispelled tags, 261
remove misused, 264
sort, 239
sort attributes, 239
use description for @return, 264

Compact attributes, 244
Compact block tag comments, 243
Compact class comments, 242
Compact elements, 242
Compact enum comments, 242
Compact field comments, 242
Compact method comments, 243
correct first sentence punctuation, 256
correct HTML, 255
Correction, 254

add description only when @param or @re-
turn, 257
add description only when generation, 257
add description only when no @see, 258, 259
add missing description, 265

427 INDEX

add missing tag, 263
add tags only when @param or @return, 260
add tags only when generation, 260
add tags only when no @see, 261
add tags only when no runtime exception or
error, 262
add type parameter tags for methods, 264
Description section, 257
include body, 261
keep tags, 263
misspelled tags, 261
remove misused, 264
Tag section, 259
use description for @return, 264

Custom tags, 275
Definition, 226
Description section

Auto-correct, 257, 257
Auto-correct when @param or @return, 257
Auto-correct when generation, 257
Auto-correction when no @see, 258
Use text from @return tag, 259

Format, 236, 236
Format JavaBeans property, 251
format only, 54
Generation, 247, 248

Create @see tags, 249
disable for, 252
enable for, 252
Exclude overridden/implemented, 248
Getter/Setter, 248
Inner classes, 248
Use existing comments, 250

HTML tags, 277
In-line tag, 276
indent HTML tags, 247
Inner space, 246
Line length, 246
Normalize white space, 245
Remove, 229
Remove leading stars, 244
Separate multi-line XDoclet tags, 245
Tag section

Auto-correct, 260
Template, 266
wrapping

In-line tags, 246
XDoclet tag, 277

sort, 240

Javadoc comment
Search & Replace, 287

JDBM Software License, 405
JDeveloper, 337, 415
JDOM Software License, 407
jEdit, 347, 415
JGoodies Software License, 409

K
Keep

Blank lines, 197, 198
On same line

else, 53
else if, 52
if, 52
Options, 53
Single if, 52

Keep editor state, 31
Keep line breaks

Array, 83
Call argument, 81
Declaration parameter, 80
Operators, 81
String concats, 82

Keep tags
Header, 280

Kernighan, Brian, 417
Keyboard

Accelerator
JDeveloper, 340

Shortcut
IDEA, 331
JDeveloper, 340

Keyboard accelerator
Eclipse, 322

Keyboard shortcuts
jEdit, 350
NetBeans, 369

Keyword
Wrap before, 90

L
Label

indent, 122
Wrap, 109

Leading stars
remove, 244

Leading tabs, 131
Licenses

428

ANTLR, 387
Apache Software License, 389, 391
ASM, 395
Common Public License, 397
Creative Commons Attribution, 401
JDBM, 405
JDOM, 407
JGoodies, 409
One-JAR, 411
TreeTable, 413

Line breaks
Keep, 80

Line length, 80
Comments, 234
Javadoc, 246
Separator comment, 219

Line separator, 34
Line wrap, 79

Chunks, 199
Local Environment variable, 41
Local variable

Insert final modifier, 58
Logfile, 48
Logging, 46, 48

Categories, 47
Logfile, 48
Show messages, 49
Show stacktrace, 49

Logging conditional
Insert, 58

Logical operator
Space after, 136
Space before, 134

M
Main window, 18
Manual installation, 16
Mathematical operator

Space after, 136
Space before, 134

Maven, 415
plug-in

1.0, 353
2.0, 357
Parameters, 359

Message window
NetBeans, 371

Method
Blank lines, 191

Method call
Align chained, 127, 128
Space after comma, 146
Space after left parenthesis, 160
Space before comma, 141
Space before left parenthesis, 156
Space before right parenthesis, 165
Space between empty parentheses, 167
Wrap chained, 96
Wrap nested chained, 97

Method declaration
indent, 120
Space after comma, 145
Space after left parenthesis, 158
Space before comma, 140
Space before left parenthesis, 154
Space before right parenthesis, 162
Space between empty parentheses, 167

Method declaration throws clause
Space after comma, 145
Space before comma, 141

Method name
Wrap before, 95

Mixed endline indentation, 114
Modifier

Order, 213
remove redundant, 55
Sort, 212

Module
NetBeans, 365

Move comment after brace, 235
Multi-field

Space after comma, 144
Space before comma, 139

Multi-line comment
Blank lines, 195
Definition, 225
Format, 231
Remove, 228
Search & Replace, 287
Wrap, 233

Multi-Threading, 34
Multi-variable

Space after comma, 144
Space before comma, 139
Wrap after declarators, 95
Wrap after type, 94

Multi-vars
split, 55

429 INDEX

N
Naming, 294
Naming convention

Change code inspector, 294
Naming pattern

Code Inspector, 294
Nested Profile, 24
NetBeans, 365, 415

Editor pop-up, 370
Explorer pop-up, 370
Keyboard shortcuts, 369
Message window, 371
Profiles page, 365

Never declare throws Exception
Code Inspector, 291

Never declare throws Throwable
Code Inspector, 292

Never invoke wait outside a loop
Code Inspector, 292

Normalize white space
Javadoc, 245

O
Obey contract when overriding equals

Code Inspector, 290
Obey line length limit

Code Inspector, 293
On-demand import

Expand, 223
One-jar Software License, 411
Online Help, 21
Operator

Bitwise
Space after, 136
Space before, 134

Complement
Space after, 136

Concat
Space after, 137
Space before, 135

Continuation, 125
Index

Never wrap chained, 104
Logical

Space after, 136
Space before, 134

Mathematical
Space after, 136
Space before, 134

Postfix
Space before, 135

Prefix
Space after, 137

Relational
Space after, 137
Space before, 134

Shift
Space after, 137
Space before, 134

Ternary, 128
Unary

Space after, 137
Wrap, 103

Operators
Assignment

Space after, 135, 135
Space before, 133, 133

Wrap after, 80
Wrap before, 80

Order
Declarations, 202

Custom, 207
Imports, 220
Modifier, 213

Override
Header, 279

P
package

blank lines, 188
Parameter

Insert final modifier, 57
Parameters

Wrap all when first wrapped, 110
Parentheses

Avoid bare left parenthesis, 85
Insert for expression, 53
Insert for return, 54
Insert for throw, 54
Space after left

Annotation argument list, 157
Enum constant argument list, 157

Space before left
Annotation argument list, 153
Annotation type member, 153
Enum constant argument list, 153

Space before right
Annotation argument list, 161

430

Enum constant argument list, 161
Space between empty

Annotation type member, 166
Enum constant argument list, 166

Parenthesis
Align right, 129
Prefer wrap after left, 106
Prefer wrap before right, 107
Wrap grouping, 108

Pattern
Date, 44
Time, 44

plug-in
Ant, 301
Console, 309
Eclipse, 315
IDEA, 327
JDeveloper, 337
jEdit, 347
Maven

1.0, 353
2.0, 357

NetBeans, 365
Plug-ins, 299
Policy

Wrapping, 80
Postfix operator

Space before, 135
Pragma comment

Definition, 226
Preferences GUI, 18
Prefix operator

Space after, 137
Preview, 20

Use current file, 31
Profile

Activate, 25
Add, 23
Alias, 25
Auto-switch, 35
Description, 24
Edit, 23
Name, 24
Nested, 24
Remove, 25

Profiles
Eclipse, 316
IDEA, 328
NetBeans, 365

Property field
JavaBeans, 211

Q
Qualifier

Never wrap, 105

R
RCS tags

Keep, 280
Read-only

Automatically checkout, 31
Refer to objects by their interfaces

Code Inspector, 291
Reflow

Multi-line comment, 233
Single-line comment, 232

Registry keys
Wrap, 109

Regular expression, 206, 207, 207, 207, 311
Code Inspector, 294
Getter/Setter, 212
Tester, 230

Relational operator
Space after, 137
Space before, 134

Remove
Blank lines, 200
Profile, 25
Redundant modifier, 55

Replace structures with classes
Code Inspector, 291

Repository, 49
return

Blank lines, 194
Continuation indent, 125
Insert parentheses, 54
Prefer wrap after, 106
Space after left parenthesis, 160
Space before left parenthesis, 156
Space before right parenthesis, 164

Right parenthesis
Align, 129

S
Save

Button, 19
Format during save, 35

SCM
Format during check-in, 35

431 INDEX

Scope
Search & Replace, 286

Search & Replace, 286
Add pattern, 288
Change pattern, 288
Javadoc comment, 287
Move pattern down, 289
Move pattern up, 289
Multi-line comment, 287
Remove pattern, 289
Scope, 286
Single-line comment, 287
String literal, 286

Selective formatting, 323
Separate multi-line XDoclet tags, 245
Separation, 187
Separator

Blank lines, 196
Separator comment, 214

Definition, 226
Descriptions, 218
Fill character, 218
Insert, 214

Between inner class sections, 215
Between medthods of inner classes, 217
Between methods, 216
Between sections, 214

Line Length, 219
Style, 218

Configure, 218
Serial version UID, 56, 56, 56
Settings, 17

Files, 29
Settings directory, 17
Setup Wizard, 4
Shift operator

Space after, 137
Space before, 134

Shortcut
Keyboard, 331, 340

Silent installation, 14
Single if

Keep on same line, 52
Single-line comment

Blank lines, 195
Definition, 225
Format, 231
Remove, 228
Search & Replace, 287

Wrap, 232
Single-type import

Collapse, 224
Software License

ANTLR, 387
Apache Software License, 389, 391
ASM, 395
Common Public License, 397
Creative Commons Attribution, 401
JDBM, 405
JDOM, 407
JGoodies, 409
One-JAR, 411
TreeTable, 413

Sort
Annotation, 213
Declaration, 201
Declarations, 202

Group similar methods, 204
Keep bean methods together, 205
Order, 202, 207

Imports, 220
Order, 220

Methods
By bean pattern, 203

Modifier
Order, 213

Modifiers, 212
Source level, 51
Space

After ampersand
Type parameter, 152

After colon
assert, 149
Conditional operator, 149, 149, 149

After comma
Annotation array, 143
Annotation member argument, 143
Array initializer, 146
Constructor call, 146
Constructor declaration parameter, 145
Constructor declaration throws clause, 145
Creator call, 146
Enum constant, 143, 143
extends clause, 143
for incrementor, 147
for initializer, 147
implements clause, 144
Method call, 146

432

Method declaration parameter, 145
Method declaration throws clause, 145
Multi-field, 144
Multi-variable, 144
Type argument, 147
Type parameter, 147

After ellipsis
Varargs, 152

After left angle bracket
Type argument, 173
Type parameter, 173

After left bracket
Array access, 171, 171
Array creator, 171

After left curly brace
Annotation, 169
Array initializer, 169
Compact declaration, 169

After left parenthesis
Annotation argument list, 157
catch, 160
Constructor call, 160
Constructor declaration, 157
Creator call, 161
Enum constant argument list, 157
Expression, 161
for, 158
if, 158
Method call, 160
Method declaration, 158
return, 160
switch, 159
synchronized, 159
throw, 159
Type cast, 161
while, 159

After question mark
Conditional operator, 151
Type argument, 151
Type parameter, 151

After right parenthesis
Type cast, 166

After semi
for, 150

Before ampersand
Type parameter, 152

Before colon
assert, 147
case, 148

Conditional operator, 148, 148, 148
Before comma

Annotation array, 138
Annotation member argument, 138
Array initializer, 141
Constructor call, 141
Constructor declaration parameter, 140
Constructor declaration throws clause, 140
Creator call, 141
Enum constant, 138, 138
extends clause, 139
for incrementor, 142
for initializer, 142
implements clause, 139
Method call, 141
Method declaration parameter, 140
Method declaration throws clause, 141
Multi-field, 139
Multi-variable, 139
Type argument, 142
Type parameter, 142

Before ellipsis
Varargs, 151

Before left angle bracket
Type argument, 173
Type parameter, 173

Before left bracket
Array creator, 171

Before left curly brace
Array initializer, 168
Compact declaration, 168

Before left parenthesis
Annotation argument list, 153, 153
catch, 156
Constructor call, 156
Constructor declaration, 154
Creator call, 157
Enum constant argument list, 153
for, 154
if, 154
Method call, 156
Method declaration, 154
return, 156
switch, 155
synchronized, 155
throw, 155
while, 155

Before operator
Assignment operator, 133, 133

433 INDEX

Concat operator, 135
Logical operator, 134
Mathematical operator, 134
Postfix operator, 135
Relational operator, 134
Shift operator, 134

Before question mark
Conditional operator, 150
Type argument, 150
Type parameter, 150

Before right angle bracket
Type argument, 174
Type parameter, 174

Before right bracket
Array access, 172
Array creator, 172

Before right curly brace
Annotation, 169
Array initializer, 170
Compact declaration, 170

Before right parenthesis
Annotation argument list, 161
catch, 164
Constructor call, 164
Constructor declaration, 162
Creator call, 165
Enum constant argument list, 161
Expression, 165
for, 163
if, 162
Method call, 165
Method declaration, 162
return, 164
switch, 163
synchronized, 164
throw, 163
Type cast, 165
while, 163

Before semi
for, 149

between empty braces
Array initializer, 170
Compact declaration, 170

between empty parentheses
Annotation argument list, 166
Constructor call, 167
Constructor declaration, 166
Creator call, 167
Enum constant argument list, 166

Method call, 167
Method declaration, 167

compact
Same direction parentheses, 168

empty brackets
Array creator, 172
Array declaration, 171, 172

Split
Multi-vars, 55

SQLJ clause
Blank lines, 196

Stacktrace
Show when logging, 49

Standard indentation, 113
Array initializer, 115

Stars
Remove leading, 244

static imports
Grouping, 222

Strategy
Indentation, 113

Strictly obey brace style, 64
String concatenation, 84
String concats, 82
String literal

Search & Replace, 286
switch

indent, 120
Insert braces, 67
Remove braces, 70
Space after left parenthesis, 159
Space before left parenthesis, 155
Space before right parenthesis, 163

synchronized
Comments, 78
Space after left parenthesis, 159
Space before left parenthesis, 155
Space before right parenthesis, 164

Synopsis, 310
System Environment variable, 40
System requirements, 3

T
Tabs, 131

leading, 131
size, 116
use, 131
Use in comments, 132

Tag section

434

Correction, 259
Tags

HTML, 277
Javadoc, 275
XDoclet, 277

Task
Ant, 301

taskdef, 303
Template, 266

Header, 283
Templates

Javadoc class, 266
Javadoc constructor, 270
Javadoc enum, 268
Javadoc field, 269
Javadoc getter, 273
Javadoc interface, 267
Javadoc method, 271
Javadoc setter, 272

Ternary operator
Align, 128
indent operands, 123
Wrap after colon, 104
Wrap after question, 104

Test, 31
Test Mode, 31
Threads, 34
throw

Insert parentheses, 54
Space after left parenthesis, 159
Space before left parenthesis, 155
Space before right parenthesis, 163

throws
Wrap after, 93
Wrap before, 92
Wrap types, 93

Trailing Comment, 118
Trailing Newline

Insert, 31
Treat two string literals as string concatenation, 84
TreeTable Software License, 413
Type argument

Space after comma, 147
Space after left angle bracket, 173
Space after question mark, 151
Space before comma, 142
Space before left angle bracket, 173
Space before question mark, 150
Space before right angle bracket, 174

Type cast
Space after left parenthesis, 161
Space after right parenthesis, 166
Space before right parenthesis, 165

Type parameter
Space after ampersand, 152
Space after comma, 147
Space after left bracket, 173
Space after question mark, 151
Space before ampersand, 152
Space before comma, 142
Space before left bracket, 173
Space before question mark, 150
Space before right angle bracket, 174
Wrap when exceed, 108

Type Repository, 49
Fail on error, 50
Log warning on error, 50

U
Unary operator

Space after, 137
Unattended installation, 14
Usage, 297

Examples, 313
Synopsis, 310

Use current file in preview, 31
Use interfaces only to define types

Code Inspector, 290
Use zero-length arrays

Code Inspector, 291

V
Varargs

Space after ellipsis, 152
Space before ellipsis, 151

Variable
Blank lines, 191
Environment, 38

W
while

Insert braces, 67
Remove braces, 69
Space after left parenthesis, 159
Space before left parenthesis, 155
Space before right parenthesis, 163

White Space, 132
After ampersand

Type parameter, 152

435 INDEX

After colon
assert, 149
Condtional operator, 149, 149, 149

After comma
Annotation array, 143
Annotation member argument, 143
Array initializer, 146
Constructor call, 146
Constructor declaration parameter, 145
Constructor declaration throws clause, 145
Creator call, 146
Enum constant, 143, 143
extends clause, 143
for incrementor, 147
for initializer, 147
implements clause, 144
Method call, 146
Method declaration parameter, 145
Method declaration throws clause, 145
Multi-field, 144
Multi-variable, 144
Type argument, 147
Type parameter, 147

After ellipsis
Varargs, 152

After left angle bracket
Type argument, 173
Type parameter, 173

After left bracket
Array access, 171, 171
Array creator, 171

After left curly brace
Annotation, 169
Array initializer, 169
Compact declaration, 169

After left parenthesis
Annotation argument list, 157
catch, 160
Constructor call, 160
Constructor declaration, 157
Creator call, 161
Enum constant argument list, 157
Expression, 161
for, 158
if, 158
Method call, 160
Method declaration, 158
return, 160
switch, 159

synchronized, 159
throw, 159
Type cast, 161
while, 159

After operator
Assignment operator, 135, 135
Bitwise operator, 136
Complement, 136
Concat operator, 137
Logical operator, 136
Mathematical operator, 136
Prefix, 137
Relational operator, 137
Shift operator, 137
Unary, 137

After question mark
Conditional operator, 151
Type argument, 151
Type parameter, 151

After right parenthesis
Type cast, 166

After semi
for, 150

Before ampersand
Type parameter, 152

Before colon
assert, 147
case, 148
Condtional operator, 148, 148, 148

Before comma
Annotation array, 138
Annotation member argument, 138
Array initializer, 141
Constructor call, 141
Constructor declaration parameter, 140
Constructor declaration throws clause, 140
Creator call, 141
Enum constant, 138, 138
extends clause, 139
for incrementor, 142
for initializer, 142
implements clause, 139
Method call, 141
Method declaration parameter, 140
Method declaration throws clause, 141
Multi-field, 139
Multi-variable, 139
Type argument, 142
Type parameter, 142

436

Before ellipsis
Varargs, 151

Before left angle bracket
Type argument, 173
Type parameter, 173

Before left bracket
Array creator, 171

Before left curly brace
Array initializer, 168
Compact declaration, 168

Before left parenthesis
Annotation argument list, 153, 153
catch, 156
Constructor call, 156
Constructor declaration, 154
Creator call, 157
Enum constant argument list, 153
for, 154
if, 154
Method call, 156
Method declaration, 154
return, 156
switch, 155
synchronized, 155
throw, 155
while, 155

Before operator
Assignment operator, 133, 133
Bitwise operator, 134
Concat operator, 135
Logical operator, 134
Mathematical operator, 134
Postfix operator, 135
Relational operator, 134
Shift operator, 134

Before question mark
Conditional operator, 150
Type argument, 150
Type parameter, 150

Before right angle bracket
Type argument, 174
Type parameter, 174

Before right bracket
Array access, 172
Array creator, 172

Before right curly brace
Annotation, 169
Array initializer, 170
Compact declaration, 170

Before right parenthesis
Annotation argument list, 161
catch, 164
Constructor call, 164
Constructor declaration, 162
Creator call, 165
Enum constant argument list, 161
Expression, 165
for, 163
if, 162
Method call, 165
Method declaration, 162
return, 164
switch, 163
synchronized, 164
throw, 163
Type cast, 165
while, 163

Before semi
for, 149

between empty braces
Array initializer, 170
Compact declaration, 170

between empty parentheses
Annotation argument list, 166
Constructor call, 167
Constructor declaration, 166
Creator call, 167
Enum constant argument list, 166
Method call, 167
Method declaration, 167

empty brackets
Array creator, 172
Array declaration, 171, 172

White space
Arrays, 185

Accessor, 186
Allocation, 185
Declaration, 185
Initializer, 185

Between empty parentheses
Declaration parameter, 166

Choose view, 132
compact

Same direction parentheses, 168
Control Statements, 179

assert, 181
catch, 181
if, 179

437 INDEX

return, 182
switch, 180
synchronized, 181
throw, 181
while, 179, 180

Declarations, 175
Annotations, 176
Class, 175
Constructor, 177
Enum, 175
Field, 177
Interface, 175
Labels, 179
Local variable, 179
Method, 178

Expressions, 182
Constructor call, 182
Creator call, 182
Method call, 183
Operator, 183
Parenthesized expressions, 184
Type cast, 185

normalize, 245
Parameterized types, 186

Type argument, 187
Type parameter, 186

Space after comma
Call arguments, 146
Declaration parameter, 144
extends/implements, 143
for, 146
Multi-declaration, 144
Parameterized types, 147
Throws clauses, 145

Space after left parenthesis
Call arguments, 160
Declaration parameter, 157
Statement expressions, 158

Space after right parenthesis, 166
Space before comma

Call arguments, 141
Declaration parameter, 140
extends/implements, 139
for, 142
Multi-declaration, 139
Parameterized types, 142
Throws clauses, 140

Space before left parenthesis
Call arguments, 156

Declaration parameter, 154
Statement expressions, 154

Space before right parenthesis
Call arguments, 164
Declaration parameter, 162
Statement expressions, 162

Space between empty parentheses, 166
Call arguments, 167

Wildcard alias, 26
Wrapping, 79, 87

Always
After annotation members, 102
After class keyword, 90
After extends types, 91
After implements types, 92
After label, 109
After method call arguments, 98
After multi-variable declarators, 95
After multi-variable type, 94
After nested call arguments, 99
After registry keys, 109
After throws keyword, 93
After throws types, 93
Before declaration keyword, 90
Before declaration parameter, 95
Before extends keyword, 90
Before implements keyword, 92
Before method name, 95
Before throws keyword, 92
Enum constant, 94
Field name, 94
Ternary colon, 104
Ternary question, 104

Always when exceed
Grouping parentheses, 108
import, 89
Type parameter, 108

Array
As needed, 111
Wrap after element, 112
Wrap all elements when exceed, 111

Automatic line wrapping, 79
Avoid bare left parenthesis, 85
Call arguments, 86
Disable for complex expressions, 85
In-line tags, 246
Keep line breaks, 80

Array, 83
Call argument, 81

438

Declaration parameter, 80
Operators, 81
String concats, 82

Line length, 80
Never

Chained index operator, 104
Dotted expression, 105
Qualifier, 105

Policy, 80
Prefer wrap

After assignment, 105
After left parenthesis, 106
After return, 106
Before right parenthesis, 107

Strategies, 87
Never Wrap, 87
Wrap all when exceed, 89
Wrap all when first wrapped, 88
Wrap always, 89
Wrap only when necessary, 88
Wrap when exceed, 88

Strictly obey 'Keep line breaks', 84
Treat two string literals as string concatenation,
84
Within call after assignment, 86
Wrap all if first wrapped

Parameter/expression, 110

X
XDoclet

build-in tags, 379
define custom tag, 277
Separate multi-line Javadoc tags, 245
sort, 240

	Jalopy - User’s Guide v. 1.9.4
	Contents
	Acknowledgments
	Introduction
	Part I. Core
	Chapter 1. Installation
	1.1. System requirements
	1.2. Prerequisites
	1.3. Wizard Installation
	1.3.1. Welcome
	1.3.2. License Agreement
	1.3.3. Installation Features
	1.3.4. Online Help System (optional)
	1.3.5. Settings Import (optional)
	1.3.6. Configure plug-in Defaults
	1.3.7. Confirmation
	1.3.8. Installation
	1.3.9. Finish

	1.4. Silent Installation
	1.5. Manual Installation

	Chapter 2. Configuration
	2.1. Overview
	2.1.1. Preferences GUI
	2.1.1.1. Main window
	2.1.1.2. Configuration window
	2.1.1.3. Preview window
	2.1.1.4. Help window
	2.1.1.5. Editing profiles
	2.1.1.6. Adding profiles
	2.1.1.7. Removing profiles
	2.1.1.8. Activating profiles
	2.1.1.9. Defining aliases
	2.1.1.10. Import code convention
	2.1.1.11. Export code convention

	2.1.2. Settings files

	2.2. Global
	2.2.1. General
	2.2.1.1. Miscellaneous

	2.2.2. Misc
	2.2.2.1. History
	2.2.2.2. Backup
	2.2.2.3. Threads
	2.2.2.4. Force separator
	2.2.2.5. Force Encoding

	2.2.3. Auto

	2.3. File Types
	2.3.1. File types
	2.3.2. File extensions

	2.4. Environment
	2.4.1. Custom environment variables
	2.4.2. System environment variables
	2.4.3. Local environment variables
	2.4.4. Usage
	2.4.5. Date & Time settings

	2.5. Exclusions
	2.5.1. Exclusion patterns

	2.6. Messages
	2.6.1. Categories
	2.6.2. Logging
	2.6.3. Misc

	2.7. Repository
	2.7.1. Searching the repository
	2.7.2. Displaying info about the repository
	2.7.3. Adding libraries to the repository
	2.7.4. Removing the repository
	2.7.5. Initialization

	2.8. Java
	2.8.1. Source compatibility
	2.8.2. Keep on same line
	2.8.3. Insert parentheses
	2.8.4. Miscellaneous
	2.8.5. Code Generation
	2.8.6. Braces
	2.8.6.1. Layout
	2.8.6.1.1. Line Wrapping
	2.8.6.1.2. White Space

	2.8.6.2. Misc
	2.8.6.2.1. Insert braces for
	2.8.6.2.2. Remove braces
	2.8.6.2.3. Compact braces
	2.8.6.2.4. Empty braces

	2.8.6.3. Comments
	2.8.6.3.1. Insert identifying comments for

	2.8.7. Line Wrapping
	2.8.7.1. General
	2.8.7.1.1. Policy
	2.8.7.1.2. Keep line breaks
	2.8.7.1.3. Miscellaneous

	2.8.7.2. Options
	2.8.7.3. Arrays

	2.8.8. Indentation
	2.8.8.1. General
	2.8.8.1.1. Strategies
	2.8.8.1.2. Sizes

	2.8.8.2. Misc
	2.8.8.2.1. Indent
	2.8.8.2.2. Continuation indent
	2.8.8.2.3. Align

	2.8.8.3. Tabs

	2.8.9. White Space
	2.8.9.1. Token view
	2.8.9.1.1. Before operator
	2.8.9.1.2. After operator
	2.8.9.1.3. Before comma
	2.8.9.1.4. After comma
	2.8.9.1.5. Before colon
	2.8.9.1.6. After colon
	2.8.9.1.7. Before semicolon
	2.8.9.1.8. After semicolon
	2.8.9.1.9. Before question mark
	2.8.9.1.10. After question mark
	2.8.9.1.11. Before ellipsis
	2.8.9.1.12. After ellipsis
	2.8.9.1.13. Before ampersand
	2.8.9.1.14. After ampersand
	2.8.9.1.15. Before left parenthesis
	2.8.9.1.16. After left parenthesis
	2.8.9.1.17. Before right parenthesis
	2.8.9.1.18. After right parenthesis
	2.8.9.1.19. Between empty parentheses
	2.8.9.1.20. Other parentheses
	2.8.9.1.21. Before left brace
	2.8.9.1.22. After left brace
	2.8.9.1.23. Before right brace
	2.8.9.1.24. Between empty braces
	2.8.9.1.25. Before left bracket
	2.8.9.1.26. After left bracket
	2.8.9.1.27. Before right bracket
	2.8.9.1.28. Between empty brackets
	2.8.9.1.29. Before left angle bracket
	2.8.9.1.30. After left angle bracket
	2.8.9.1.31. Before right angle bracket

	2.8.9.2. Element view
	2.8.9.2.1. Declarations
	2.8.9.2.1.1. Classes
	2.8.9.2.1.2. Interfaces
	2.8.9.2.1.3. Enums
	2.8.9.2.1.4. Annotations
	2.8.9.2.1.5. Fields
	2.8.9.2.1.6. Constructors
	2.8.9.2.1.7. Methods
	2.8.9.2.1.8. Local variables
	2.8.9.2.1.9. Labels

	2.8.9.2.2. Control Statements
	2.8.9.2.2.1. if
	2.8.9.2.2.2. for
	2.8.9.2.2.3. while/do-while
	2.8.9.2.2.4. switch
	2.8.9.2.2.5. synchronized
	2.8.9.2.2.6. catch
	2.8.9.2.2.7. assert
	2.8.9.2.2.8. throw
	2.8.9.2.2.9. return

	2.8.9.2.3. Expressions
	2.8.9.2.3.1. Constructor call
	2.8.9.2.3.2. Creator call
	2.8.9.2.3.3. Method call
	2.8.9.2.3.4. Operators
	2.8.9.2.3.5. Parenthesized expression
	2.8.9.2.3.6. Type cast

	2.8.9.2.4. Arrays
	2.8.9.2.4.1. Declaration
	2.8.9.2.4.2. Allocation
	2.8.9.2.4.3. Initializer
	2.8.9.2.4.4. Accessor

	2.8.9.2.5. Parameterized types
	2.8.9.2.5.1. Type parameter
	2.8.9.2.5.2. Type argument

	2.8.10. Separation
	2.8.10.1. General
	2.8.10.2. Misc
	2.8.10.2.1. Chunks

	2.8.11. Sorting
	2.8.11.1. Declarations
	2.8.11.1.1. Methods
	2.8.11.1.2. Static Methods
	2.8.11.1.3. Classes, Interfaces, Enums
	2.8.11.1.4. Access Modifier

	2.8.11.2. Modifiers
	2.8.11.2.1. Sort Order

	2.8.11.3. Comments
	2.8.11.3.1. Insert
	2.8.11.3.2. Descriptions
	2.8.11.3.3. Style

	2.8.12. Imports
	2.8.12.1. General
	2.8.12.2. Optimization

	2.8.13. Comments
	2.8.13.1. Comment types
	2.8.13.2. Comment association
	2.8.13.3. Remove
	2.8.13.3.1. Regular expression tester

	2.8.13.4. Format
	2.8.13.5. Wrap
	2.8.13.6. Misc

	2.8.14. Javadoc
	2.8.14.1. Format
	2.8.14.1.1. Format comments
	2.8.14.1.2. Block tags
	2.8.14.1.3. Compact elements

	2.8.14.2. Line Wrapping
	2.8.14.2.1. Wrapping
	2.8.14.2.2. Misc

	2.8.14.3. Generation
	2.8.14.4. Correction
	2.8.14.5. Templates
	2.8.14.5.1. Class template
	2.8.14.5.2. Interface template
	2.8.14.5.3. Enum template
	2.8.14.5.4. Field template
	2.8.14.5.5. Constructor template
	2.8.14.5.6. Method template
	2.8.14.5.7. Setter template
	2.8.14.5.8. Getter template

	2.8.14.6. Tags
	2.8.14.6.1. Javadoc
	2.8.14.6.1.1. Block tags
	2.8.14.6.1.2. In-line tags

	2.8.14.6.2. XDoclet
	2.8.14.6.3. HTML

	2.8.15. Header
	2.8.15.1. Options
	2.8.15.1.1. Detection

	2.8.15.2. Template

	2.8.16. Footer
	2.8.17. Annotations
	2.8.17.1. Annotation patterns

	2.8.18. Search & Replace
	2.8.18.1. Scope
	2.8.18.2. Patterns

	2.8.19. Code Inspector
	2.8.19.1. Checking
	2.8.19.1.1. Checks

	2.8.19.2. Naming
	2.8.19.2.1. Change Naming Pattern

	Chapter 3. Usage

	Part II. Plug-ins
	Chapter 4. Ant Task
	4.1. Installation
	4.1.1. System requirements
	4.1.2. Installation

	4.2. Configuration
	4.3. Usage
	4.3.1. Parameters
	4.3.2. Parameters specified as nested elements

	4.4. Example

	Chapter 5. Console Application
	5.1. Installation
	5.1.1. System requirements
	5.1.2. Installation

	5.2. Configuration
	5.3. Usage
	5.3.1. Synopsis

	5.4. Examples

	Chapter 6. Eclipse Plug-in
	6.1. Installation
	6.1.1. System requirements
	6.1.2. Setup

	6.2. Configuration
	6.2.1. Profiles
	6.2.2. Messages
	6.2.3. Synchronize
	6.2.4. Updates
	6.2.5. Keyboard accelerator

	6.3. Usage
	6.3.1. Actions

	Chapter 7. IntelliJ IDEA Plug-in
	7.1. Installation
	7.1.1. System requirements
	7.1.2. Setup

	7.2. Configuration
	7.2.1. Profiles
	7.2.2. Synchronize
	7.2.3. Update
	7.2.4. Keyboard Shortcut

	7.3. Usage
	7.3.1. Actions
	7.3.2. Runtime Messages

	Chapter 8. JDeveloper Extension
	8.1. Installation
	8.1.1. System requirements
	8.1.2. Setup

	8.2. Configuration
	8.2.1. Profile preferences
	8.2.2. Synchronize preferences
	8.2.3. Update preferences
	8.2.4. Keyboard Accelerator

	8.3. Usage
	8.3.1. Actions
	8.3.2. Runtime Messages

	Chapter 9. jEdit Plug-in
	9.1. Installation
	9.1.1. System requirements
	9.1.2. Installation

	9.2. Integration
	9.2.1. Menu bar
	9.2.2. Dockable window
	9.2.3. Keyboard shortcuts
	9.2.4. Context menu
	9.2.5. File System Browser Plugins menu

	9.3. Configuration

	Chapter 10. Maven 1 Plug-in
	10.1. Installation
	10.1.1. System requirements
	10.1.2. Setup

	10.2. Configuration
	10.2.1. Properties

	10.3. Usage
	10.3.1. Goals

	Chapter 11. Maven 2 Plug-in
	11.1. Installation
	11.1.1. System requirements
	11.1.2. Setup

	11.2. Configuration
	11.3. Usage
	11.4. Example

	Chapter 12. NetBeans Module
	12.1. Installation
	12.1.1. System requirements
	12.1.2. Setup

	12.2. Configuration
	12.2.1. Profiles
	12.2.2. Synchronize
	12.2.3. Updates
	12.2.4. Keyboard shortcuts

	12.3. Usage
	12.3.1. Actions
	12.3.2. Runtime Messages

	Part III. Appendices
	Appendix A. What features require type resolution?
	Appendix B. Library Dependencies
	Appendix C. Build-in XDoclet tags
	Appendix D. ANTLR Software License
	Appendix E. Apache Software License 1.1
	Appendix F. Apache Software License 2.0
	Appendix G. ASM Software License
	Appendix H. Common Public License 1.0
	Appendix I. Creative Commons Attribution License
	Appendix J. JDBM Software License
	Appendix K. JDOM Software License
	Appendix L. JGoodies Software License
	Appendix M. One-JAR Software License
	Appendix N. TreeTable Software License
	Resources
	Bibliography

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

