Jalopy - User’s Guide v. 1.9.3

Jalopy - User’s Guide v. 1.9.3

Copyright © 2003-2009 TRIEMAX Software

Contents

ACKNOWIBAgMENTS vil
INtrodUCtioN . . o X
PART | Core 1
CHAPTER 1 Installation 3
1.1 SyStem reqUIrBMENTS oo 3

1.2 PrerequUISIteS oo 3

1.3 Wizard Installation 4

1.4 Silent Installation 15

1.5 Manual Installation 17
CHAPTER 2 Configuration 19
20 OVBIVIBW . . o 19

200 Preferences GUI . ..o oo 20

212 Settings filles o 3

2.2 Global . .o 31

220 GENeral . o 32

222 MISC . oo 34

223 AULD . o 37

23 Rl TYPBS . .o 38

2.3 Rl tYPeS . oo 39

232 File XBNSIONSot 39

24 ENVIIONMENT . . o o 40

240 Custom variables vy

242 Systemvariables 43

243 Local variables 43

2A4USaQB 44

245 Date/Time . . oo 46

25 EXCIUSIONS . . oo 47

251 Exclusion patterns 47

28 MBSSAGES . . . oo 48

281 Categories . . . oot 49

282 L0Q0INg . . . 50

283 MISC . oo 51

2.7 REPOSIOTY . . oo 51

2.7.1 Searching the repository 52

2.7.2 Displaying info about the repository 52

2.7.3 Adding libraries to the repository 53

2.7.4 Removing the repository o 53

275 Initialization 53

2.8 Java . 53

2.8.1 Source compatibility 4

282 Keeponsame liNB 54

2.8.3Insert parentheses 56

284 MISCEIlANBOUS « . . . oot 57

285 Code GENeration 59

288 Braces 61

287 Line Wrappingo 80

288 Indentation m

289 White SPaceo 130

2810 Separation 183

1773

2800 SOMtiNg . . o 196

2802 IMPOTES . .o 214

2.8.13 ComMmMENtS . . .o 219

2814 Javados 231

2.8 05 Header . . .o 274

2806 FOOTEr . . .o 279

2817 ANNOtationsS 280

2818 Search & Replace 282

2.8.19 Code INSPECIOro 285

CHAPTER 3 Usage 293
PART Il Plug-ins 295
CHAPTER 4 AntTask 297
A0 Installationo 297

4.1.7 System requUIrEMENTS oo 297

412 Installation 297

4.2 Configurationo 298

A3 USAQE . . .o oo 299

431 Parameters 300

4.3.2 Parameters specified as nested elements 302

A EXamplE . . 303
CHAPTER 5 Console Application 305
B Installationo 305

51T System reqUIrBMENESot 305

B2 Installation . ..o 305

5.2 Configuration 306

D3 USage . . 306

D3 SYNOPSIS . . 306

DA EXaMPIBS . . o 309
CHAPTER 6 Eclipse Plug-in 3N
B.17 Installation o 3N

B.1.17 SyStem reqUIrBMENES ot 311

B.1.2 SBUD . . o 3N

B.2 INtBgration 312

B.2.1 Preferenceso 312

6.2.2 Java Editor pop-Up MenU 313

6.2.3 Project, Folder, File pop-up menus 315

6.3 Configuration 316
CHAPTER 7 IDEA Plug-in 317
Thnstallation . .. oo 317

700 SyStem reqUITBMENTSottt 317

T2 SOtUP - oo 317

T2 IMegration o 317

T2 SEHNGS . . oo 318

7.2.2 Code Editor Pop-up Menu o 318

7.2.3 Tool Windows Popup Menu 319

724 Tool window oo 319

7.3 Configuration 321
CHAPTER 8 JDeveloper Extension 323
Bl nstallation 323

8.1.1 SyStem requUIFEMENTS o 323

8.1, SBIUD . o .o 323

w

8.2 INtegration 323

8.2.1 Preferences dialog 324

8.2.2 Navigator CONtext MeNU o 324

8.2.3 Editor context MeNU o 325

824 Log WINAOW 326

8.2.5 Keyboard Accelerator 328

8.3 Configuration 329
CHAPTER 9 jEdit Plug-in 331
9 Installation 331

9.1.7 SyStem reqUIrBMENESottt e e 331

912 Installation 331

9.2 INtegration oo 331

921 Menu bar 332

9.2.2 Dockable Window 332

9.2.3 Keyboard ShortCuts o 334

9.2.4 ConteXt MEBNU oottt e e e 335

9.2.5 File System Browser Plugins menu 336

9.3 Configuration oo 336
CHAPTER 10 Maven 1 Plug-in 337
101 Installationo 337
10.1.7 System requUIreMENtS 337

1012 SBtUD . . oo 337

10.2 Configuration oo 338

10.2.1 Properties 338

10.3 USAGE . . . oo 340

1030 Goals . oo 340

CHAPTER 11 Maven 2 Plug-in k7]
11T nstallation . . .o 341
111,17 System requUIreMENtS o 341

1102 SBtUD - . o 341

11.2 Configuration oo 342

113 USAQE . . oo 342

1A EXampIE . 346
CHAPTER 12 NetBeans Module 349
120 Installationo 349
12.1.1 SyStem reqUIrEMENTSottt e e 349

1202 SBIUP .« o ot 349

12,2 INtegration 349

12.2.1 BAItor pop-Up MBNUo 349

12.2.2 EXPIOTEr pop-UP MBNUo e 350

12.2.3 Workspace main MBNU oo 351

12.2.4 Message WINAOW oot 352

12.2.5 Keyboard ShortCUts o 354

1226 Options dialogo 355

12.3 Configuration 356
PART Il Appendices 357
Library DEpendencies 359
Build-in XDoclet tagso 361
ANTLR Software LICENSEo 369
Apache License 1.1 .. . 371
Apache License 2.0 373
ASM Software LICBNSE o oot 377
Common PUblic LICBNSEo 379

v JALOPY - USERS GUIDE V19 3

Creative Commons Attribution LICENSE o o 383

JDBM Software LiCenSe 387
JDOM Software LICBNSEo 389
JGoodies Software LICBNSE 391
One-JAR Software LICBNSEo 393
TreeTable Software LICBNSE 395
RESOUICES . . 397
Bibliography 399
IndeX . .. am

vi

Acknowledgments

First and foremost we wish to thank the creators of the free software libraries we use. Jalopy includes
source code and artwork developed by

* the ANTLR Project

* the Apache Software Foundation
* Ayman Al-Sairafi

* Bernhard Picher

* the Eclipse Project

* Dr. Heinz M. Kabutz

* the JDBM Project

* the JDOM Project

* Jean-Marie Dautelle

* Karsten Lentzsch

* the Object Web Consortium
* Simon Tuffs

* Sun Microsystems, Inc.

Please refer to Appendix A, Library Dependencies for a more detailed list and the individual licensing
terms.

We would like to say a big thanks to those who contributed code during the Open Source days. Thanks
also to all users and customers who provided feedback, submitted bug reports and suggested new fea-
tures.

vii

http://www.antlr.org/
http://www.apache.org/
http://code.google.com/p/jsyntaxpane/
http://www.repher.at/pages/index.php?show=coding
http://www.eclipse.org/
http://www.javaspecialists.eu/
http://jdbm.sourceforge.net/
http://www.jdom.org/
http://javolution.org/
http://www.jgoodies.com/
http://asm.objectweb.org/
http://one-jar.sourceforge.net/
http://java.sun.com/products/jfc/tsc/articles/treetable2/index.html

Introduction

Jalopy is an advanced source code formatter for the Sun Java™ Programming Language. It can automate

all aspects of code layout, like indentation, aligning, line wrapping, brace styling, grouping and sorting.
Without effort you can achieve a consistent coding style across your development team, or present your

code in different shapes for purposes like code review or customer shipment.

Jalopy is written in Java™ and provides many Plug-ins to integrate the formatting engine into some

of the most popular Java applications, including Ant, Eclipse, Intelli] IDEA, Sun Java Studio Creator,
Borland JBuilder, CodeGear JBuilder, Oracle JDeveloper, jEdit, NetBeans, Maven, IBM Rational Ap-
plication Developer (RAD), Sun ONE Studio and IBM Websphere Application Developer (WSAD)

and others, but can be used standalone as well.

How much is good layout worth?
Our studies support the claim that knowledge of programming plans and rules of pro-
gramming discourse can have a significant impact on programming comprehension. In
their book called [The] Elements of [Programming] Style, Kernighan and Plauger also
identify what we would call discourse rules. Our empirical results put teeth into these
rules: It is not merely a matter of aesthetics that programs should be written in a par-
ticular style. Rather there is a psychological basis for writing programs in a convention-
al manner: programmers have strong expectations that other programmers will follow
these discourse rules. If the rules are violated, then the utility afforded by the expecta-
tions that programmers have built up over time is effectively nullified. The results from
the experiments with novice and advanced student programmers and with professional
programmers described in this paper provide clear support for this claim.

—Elliot Soloway and Kate Ehrlich

What does it do for you?

Jalopy accurately represents the logical structure of your code. That’s the primary purpose of any
source code formatting. Indentation, white space and line wrapping are used in a sensible way to
show the structure of your code.

Jalopy consistently represents the logical structure of your code. Nearly impossible to achieve man-
ually. Scope levels are always correctly indented, braces and brackets are always found at the same
places.

Jalopy improves the readability of your code. Your code layout will always meet the expectations laid
out by your team no matter when a file was written or by whom.

Jalopy makes your code withstand modifications. A developer don’t have to care anymore whether
modifying one line of code may require modifying several others in order to achieve consistency.

Jalopy increases the productivity of your developers. They can concentrate on the design and im-
plementation issues, instead of spending time struggling with the code style. Developers may even
write code in whatever style they prefer, formatting it before they submit files to the repository.

ix

How can it be used?

* Jalopy is especially well-suited for client-side use by developers. It tightly integrates with all common
Java IDE applications to serve as an integral part of any source code editing.

* Jalopy can be added into your SCM. Your sources are formatted on the server side before they are
committed to the repository. This can currently be achieved using custom scripting with the Console
Plug-in.

* Jalopy supports usage as part of your build process. Your sources may be formatted after every
compilation, or on the checkout/checkin process. Jalopy already provides support for the well-known
Ant and Maven build tools and can be easily integrated with many others.

HOW CAN IT BE USED? x

Part |. Core

This part of the manual covers the core Jalopy engine: generic installation and usage instructions along
with a detailed discussion of the available options to customize application behavior and formatting
output.

* Chapter 1, Installation
* Chapter 2, Configuration
* Chapter 3, Usage

Chapter 1. Installation

1.1

1.2

Describes the steps necessary to install a Jalopy release.

System requirements

Jalopy will run on any Pentium-class machine with a minimum of 256 MB RAM. You
may succeed with less, but it’s not recommended for a good user experience. Depending on
your options, you need between 10-20 MB free disk space for the installation files. During
runtime, additional space is required for settings, caches and backup, typically between 5-50
MB, but this again depends on your project size and setup.

The supported operating systems are: Linux, Mac OS X (x86 only), Solaris, Unix, Win-
dows XP or later. Jalopy should run on all platforms that provide a suitable Java VM.

Jalopy requires a properly configured Java JDK version 1.4 or later on your system. We
recommend to use a more recent version for best performance.

Prerequisites

Installation should be preferably performed below the user directory, when possible. If you
should need to install into a different target directory, please make sure that the setup wizard
is invoked with sufficient user privileges, because it may need to create directories below
certain application folders that might not be accessible as normal user.

If you choose to install any of the provided IDE plug-ins, you must close any running
target application(s) prior to installation. Otherwise setup may fail, because necessary files
cannot be installed or obsolete files cannot be removed.

Download Online Help

During installation you will be asked whether you want to download and install the online
help for the preferences dialog. If you're installing on a machine without Internet access,
you can download the help file separately from http://www.triemax.com/download/jalopy-
help-1.9.3.jar and either place it along the directory where the installer sits—it will then
be picked up and installed automatically by the installer. Or copy the file into the Jalopy
settings directory, e.g. on a typical Windows XP system to C:\ Docunents and Set -
ti ngs\ John Doo\.j al opy\ 1. 9.3\ al opy-hel p-1. 9. 3. ar. You can find more infor-
mation about the Jalopy settings directory in Section 2.1, “Overview”.

The setup wizard will install the online help always into the Jalopy settings directory as
described above. But if you're doing a custom installation, because you want the software
to be available for all your developers without requiring them to do any extra work on
their client machines, you can place the file into the same directory where the binaries
have been installed, e.g. if the software was installed into C: \ Progr am Fi | es\ j al opy, the
binaries can be found in C:\ Program Fi | es\j al opy\li b. Just copy the help file into
this directory and it will be available to all users of the binary.

http://www.triemax.com/download/jalopy-help-1.9.3.jar
http://www.triemax.com/download/jalopy-help-1.9.3.jar

1.3 Wizard Installation

Jalopy comes as a compressed JAR Archive (JAR) that contains all necessary application files.
The JAR is executable and provides a graphical setup wizard that lets you install the software
in a few easy steps. If youre about to install Jalopy for the first time, wizard installation
is highly recommended. When upgrading, it is usually much simpler to perform a silent
install as described in Section 1.4, “Silent Installation”.

WARNING Please note that there is a common bug with Microsoft Internet
Explorer that sometimes renames the provided JAR file to one with
the .zip extension. If the downloaded file ends with .zip, simply
rename the extension to make the installer work.

Step 1: Startup

To start the setup wizard, you may open a shell and type

%java -jar jalopy-setup-1.9.3_156.jar

at the command line. But with modern Java virtual machines, it is usually possible to launch
the installer by just double-clicking the downloaded JAR file from within your file manager.
If your system should be not configured this way, you can always resort to the manual
invocation as described above.

Step 2: Welcome

After you've invoked the setup wizard, the welcome screen will appear shortly.

WIZARD INSTALLATION 4

Figure 1.1. Setup Wizard Welcome Screen

Welcome to the Jalopy Setup Wizard

Thiz sensg program will e you install Jaapy 1.9.3 build 141 o yaus computier.

Click 'Mext' to contimue. To abart the irstallakion, click "Cancel’ at any time.

Copyright & 2003-2003 TRIEMAX Safazre. This Frogram & pratecoed by capyright
losws arsd ipmiraarimnad traatii.

[Ean:zl Y «Back {—Hn.-l-!ll—]

Each wizard page contains a button bar at the bottom that provides the available page
actions. To proceed to the next page, click the Nexz button. When available, you can press
the Back button to return to the previous page and alter your selections.

You can use the Cancel button at any time to abort the installation. A dialog will appear
that asks for confirmation.

Figure 1.2. Cancel Setup Wizard

e

Do you really want to cancel the setup?

I:I/J Frass ‘Lot ta quit the instalation. Press ‘Canbmase’ to go o,

Press the Exit button to terminate the setup wizard. Press Continue to close the dialog and
continue with the installation.

CHAPTER 1 INSTALLATION

Step 3: License Agreement
Pressing the Vext button on the Welcome Page will display the License Agreement.

Figure 1.3. Setup Wizard License Agreement

~oa 0 000 lakaySewpWizad 00

Licenee Agrasmant =]
Meyse ragd the followng lcense agrasmers carefully. u_

IRIENAN Softwerw Binary Softwaze Licezes Agrescmnt

far ths

Jalopy Bouree Codo Formatter

TRITEHMAE ROPTEARE ("TRTEMAX") T8 BILLTHE TO LICEMER TR ACFTHMRE TLENTIFTED
BELOW To Y0¥ HOHLY ULGE THE COMGITION THRT ¥OU MCSCEPT ARLE OF THE TERNE COSTRIBED
IE THIS BIHARY BOFTHADE LICEMESE ASHEEMENT AND SUPPLEMENTAL LICENSE TERMS
|COLLECTIVELY “AGREEMENT®|. FLEASE READ THE ARGREEMEET CARZFULLY. DY DOKELOADING,
IRFTALLING, COPYING, SAVIKG OR OTHRERWIGE DEIHG THIS SO0FTWARE, TOU (AR DEFIHED
RELOW}| BEOOME K FARTY 7O TATR ACKERMEMT ARG YOO KRR BOUHD BY ALL TAR TERSA AED
COMBITIONE OF THIS RCAEEMERT. IF ¥YOU 50 HOT ROAEE IO ARHY OF THE TEREE OR RHY OF
THE COPOITIONS, OR LHY OF THE TEXNE 0f COEDITIONE ISM'T WALID IN ¥YOUR COUNTRY,
¥O0 MUST MOT IMSTALL OF UTHERWISE USE THE SOFIWARE. IF E00 ALREZARDY DOWKLORDED OR
IESTALLED SOFTHARE, YOO MUST REMOVE TEE SOFTWARE PROM YOUR SYSTEM AND DESTROY
ALL £0RPIRA.

1. DEFINITIONS. ‘HOTHARE" mmanm thwe bizecy code of Jalopy Souzcw Codwe
Formetter with all its documsntation and chhezwies bondled 2iles, im whols
ar in parta.
AU for "FTOUR"} means an Indlwidoal or a legal entiby emerolaing righis L
undoe , and complying with all of the terra of, thio Agecoment. For legal =

—— el - Al i el e e e b semd e e B T &y S —_— - —
) | accopt the terres b the licerce agroerent

) 1do not accept Hie barms im the license agresment

Cancel | ¢ «Back
I:. i,
A

Read the terms carefully! You need to accept the license agreement before you can proceed
with the installation. Select the 7 accept the terms in the license agreement item and press the
Next button to proceed.

Step 4: Installation Features

Pressing the Vext button on the License Terms page will bring up the Installation Features
page that lets you select what program features setup should install and how.

STEP 3: LICENSE AGREEMENT 6

Figure 1.4. Setup Wizard Installation Features

Installation FRamras =
smlect tue prograr features Sesup wil instal, u_

Salect an item im the liss beloaw bo change how a feature & inssglled,

L] Ant 1.5 of later

M Command-line

M Fclipse 3.0 - 3.5 J RAD £ - 7.5.4 Create Uodate Site
] IDEA 5.0 - B.L4

M lawa Studia Creatar 2

1 JBuilder 2007 - 2006

[|Dewesloper 10g (5.0.5.1 - 10.1.2)

O |Deweloper 10g (10.1.3 - 10.1.3.4) f 11g

L jEdit 4.1 - 4.2

[jEdit 4.3 pre 17

O] Maven 10 - 1.1

[Maven 2.0 - 2.2.0

HetBeans 4.0 - §.ERCL Irsral inps IDE

Inszadl oo
[Choose.. |

I:_ Cancel :I { +« Back ::I H—I—!

Select any of the check boxes to mark a feature for installation. Should you ever run the
installer again, your choices from the last session are remembered and the screen configured
accordingly. When you first select a feature, a file chooser pops up that lets you select the
target directory for the specific application. This is usually the root installation or settings
directory of the application.

CHAPTER 1 INSTALLATION

Figure 1.5. Choose Ant Installation Directory

Choose the root directory of your Ant installation. This directory is usually
referred (o as ANT_HOME.

* [Aoplications &
S ant-1.7.1]

* [l ecipse-3.4
® B Firefox.apn
F [jalopy-1.9.1
¢ [l jalopy-1.9.2
k= [HetBeans §_l.app
[E stuffl Fxpander.anp
e L Thunderbird.app
L3 E'I.I'I.L.:an
bl vuzeapn

e L Deskiap

* [Documenes

* Ll Dessnloads

* [ubrary

* [Movas

* Bl Music

* [Pictures

[Public

k[Sites 'I'

(_Concel) (Choose)

|

The wizard verifies your selection and ensures valid target directories. If validation should
fail, a dialog pops up to inform you about the situation.

Figure 1.6. Installation Directory Verification Failed

Mo Ant distribution could ke found in the selected folder.
You reed to seleck the root direckory of yoaar Ard nstallsgion,

_:kr Prass 'Choase Other' to choose anoter direckory. Or press 'Sdp' 1o miss
out the irsrallacisn of tak feature.

(Skip * { Choose Other)

Press the Choose Other button if you want to select a different directory. Otherwise, if you
want to leave out the feature, you can press the Skip button to end the directory chooser
and return to the feature selection screen (or the next directory chooser dialog).

Once a target directory has been set for a feature, it will be displayed below the feature
list. You can change the target directory for a feature at any time. First select the corre-
sponding item in the list and then use the Choose... button at the bottom to specify the

STEP 4: INSTALLATION FEATURES 8

target directory. Please note that when multiple check boxes are selected, multiple directory
choosers will appear one after another. Don’t be confused, just look at the title of each file
chooser to see what application directory is required.

Because it can be more convenient to leverage the plug-in manager facility of the IDE,
for some plug-ins you can create an IDE specific bundle that can later be installed using
the IDE specific provisions. To change the installation target, click the current target item
behind the installation feature and choose one of the available options.

Figure 1.7. Choose Eclipse Installation Target

W

Inscallation FRauras

select e prosgram features Sesup wil instal. GE
Salect an iem im the liss below b change how a feature = inssalled.

L] AR 1.5 Gr later

M Comrmand-lines

| Eclipse 2.0 - 2.0.2 § WSAD 5.0

] Eclipse 2.1 - 2.1.3 J WSAD 5.1 lstall v IDE
o Fclipee 3.0 = 3.4.1 f RAD B.O = 7.5 4 Lreate Update S8
| IDEA 4.0 - B.O

M lava Studia Creatar 2

| JBuiider 5.0 - 206

O JBuilder 2007 - Z00DE

O |Bevelaper 10g (40,51 = 10,123

L JDeveloper 106G (10.1.3 - 10.1.3.41 f 114
[jEdit 4.1 - 4.2

| JEdit 4.3

[Maven 1.00- 1.1

] Mawen 2.0 = 2.0.9

| HerBaans 4.0 - 6.5

Creane Update She:
Flsers fmareo fappleations fechps e-test I:_- Chonse., |

(" cancel) | <Back Wext =
. I’ L -

&

o

When the installation target has been set to the application specific update manager format,
the installation will create an achive bundle in the specified directory, but the plug-in itself
won't be installed into the target application. You will need to use the IDE update manager
to perform plug-in installation after the setup wizard has finished.

Step 5: Online Help System (optional)
When the installer can connect with the Internet, and no up-to-date help can be found

on your system, you will be presented with the option to download and install the online
help system for the GUL

CHAPTER 1 INSTALLATION

Figure 1.8. Setup Wizard Download Online Help

W

Download Online Help
telect whether the help for the preferences digog shoaakd be instaled, (;E
g

Do poes want ko download ard irstall the anloe halp syssen?
=) Fes, doweload and Instal tae erding holp sysem

[} Mo, | don't need anline help right now

Plezse mote that yvou may download and mstall the online blp sysiem manvally at @y bree. You can frd further
Inferrnanes i che Insmllages secrisn of the use's maral.

I: Cancel : i:hl:ll.: {I‘In.'t:l}

It is recommended to let the installer handle help installation, but when you're installing on
a machine without Internet access, you can download the help file separately from http://
www.triemax.com/download/jalopy-help-1.9.3.jar and either place it along the directory
where the installer sits - it will then be picked up and installed automatically by the installer
(the Download Online Help screen does not appear in such a case).

Or copy the file into the Jalopy settings directory, e.g. on a typical Windows
XP system to C:\ Docunents and Settings\John Doo\.jalopy\1l.9.3\jal opy-
hel p-1.9.3.jar.

Step 6: Settings Import (optional)
In case an older Jalopy release could be found on your machine, the wizard lets you choose
whether the settings of the prior version should be imported during installation.

STEP 6: SETTINGS IMPORT (OPTIONAL) 10

http://www.triemax.com/download/jalopy-help-1.9.3.jar
http://www.triemax.com/download/jalopy-help-1.9.3.jar

11

Figure 1.9. Setup Wizard Import Settings

Mt Seting s
telect whether the settngs of o prior Jolcoy instalatior shows be kept (:.E
g

Do poed want ko rmport sektings from an olde version of Jalopy?
=) ¥es, impeet ary prior semings
[_} mMa, ignare ary prior sekings

Do poas want ko delete settemgs from am clcer verson of joloerg®
[} Yas, dalene any @rior SEMRGE

E Mo, ke=ep ary prior s=lkzings

I: Cancel : i:hl:ll.j {I‘In.'t:l}

-

4

Select the Yes, import my settings option to have your settings imported or No, ignore any
prior settings to start with the defaults. Additionally, you can control whether your prior
settings should be deleted or kept. Select Yes, delete any prior settings to delete your existing
settings. Or choose No, keep any prior settings to leave any present settings untouched.

IMPORTANT Please note that the settings of the Jalopy Open Source versions
up to 1.0b11 are always removed during installation. If you want
to keep such settings, make a backup of your settings directory
before you start the setup routine. Detailed information about the
Jalopy settings system can be found in Chapter 2, Configuration.

Step 7: Configure Plug-in Defaults

The installer lets you pre-configure some IDE plug-in preferences, to possibly eliminate the
need for client configuration.

CHAPTER 1 INSTALLATION

NOTE The specified defaults only apply for the Eclipse, IDEA, JBuilder, JDe-
velper, jEdit and NetBeans plug-ins. You still have to configure the head-
less plug-ins as usual, which is more appropriate for their use cases.

Figure 1.10. Plug-in Defaults Screen

L Jalogy Setup Wizard
Configure Flug=in Dafaulcs
Adjast sorre general phag-in behavicr .’:@

i
Do Fees want the plusg-ine i syrchronee with an external code comeenbon?
=) ¥as, abvays syechrosize Wit the follosing code convertion:
ST R e P b iy e

o .
0 Mz, usd local selings

D1 praa want En erable cackirg o lnk synchronizabcer?
7} ¥as, enable tve local cache and orly Synchronize orce per day

Mo, always synchronize settings

Do woed want ko be automatkcaly nobifed about new relezxses?
H s, check ard irdorm ssoul rere releasess

7} Ma, dar't check for vpdates

J Cancel .« Back | [:le:rt:i-}

When using Jalopy in a team, it is often mandatory to share a common code convention
to achieve a consistent code layout style. There are multiple ways to achieve this goal, but
the best and most convenient approach is to embedd this information right into the IDE
plug-ins. This way developers must not know nor care how to configure Jalopy—it will
automatically pick up its settings upon first installation. You can of course adjust the defaults
later using the IDE preferences dialog.

To specify a shared code convention, select the Yes, always synchronize with the following
code convention radio button and enter the path of the shared code convention. This can
either be a file system path or a web url.

By default, Jalopy checks the specified settings file for changes each time it is about
to format. This can be prohibitive when the code convention sits on a server without fast
network access. To avoid long delays in such situations, you can enable local caching. Jalopy
then only checks once per day for changes. To enable local caching, select the Yes, enable
the local cache and only synchronize once per day radio button.

In order to keep keep track of updates, the IDE plug-in can notify about the avalailibilty
of new releases. When a new release becomes available, they display a notification dialog
that provides access to the release notes. If you don't want to be notified about updates,
select the No, don't check for updates radio button.

STEP 7: CONFIGURE PLUG-IN DEFAULTS 12

Step 8: Confirmation

When all configuration is done, the installation summary dialog is displayed. Please review
your choices and press the /nstall button to start the installation.

Figure 1.11. Ready Screen

_H_ﬂ i Jalapy Setup Wizard

Ready to Install tha Progran

The wizard is ready to besgm the irstallation. (-E

-
Lhck 'Instal’ to begin the instalation
Ty wank o review or cheoge any ol yaur mstallstion seiings, clck "Rack” T abort the imstallatian process
click ‘Cansel.
s .
[cancel) [<Back)
__\.{

IMPORTANT Please note that installation cannot be canceled once started. You

should make sure that you've selected all desired features and con-
figured the target locations correctly before you start the installa-
tion. You can of course, re-run the installer at any time in case you
need to perform installation with different settings. If you think
that you've made a wrong choice during the information gather-
ing, press the Back button to flip through the pages and review
your settings.

Step 9: Installation

Once the insallation has started, a progress dialog informs you about the pending installa-

tion steps.

13

CHAPTER 1 INSTALLATION

Figure 1.12. Progress Screen

Installing Files 7=
Please b patiet whibs the sebap wzard 15 updating your spsbem, u_

Domnlozding onling k2lp...

E

The installation process might take a while, please be patient until the installer has finished
updating your system. Especially the installation of the Eclipse plug-in can be very time
consuming on big installations.

Step 9: Results

When installation has been finished, the finish screen appears.

STEP 9: RESULTS 14

1.4

15

Figure 1.13. Finish Screen

Jalopy 1.9.3_141 has been successfully installed!

Click 'Finisk to carepiens the mscalizzion.

Plzase nope tear you have o perfarm @lag-ie insallance wios the Updace Manager
fram witam Echpese before the plug-in shows voom Edipse

[Show Repart |

You can press the Show Report to review the installation log. In case something should have
went wrong during the installation, please provide support with this log information. Press
the Finish button to close the setup wizard.

Silent Installation

The executable JAR file contains built-in support for silent (unattended) installation. A
normal wizard install guides the user through different graphical dialog boxes and expects
some input. However, a silent install does not prompt the user for input. Instead it receives
the required setup data from a configuration driver file that provides the information the
user would otherwise enter as responses to dialog boxes.

The setup configuration driver file uses the standard java.util. Properties format. It con-
sists of key/value pairs representing the data entries. Performing a wizard install automat-
ically creates (or updates) a configuration driver file in the Jalopy settings directory that
reflects the information given during the last setup session.

To perform a silent install, open a shell and type

% java -jar jalopy-setup-1.9.3 _156.jar --silent

at the command line. This will perform installation with the data gathered from your last
installation session. But the installer supports a few more options to control the setup pro-
cess. These are described below.

CHAPTER 1 INSTALLATION

http://java.sun.com/javase/6/docs/api/java/util/Properties.html

Options

Table 1.1. Install Wizard command-line options

Option Long Option Arguments Description Since
-C --config <filepath> Specifies the absolute path to the setup config- 1.4
uration driver file to use for the installation, e.g.
/ horre/ John Doo/ tool s/jal opy-install.ini.

When omitted, the settings of the last installation
run will be used when available

-h -help Displays a short help 1.4

-l --log Specifies the directory where the log file should 1.4
be written. When omitted, the log file is stored
in the Jalopy settings directory (Section 2.1,

“Overview")
-s --silent Performs silent install 1.4
--update-center Creates a NetBeans update center 19.2
--update-site Creates an Eclipse update site 1.9.2

Example configuration driver file

Below you find an annotated sample configuration driver file, that explains all available
keys and the possible values.

#Jal opy installation data
#Fri Dec 03 09: 14:37 CET 2004

del ete. settings=fal se
i mport.settings=fal se
downl oad. hel p=true

nstal | . ant=true
nstal | . ant. dir=/Home/ John Doo/ Applications/ant-1.7.1

nstall . consol e=true
nstall . consol e. di r=/ Homre/ John Doo/ Appl i cati ons/j al opy

nstall.eclipse=true
nstal |l .eclipse.dir=/Home/John Doo/ Applications/eclipse-3.4.2

nstall.idea=true
nstall.idea. dir=/Home/ John Doo/ Applications/idea-8.0

nstal | . jdevel oper=true
nstal | .jdevel oper. dir=/Home/ John Doo/ Appl i cations/jdevel oper-11g

nstall.jedit=true
nstall.jedit.dir=/Hone/ John Doo/ Applications/jedit-4.3

nstal | . maven=t rue
nstal | . maven. di r =/ Hone/ John Doo/ . nR2

nstal | . net beans=true
nstal | . net beans. di r=/ Hone/ John Doo/ Appl i cati ons/ net beans-6.5

Header comment that contains the last modification date of the file
delete.settings = truelfalse
Indicates wether the settings of a prior version should be removed.

OPTIONS 16

1.5

17

“false” to keep prior settings, “true” to remove them

import.settings = true|false

Indicates wether the settings of a prior version should be imported.

“false” to ignore prior settings, “true” to import them

install.[appKey] = true|false

Indicates wether the specified application plug-in should be installed.

“false” means that the plug-in won’t be installed, “true” installs the plug-in. The
valid appKeys are ant, console, eclipse, idea, idea3.x, jbuilder, jdeveloper, jbuilder,
jedit, netbeans, netbeans3.4.

install.[appKey].dir = absolute file path

Specifies the absolute file path of the root application directory. The file path is

stored in platform notation.

Manual Installation

It is often possible to install Jalopy manually yoursef, but this might require certain non-
trivial tasks, especially for the IDE plug-ins. It is therefore recommended to at least initially
use the installer to perform installation on a test system and extract the necessary informa-
tion for your custom deployment procedure. Please contact support if you need any specific
assistance.

IMPORTANT Wizard installation is mandatory with the trial version

CHAPTER 1 INSTALLATION

Chapter 2. Configuration

Provides a detailed discussion of the Jalopy settings system and all available options to con-
figure formatting output.

2.1 Overview

Jalopy stores all settings below its own settings directory. This directory is normally located
under the user home directory and shared by all provided Plug-ins. The table below shows
the typical locations for the common operating systems.

Table 2.1. Typical settings directories for user “John Doo”

Operating System Jalopy Settings Directory

Linux /home/John Doo/.jalopy/

Mac OS X /Users/John Doo/.jalopy/

Solaris /export/home/John Doo/.jalopy/

Windows Vista C:\Users\John Doo\AppData\Roaming\.jalopy\
Windows XP C:\Documents and Settings\John Doo\.jalopy\

Substitute “John Doo” with your user name. Please consult your operating s ystem docu-
mentation if your system uses different paths for the user directories.

In order to provide version interoperability between releases, the settings of each release
are stored in subdirectories named after the version number of an individual release, e.g. C:
\ Docunents and Settings\John Doo\.jal opy\ 1. 9. 3\. Each settings configuration
uses a distinct folder, e.g. the default settings for user John Doo (on Windows XP) are stored
in C:\ Docunments and Settings\John Doo\.jalopy\1.9.3\defaul t\.

A settings configuration is called a profile and stores the actual code convention as well
as user-specific data like file and dialog histories. See Section 2.1.1.1, “Main window” for
more information. Please note that you can always use settings of prior versions with the
most recent release, but it is generally not recommended nor supported to try vice-versa,
as there is no guarantee that it will work this way round. Wizard installation will let you
update your settings automatically when upgrading, see Section 1.3, “Wizard Installation”.
Code convention related settings are usually shared using a textual XML format, see Sec-
tion 2.1.1.8, “Export code convention” for more information.

If need be, you can reconfigure the root directory to your own liking by pointing the
Java system property “triemax.jalopy.home” to the folder name where settings should be
stored. The Java launcher provides the standard -D option to define system properties. If
the path is a string that contains spaces, you must enclose it with double quotes:

% java -Dtrienax.jal opy. hone="/Users/ John/Li brary/ Application Support/Jal opy"
When using an IDE or build tool, you might be required to use a different mechanism

to define system properties. Please refer to the user documentation of the tool vendor for
specific instructions.

19

—

2.1.1 Preferences GUI

Settings are stored in binary files, that are not directly editable. Instead, a graphical user
interface with a preview facility is provided to let you easily configure the settings. The GUI
consists of several individual windows that can be freely arranged on your desktop. The
Main window provides profile management and is the only window that appears after pro-
gram start. From there you can access all other windows, namely the Configuration window
to edit all formatting options, the Preview window that gives you an immediate layout pre-
view reflecting the current settings, and the Help window that assists you at any time with
complete documentation. The GUI may be either invoked directly on the command-line
or from within your IDE. Please refer to the individual Plug-in chapters in Part II, “Plug-
ins” for information on how to display it from the application you're using.

2.1.1.1 Main window
The Main window is the first window that appears and provides the means to manage several
code convention profiles. Please note that when using one of the IDE Plug-ins, the contents
of the Main window will be integrated into the IDE preferences dialog and therefore the
appearance somewhat differs from IDE to IDE, but the functionality explained below is
always present.

Figure 2.1. Main window

™ ™ Jalopy 1.9.2 88: Demo License - Gnly for evaluation purpases

Avgllable Profiles:

LT boeing] Edi...

5T cistn ; X

T defaut Add..

LT erac

LT ericssan

=i’ fam &l

LT niskia

T sbb BE o

LT scm

T 519

L0 techniker

T mest

et Iriemian

[Impart. Y

'?_ | Apply | Camcel || Sawe

As explained in Section 2.1, “Overview”, Jalopy stores code convention settings in profiles.
The list component displays all currently known profiles. Click an entry to see what actions
are available. Depending on the state and type of a profile, not all actions might be available
all the time.

PREFERENCES GUI 20

2.1.1.2

21

In Figure 2.1, “Main window” above, the active profile is selected and therefore the
removal and activation buttons are deactivated. Editing, adding, importing and exporting
is always possible.

The Main window always appears centered on the same monitor where it was invoked
from.

Button bar

The Main window provides a button bar at the bottom that lets you perform different
actions.

Help

The Help button displays the online help window. The keyboard shortcut for this action is
F1. Please note that the help button is only available if the online help has been installed
as outlined in the “Installation instructions”.

Save

The Save button lets you persist any unsaved changes made during a configuration session
and closes the Main window.

Cancel

The Cancelbutton closes the Main window but any unsaved settings changes made during
a conﬁguration session are ignored.

Apply

The Apply button persists any unsaved changes made during a configuration session.

Editing profiles

To edit an existing profile, select the profile in the list and press the Ediz... button. If the
selected profile is not the currently active one, the selected profile will be automatically
activated. If the settings of the priorly activated profile have been altered, you will be asked
whether you want to have your changes persisted before switching.

Figure 2.2. Save Profile Changes

™ Sawe Sottings

Do you want to save your changes to the profile before
switckhing?

-
}f Hpoad don't save. your charges will b last

Comtauwe)

Press the Save button, if your settings should be saved. Otherwise press Don’t save to ignore
any chances that were made to the profile. The Configuration window appears along with
the Preview window, and here you can alter all available options to configure formatting

CHAPTER 2 CONFIGURATION

output. Any changes you make are directly reflected in the Preview window, but you must
explicitly save your changes in the Main window. The Configuration window is explained
in detail in the section called “Configuration window” below.

2.1.1.3 Adding profiles

To add a new profile click the Add... button. A dialog will appear that lets you create the
new profile.

Figure 2.3. Add new Profile Dialog

o Add new Profile

Enter a unigue name and an optional description to create a new profile.
The profile will e added a5 a roor profila,

Same

Descriptice

LT I, Cancel i

You need to enter the profile name, might add an optional informative description and if a
profile is currently selected in the profiles view, you can choose whether you want to create
a nested profile by selecting the parent profile. A nested profile will automatically adapt any
changes made to its parent profile(s).

Name

The profile name needs to be unique and will be used as the name of the disk folder where
all profile information will be stored. Therefore, you should avoid characters that your
platform does not allow to be used in file paths.

As a convenience, when invoked from within one of the supported IDEs, the dialog
provides a combo box with the names of all projects currently available in the IDE that
have no corresponding Jalopy profile.

PREFERENCES GUI 22

2114

23

Figure 2.4. Add new Profile from within IDE Plug-in

[L Add new Profile

Enter a unigue mame and an optional description to create a new profile.
The profile will Be added as a root profila,

wame E'
Dusciiptios: anbr
forms |
g
I
e
|;' { Cancel Add
Description

The optional description must be no longer than 256 characters and can be freely chosen.
It will be displayed in a tool tip when the mouse is moved over an entry. Name and de-
scription are available for inclusion in templates. See Section 2.4.3, “Local variables” for
more information.

Parent Profile

In order to provide the ability to easily manage profiles that largely share the same settings,
you can create nested profiles. A nested profile will automatically adapt any changes made
to its parent profile(s). This feature is only available with Jalopy 1.7 or later.

The typical example would be a number of different projects that should receive the
same formatting style, but require different headers. In order to setup such a scenario, you
would create a master profile where you configure all shared settings, and afterwards create
different nested profiles for each project where you define the individual headers. Later on,
if you want to apply any changes to the formatting style of all projects, you would only alter
the master profile and the changes will be propagated to the nested profiles automatically.

In order to create a nested profile, simply choose the parent profile here. If you choose
“None”, the new profile will be created as a root profile. Please note that this option is only
available when a profile is currently selected in the list view. When you add a new profile,
the settings of the currently selected profile will be used to create the new profile. If you
create a nested profile, the selected profile will be the parent profile. For every profile you
define, a new subdirectory is created below the main settings directory where all related
files will be stored.

Removing profiles

To remove an existing profile, select an entry or multiple entries in the list and press the Re-
move button. The profile folders will be removed on disk and the selected entries disappear.
A profile may only be removed if it is not active. The default profile cannot be removed.
Please note that if a selected profile contains any nested profiles, removing the profile will
cause all nested profiles to be removed as well!

CHAPTER 2 CONFIGURATION

2.1.1.5 Activating profiles

To activate an existing profile, select an entry in the list and press the Activate button. The
stored settings will become active and the preferences dialog updated accordingly.

2.1.1.6 Defining aliases

Depending on the type and size of your projects and the provisions of your IDE, it might
be necessary to create several project modules in order to manage your codebase efficiently.
In such a case all related modules should still receive the same code style.

To achieve and manage such a uniform style easily, you can map modules to one (logical)
Jalopy profile that defines the code style. Make sure that the Auto-switch feature (see below)
is enabled and Jalopy will automatically use the correct settings for each module. Say you
have a project “foo” which consists of three modules.

Figure 2.5. Sample Project With 3 Modules

el [Test =
Mame & Dt Modfied Hize Kind
L [0 Taday, 704 PM - Falder
¢ L foo-teapard Taday, 704 FM - Falder
¢ L fao-panther Taday, 704 PM == Falder
|l foo-tiger Taday, 704 PM Falder

To map these modules to one Jalopy profile, choose the target profile in the list and press
the Aliases... button. A dialog will be displayed that shows all defined aliases for the profile

and lets you alter the alias definitions.

Figure 2.6. Profile Aliases Dialog

R Aliases for Profile “ericsson”
Allzses;
[Acd. %
Remiova
'?tﬁ | Cancel __, f_ Sawe }

Press the Add... button to add a new alias for the profile.

PREFERENCES GUI 24

2.1.1.7

25

Figure 2.7. Add new Profile Alias

™ d Ali "

Enter a new alias and press the '"Add’ button to have it populated to the
list of aliases,
Flease nose that the allas won't be crezed ab chis poirs - you need o expbcitly s2ve your

changes altirwards

Alles: | hoo®

) (Cancel | (- add)
e

You can either add the names of all modules as new aliases or when the modules share a
common prefix—Ilike in our example—use a wildcard alias to point to all modules in just
one step. Simply put the * wildcard after the prefix and press the Add button. The alias is
then displayed on the list, but has not yet been created. You need to explicitly press the Save
button to have your changes applied and any new aliases created or existing aliases removed.

Figure 2.8. Profile Aliases

AnA lizses for Brafile Fos'

Allzzes:
fact : Agd_. 1
Remowe
ey i %
I,E_, i, Cancel __,E Sawve }
___{

Press the Save button to save your changes or Cancel if you want to ignore any changes.
Please note that the alias information of a profile is displayed as part of the tooltip (in square
brackets). Move the mouse over a list entry, and the tooltip will appear shortly.

Since 1.2

Import code convention

Use the Import... button to import an already-saved code convention. Since version 1.6,
Jalopy also supports importing of Checkstyle configurations (version 3.5 or later). Jalopy
is able to import code conventions from both local and distributed locations. Just specify a
valid Internet address (either starting with htt p: //, htt ps: // or www.) for the latter.
Since Jalopy 1.7, exported code conventions store the names of their profile. During
import it is therefore possible to recreate the profile structure. When importing a single

CHAPTER 2 CONFIGURATION

profile and the original profile does not already exist, you will be asked whether it should
be created and the exported settings imported into this profile. Otherwise, the settings
will be imported into the currently active profile. Checkstyle configurations will always
be imported into the currently active profile. Importing a file that contains several code
conventions, will always recreate the original profiles if they should not already exist.

Versions prior to 1.0b8 stored the backup directory always as an absolute file. Therefore
after importing a very old code convention, you should check whether this directory points
to your preferred backup directory. This advice holds true even for later versions in case
you've changed any of the default directories (backup, history, message log).

Import Checkstyle configurations

Importing Checkstyle configurations only means a best effort. There is no guarantee that
the resulting Jalopy code convention exactly matches your style preferences because some
Checkstyle modules might be ambiguous or missing at all. E.g. take the following Par enPad
module configuration:

<nodul e name="Par enPad" >
<property nane="tokens" val ue="METHOD CALL" />
<property nane="option" val ue="nospace" />

</ modul e>

It only defines a white space check for method call parentheses, but does not express the
preference for other parentheses. It could be “space” or “nospace”. In such a case, Jalopy
will assume the default value Checkstyle uses when no token is defined (“nospace” in the
example).

Another common case is the <whitespaceAfter> module. Without any tokens defined, it
will check for white space after three tokens (comma, semi, type cast parenthesis). But what
if you limit the check to only two tokens (comma, semi)? Does it mean that no white space
should appear after the right parenthesis of type casts? Or should it be allowed? Checkstyle
accepts both, but Jalopy will assume that you don’t want white space after the token in
such a case.

The same problem appears when a Checkstyle module is not contained in your config-
uration. Jalopy can't interfere any preferences in such a case and assumes the default set-
tings of an empty module config. In general, importing works better the more Checkstyle
modules are defined. It is recommended that you test the resulting Jalopy code convention
against the Checkstyle configuration after importing. Just format some source files into a
temporary directory and run Checkstyle to check for any style violations. This way you can
be sure that the import covered all your preferences.

To import a Checkstyle configuration you need to press the /mport... button and enter
or select the configuration file that should be imported. The file dialog provides a file filter
for Checkstyle configurations, but because all configuration files use the . xml extension, it
actually doesn’t matter what file filter is selected.

PREFERENCES GUI 26

Figure 2.9. Choose Checkstyle Configuration

Eavo As! | Chickebyla ehocks s

arn hoase Cade Canonti

[checkstyle-4.4 =]
[DEVICES L3 am-1.7.1 [anir il
[systers [chiksrgle-4.4 [build. e | i
w* FLACES L eclipse-3.4
[pesktap Bl Firefos.ape |¥) checkserle-4.4.Ja
[marco @ jecor-1.8.1 [« A4
u.'q:ph-linm. B jeleery-1.09.2 I__ i b certinnal-d4 4 jar
Dna-curienls L MizBeans E.Lapp | TR - & - cnf e Jar
(L) Dowicads | Swtfit Expanderape | commuons-cll jar
|:IHIJ!-'= IE Tranderbird.app | commons-callectons ja
[Plezures 8 VL.Capp [4 commans-logging, .
- B e app L cantrib
L] Tarreris
[decs
| impare-contralxm
¥ jweaeade
[L L
M= | ERE i ¥
a g
Farmar: | Jalopy Code Convestion (* o) 3
[Mew Folder | | Cancel ::l Eﬂ'lﬂﬂ!t}

After the import has finished, a confirmation dialog appears that lets you display a report
of the imported modules.

Figure 2.10. Import Checkstyle Configuration Confirmation

LS 0 0 0 importFinished

Importing settings finished successfully.

t Press Ee "Sora repee®” Butbon ifyau wank o resiew e import leg. Cthe raese
press ‘Close’ o close the diakop.

{ Show Report | 5 Close)

2.1.1.8 Export code convention

27

Use the Export... button to save your settings as a new code convention. Select the profiles
that should be exported in the list, and press the Export... button to choose a file to export
to. You may select multiple profiles that should be exported into just one file.

Please note that if a nested profile is selected, by default all parent and child profiles will
be exported as well. If you really only want to export the profiles that have been selected in
the list, hold down the C#r/ key when pressing the Exporz... button.

CHAPTER 2 CONFIGURATION

In order to be able to share settings across different systems and users, file paths should
be stored relative to make the code convention portable. Jalopy therefore exports all file
paths below its settings directory as relative file paths. History, backup and message log
directories are by default set to paths below the Jalopy settings directory and are therefore
correctly handled by the export. If you should have specified custom file paths here, you
should check these paths and adjust them when necessary, after a code convention has been
imported.

Please note that exporting only covers the actual code convention settings. All other
profile data (history, backup, logs, reports) is ignored. If you really need to share a// profile
data, just copy the whole settings directory or selected profile folders over.

Configuration window

The Configuration window provides a tree view on the left that lets you navigate between
the different preferences screens and the current preference screen displayed on the right
that provides the actual options to configure the current profile. As a hint, the name of
the current profile is displayed at the top left, above the tree. The Configuration window
is invoked from the Main window by pressing the Edit.. button and automatically restores
its position from the last session.

Figure 2.11. Configuration window

P Jalapy 1.9.2 B8: Demo License - Only for evaluation purposes
LrsimaE
» Gichal Source compatbiliy: | J2SES.0 2 |
Rraces Keep on same line: _| Single L if
Liree Wrapping | el if L alzm
Indentation Enable far:) &)1 state-nents
Vihite Space L Only “return” and “threw” sEpmeils
Leparation
sarting Insart parentheses: ®W Mylbpie eapressicny
IMpeTs _| throw expression
F Comemerts | return expressan
Annotsliors
Search & Replace Miscelaneous: | Only format Javedoc comments
Code Inspecinr | Beray brackers sfoer deraifler
B spiie meudni-variables
Insertloggirg cordriona
| lsere serial version UID
| lsere missing SOwarride
Remowe recundant mocifers
& il 4

To navigate between the different available screens, you can use the tree view on the left

that provides access to all screens or you can cycle between the different screens by pressing
Cirl+Left (previous screen) or Ctrl+Right (next screen). On Mac OS X you use Cmd+Left
and Cmd+Right instead.

PREFERENCES GUI 28

29

NOTE Closing the Configuration window does 7oz alter your profile. Any
changes you might have made are not immediately saved, but temporar-
ily recorded until you explicitly save or apply them from within the Main
window

Preview window

The Preview window provides a sneak preview of the formatting style of the currently cho-
sen preferences.

Figure 2.12. Preview window

g | Jalopy Preview
class Comma (mplements I8, I1, IZ {
it o=, b=l =3 d=25

Cormealinik-pl, int p2, - imk-p2) theows -EQ, -EL { - super(pl, Erued; -}
wold - tesklint -pl, - int-p2) throws -E@, -EL-{
inta=0,F=1 =2, d=05;
testln, i
Poimt point = new Pointix, ¥];
for [int 1= 0, 7. = array.length; 1 < oreay. Length; 4, 3==3 {.}
int]] arrayl = new unt[] {1, 2,-3 };
coller. «<5tring, Elementsfood]);
H
erum - Colar § GREEN(®, - Z55.87%, BLLUEC®, @, 2553}
nnot{x = i3, y o= -3]
aTarget{{ FIELD, -WETHOD, - COMSTRUCTOR- } 3
public class &.{.}

class Gemer1cType<S, - T extersds Elemant & L1sk>-{ 3

irterfoce Feoable exterds Dogale, Regdgale £}

The Preview window normally displays a short sample file that changes with each prefer-
ence page and only contains elements that would be affected by the options of the active
preferences page. But you can display a file of your choice by selecting File > Open... and
type or browse the file you wish to be used in the preview. Alternatively, you can simply drag
& drop a file to the preview text area. The custom file will then be used for all preferences
pages until you explicitly close it via File > Close (which would restore the system preview
file), or choose another custom file. It’s also possible to automatically have the currently
opened file picked up when using an IDE Plug-in. Please refer to Section 2.2.1.1, “Use
current file in preview” for more information about this feature.

To visualize indentation behavior you can control the display of the usually hidden
whitespace characters TAB and SPACE and EOL by selecting View > Show Whitespace

CHAPTER 2 CONFIGURATION

Characters and/or View > Show EOL Characters. Please note that on Mac OS X the menu
actions are available through the global menu bar, while on other platforms the menu is
attached to the Preview window.

Help window

The Help window lets you browse, search, and print system documentation. Please remem-
ber that you might need to install support files manually if the software was not installed
using the Setup Wizard. Please refer to Chapter 1, nstallation for more information about
the installation options.

You invoke the Help window by either pressing the FI key at any time or by clicking
the help button in a window or dialog. Please be aware that the Help window is the most
prominent application window and always sits on top of all other windows.

Figure 2.13. Help window

™ lalopy Helg

File extensions

Lets you associate specific fle extensions with file types. For each file bype wou need to define 28 least one
wiigue file extemcicn. During & ruen, Jalooy will delermine Lhe e exbengion of a Mie and dhecks whetker it
is associated wiEth a Mle type. 17 a fike type can be found, Jalopy wil use the carresaonding farmatting
module ta farmat the fle. Cthersiss, the file will b2 skipped and no formeatting applied.

Add...

Lets you add new e sxtensons. Pressng the butten will invoke o daog where you can enter g nes file
axtension,

Flease note that the buttan is only 2waikaolz iF a fie type is solected in the Ffle types list.

Figure 3.21. Add file extansion

o A Add File Extensinn

Enter a new file extension and press the 'Add” button o add it to the list

Flle exrension: | skaml

(7 Cancel { Add }

Enver a MNie extension &nd press the Add Button Do add £ 0o the DL File extansions can be gither gpecied
by simply typing the bare name like "cpp” or prepanding a dat or tha ©*." pattern befare the name, £.9.

LE | I‘
=10

r

The Help window is directly connected with the current application window or dialog and
changes its contents whenever you move the mouse over a component of the application
window or dialog. This way you are always presented with the most relevant information

PREFERENCES GUI 30

2.1.2

2.2

31

when working with the application. But the Help window also provides different navigation
views to access all available help topics in a more traditional manner. To display or switch
views, you can choose one of the available options in the pop-up menu at the bottom left

of the Help window.

Content view

The Content view provides a hierarchal tree view of all available help topics. Explore the
topic tree to find the information you are looking for. To view a topic, click the link in the
topic tree. You can use the Forward and Back buttons in the button bar at the top of the
Help window to go to topics you have already visited. They behave the same way back and
forward buttons work in an web browser.

Index view

The Index view provides a searchable index of the help contents. Enter a keyword in the
search field and successively press the Enzer key to display the topics that match the given
search term. Directly selecting an entry in the index will display the associated topic.

Favorites view

The Favorites view lets you add and organize bookmarks for topics. You might want to add
bookmarks for frequently accessed topics. To add a bookmark you select a help topic in
the content view, then switch to the favorites view, open the context menu (right-click the
mouse) and select the Add menu item.

Settings files

A synopsis of the used files is given in the table below.

Table 2.2. Settings files

Name Purpose

alias.dat Stores the alias names of a profile

export.dat Stores the file history of the last ten exported code conventions
history.dat Stores the history information of all processed files

import.dat Stores the file history of the last ten imported code conventions
log.dat Stores the file history of the last ten log files

page.dat Stores the information of the last displayed settings page
project.dat Stores the information of a profile

settings.dat Stores the current code convention settings

The group of settings stored in settings. dat that describe the style of a source file is
called a code convention. You can share code conventions using a textual XML format. See
Section 2.1.1.7, “Import code convention” and Section 2.1.1.8, “Export code convention”
for more information.

Global

Lets you configure the global settings that apply to all supported languages.

CHAPTER 2 CONFIGURATION

2.2.1 General

Lets you control some general preferences.

Figure 2.14. General preferences page

' Jalapy 1.9.2 88: Demo License - Only for evaluation purposes
| [T T Canara M Bl
File Types Mama: | TREEMAX
E T Descripon: | TREMAX Code Conmvantian
Exclusions
Messages Miscellaneaus: [| Farce farmarting
Repasikary] Test Farmnaming
¥ Jawa ™ Insem wraiing resdine
] Checasi read-only fles
] Keep edror soace
Uz currest fle in previes
L7] -

Name
The name of the code convention. This should be a short and unique name that easily
identifies a code convention.

Description
Stores a short description for the code convention. The optional description may be used
to provide a more detailed explanation of a code convention.

Name and description may be inserted into source files during formatting. See Section 2.4,
“Environment” for more information.

2.2.1.1 Miscellaneous

Lets you control miscellaneous options that doesn't fit elsewhere.

Force formatting

Jalopy can keep track of which files have been formatted previously (Refer to Sec-
tion 2.2.2.1, “History” for more information about this feature). If the history is enabled,
Jalopy won't format files that have not changed since the last formatting. However, you can
disable this check to force a reformat. For example, you might need to update the copyright
notice for the whole code base. Enabling this switch ensures that all source files are always
formatted.

GENERAL 32

33

Test formatting

When enabled, formatting output is not written to disk and/or opened editors are not
updated. This may be worthwhile when you want to determine what files cause warnings
or errors during formatting. This way Jalopy can be used somewhat similar to a coding
style checker (see Section 2.8.19, “Code Inspector” for the available style checks). This
option is mostly useful for batch mode processing, therefore it can be enabled from the
Console, Ant or Maven Plug-ins directly, and should be normally left disabled here. Refer
to Section 2.6.2, “Logging” for more information about the possible logging options.

Since 1.0

Insert trailing newline

When enabled, Jalopy inserts an empty line at the end of every file. This may help to avoid
problems with certain text formatters and processors. Note that Jalopy always inserts at least
one empty line after footers, so there is no real need (but it doesn’t hurt) to check the mark
in case footers are used. See Section 2.8.16, “Footer” for more information on footers.

package foo; 1

il

class Foo {1

H

package foo; 1

1

class Foo {1
Jal
1

Checkout read-only files

When enabled, Jalopy tries to checkout read-only files when it detects that a file is under
source control. Such behavior should be the default with most SCM providers anyway, but
if you happen to use a SCM system that does not work this way, this option might come

to the rescue. Please note that this feature is currently only available with the Eclipse and
Intelli] IDEA Plug-ins.

Since 1.9.2

Keep editor state

When enabled, Jalopy will keep the current editor state when formatting editor contents. If
an editor is currently dirty, i.e. contains unsaved changes, Jalopy will only update the editor.
Otherwise the file is changed on disk as well. Please note that depending on your IDE an
undo might not be possible when this option has been enabled.

Since 1.9

Use current file in preview

When enabled, Jalopy will use the source file that is currently opened in the editor as the
preview file for the configuration dialog. Otherwise custom code snippets are used instead.
The preview uses the actual editor file, not the current editor contents. One therefore needs

CHAPTER 2 CONFIGURATION

2.2.2

2.2.2.1

MISC

to persist any changes before they show up in the preview. Please note that you need to close
and re-open the configuration dialog before an option change will take effect.

Since 1.9

Misc

Lets you control miscellaneous settings.

Figure 2.15. General Misc settings page

S 19 : Demao License - Only for evaluation
| [T FT LT T MEr Bl
Hesborg: | Adler32 Checkswem] { view)
Rie Types h :
P Directory: fUsersimarco) alopy! LS. riemas | Choose,. |
Exclusices
Messages Backups: E} 0 Backups
Repaositary Directory fUsersimarcof @lopyy 1S.2briemas/ bak |: Choose, "'
* Jawa
Threzds: E} 1 Thread
: Fllrl 'I.Fr\'lrlllllr THSPIWY ArHjine
_|Farce encoding: UITF-2
LT Il -

History

In order to efficiently use formatting of projects with several developers, it is important to
be able to only format files which have changed. Jalopy provides a simple way to accomplish
this by calculating checksums. This stops formatting files that have just been updated from
source control from having being formatted (and time stamps updated) and thus prevents
checking-in files that actually weren’t touched by the developer later on.

To enable the history feature, select your preferred checksum method from the combo
box on the left. Adler32 is faster, CRC32 is slightly more accurate. The history information
of previous formatting runs will be saved in a file “ hi st ory. dat " . Since Jalopy 1.0.3, you
can specify the directory where the file is actually stored. The default is to store the history
file in the current profile directory. The history file will grow over time, especially if one
manages several big projects which share the same profile. As all history entries are read
into memory at startup, it could eat up quite a bit of resources. Therefore a simple history
viewer is provided which enables you to selectively remove obsolete entries if need be.

34

2.2.2.2

35

View
You can use the View button to display the history viewer. Entries can be selectively removed
via the pop-up menu.

Directory

To change the directory where the history data is stored, press the Choose... button. A dialog
appears that lets you enter a new directory or—in case the history directory was already
changed—select one from out of the last ten chosen history directories.

Figure 2.16. Choose history directory

L iChoase File Histary Directony

Type the location of a directory, choose one from the history or press the
“Browsa' humon to browss the fila system.

apen flsirs fahn Doof alopy) 192/ Ioo _"']

1veg |

[Elrnwsn..._ \ Cancel | f -El'rnun-}

Either enter a directory in the text field directly, or press the Browse... button to invoke a
directory browser that lets you search the file system for an existing folder or create a new
one.

Since 1.0.3

Backup

For security reasons, Jalopy creates a backup copy before it overwrites a file so the file may
be restored in case a severe error occurred during the write process. The original file is
stored in the backup directory and normally removed after the newly formatted file has
been successfully written.

Level

The backup level defines how many numbered backups should be retained (up to 30). The
default is to never keep any backups (i.e. the backup level is set to '0"). Use the slider to set
the number of backups you want to keep.

Directory

Specifies the directory where file backups are stored. You should leave this setting untouched
in order to make your code convention portable across different systems and platforms (See
Section 2.1.1.8, “Export code convention” for more information about possible portability
issues). To change the backup directory, click on the Choose... button. A dialog appears that
lets you enter a new directory or in case the backup directory was already changed, select
one from out of the last 10 chosen backup directories.

CHAPTER 2 CONFIGURATION

2223

2.2.2.4

2.2.25

MISC

Figure 2.17. Choose backup directory

L Chaoose Backup Directony

Type the location of a directory, choose one from the history or press the
“Browss' humon to browss the fila system.

apen Mlsers fahin Doof jalopy) 003 Toa hak _"']

g}

[Ernwsn..._ \ Cancel | I!: Choose :]-

Threads

During batch-formatting, Jalopy can divide the work onto several processors and cores to
speed up processing. If you run Jalopy on a multi-processor or multi-core system, use the
slider to set the corresponding number of processors or cores (or the multiplier when using
a multi-processor system with several cores).

Force separator

Lets you specify whether and what line ending character(s) should be forced. Enabling the
check box causes the selected line separator to be forced for newly formatted files. You can
choose from one of the two common platform styles (Unix, Windows) to enforce a specific
line terminator. Or select Platform default if you want to obey the line terminator of your
platform. Choosing Preserve original keeps the style of the source files, but please note that
Jalopy does not support mixed line separators. It will use the style of the first line separator
found in a source file for the complete file!

When left disabled, the default behavior depends on the used Plug-in: The Ant, Console
and Maven Plug-ins preserve the original line separator by default (this may be overridden
via the “fileformat” attribute, the “format” command-line option, or the “fileFormat” pa-
rameter). The Eclipse 2.x and NetBeans Plug-ins preserve the original format, too. All other
Plug-ins use the corresponding IDE setting (sometimes called line terminator or end-of-
line characters).

Since 1.2.1

Force Encoding

Lets you specify a specific output encoding to be used to write files. Enabling the check box

causes the selected encoding to be forced for newly formatted files. You can either choose

from one of the platform supported encodings or specify a specific encoding yourself.
When left disabled, the behavior depends on the used Plug-in. When using one of the

IDE Plug-ins, the file encoding as specified in the IDE would be used. But the Ant, Console

or Maven Plug-ins would use the platform default encoding instead.

Since 1.9.1

36

2.2.3

37

TIP The Non-IDE Plug-ins allow you to control input and output encod-
ing via configuration attributes/options directly. Please refer to the doc-
umentation of the individual Plug-ins for more information.

Auto

Lets you control the auto-format settings.

Figure 2.18. Auto format settings page

LT T ML Bl
Apaly formal : On spee

LR : On commit

Erwiranmiene : {n code gereration

Exclusices

Messages

0 synchronize profle: 8 with project

epaska
P ¥ With Exbernal cooe Comeention

L
@ i P

On save
When enabled, formatting is performed whenever a dirty file is saved.

Since 1.0.3

On commit

When enabled, files are formatted prior to be committed back to the source code manage-
ment system (SCM). This feature is currently only available with IDEA 5.1 or later.

Since 1.8
On code generation

When enabled, source files are automatically formatted after they were generated from the
model. This feature is currently only available with IBM Rational Systems Developer.

Since 1.9.1

CHAPTER 2 CONFIGURATION

With project

When enabled, Jalopy tries to activate the profile with either the same name as or aliased by
the current IDE project before a file gets formatted. If no corresponding profile exists for the
current IDE project, formatting uses the settings of the active Jalopy profile. Please note that
for this feature to work efficiently, all profiles should have their auto-switch option enabled!

Since 1.0.2

With external code convention

When youre working with a group of developers, it can be very useful to share specific
code conventions with your team. When this option is enabled, Jalopy checks upon every
invocation whether any changes to the shared code convention(s) were applied and if so,
updates the local profile accordingly before the sources are formatted. This way all members
of the team always use the same coding style without any further user intervention required.
Please note that the check box is only available after a code convention has been imported.

Since 1.0

2.3 File Types

Jalopy provides formatting support for different file types. On the File Tjpes settings page
you can specify what file types should be supported and what files belong to a specific file

type.

Figure 2.19. File types settings page

e N Jalapy 1.9.2 BS: Demo License - Only for evaluation purposes

Lrmimax

File Tyoes:
¥ Clobal

g Jewva [asd_

Emisirnnmigne ReEmowe

Exelusices
Messages
Repasitary

¥ Jawa

File exbermsions

FILE TYPES 38

2.3.1

2.3.2

39

File types

Lets you enable/disable support for specific file types. Formatting is enabled by adding a file
type to the list and disabled by removing it from the list. After a file type has been added,
all associated files are formatted by the corresponding formatting module.

Add...

Lets you add new file types. Pressing the button will invoke a dialog where you can select

from a fixed list of available file types to add.

Figure 2.20. Add file type

L Add File Type

Choose a file type to add and press the "Add’ button.

“lle types
B HTWL

(7 | Cancel i oAdd

Select one or several file types and press the Add button to add them to the list. Please note
that Jalopy will automatically register some well known file extensions for each file type you
add. You might want to review these mappings and adjust them at your wish. Please refer
to Section 2.3.2, “File extensions” below.

Remove

Lets you remove an already defined file type and thus disable formatting for the file type.
Select one or several file types and press the Remove button to alter the list. Please note that
the button is only available if at least one file type is selected.

File extensions

Lets you associate specific file extensions with file types. For each file type you need to define
at least one unique file extension. During a run, Jalopy will determine the file extension of
a file and checks whether it is associated with a file type. If a file type can be found, Jalopy
will use the corresponding formatting module to format the file. Otherwise, the file will be

skipped and no formatting applied.

Add...

Lets you add new file extensions. Pressing the button will invoke a dialog where you can
enter a new file extension. Please note that the button is only available if a file type is selected
in the file types list.

CHAPTER 2 CONFIGURATION

Figure 2.21. Add file extension

~Aca 0 0 AddFileEwtension

Enter a new file extension and press the ‘Add' button to add it to the list

Flle extensicn: | sheml

(7 { Cancel |} [Sondd)
S ————

Enter a file extension and press the Add button to add it to the list. File extensions can be
either specified by simply typing the bare name like “cpp” or prepending a dot or the “*.”
pattern before the name, e.g. “*.php”.

Remove

Lets you remove an already defined file extension. Select one or several file extensions and
press the Remove button to alter the list. Each file type must have at least one associated file
extension in order to enable formatting for the file type. If no file extension is associated
with a file type, no formatting will be applied for the file type! Please note that the button is
only available if both a file type is selected in the file types list and at least one file extension
in the file extensions list.

2.4 Environment

Lets you specify, view and adjust environment variables. Environment variables are simple
key/value pairs and can be used in header, footer and Javadoc templates to form expressions
that will be resolved during formatting. Embedded strings of the form $vari abl e$ are
replaced with their corresponding value. This process is called variable interpolation.

Valid keys take the form [a-zA-Z_][a-zA-Z0-9_. -]* and are case-sensitive. Values
can be freely chosen.

Example 2.3. Header template with environment variables expressions

e e
/1 file : $file. name$

/1l project: $project$

/1

/1 create: dat e: $dat e$

/1 by: $aut hor $

/1
e e
/'l copyright: BSJT Software License (see class docunentation)
e e

Example 2.4. Sample environment variables

aut hor = John Doo
proj ect.description = Nukes: The OpenSource CVS

Jalopy lets you define custom variables, but also provides access to the Java environment
variables as well as some Jalopy-specific variables that are generally useful for common
source formatting needs.

ENVIRONMENT 40

241 Custom environment variables

Lets you view and/or modify the custom environment variables.

Figure 2.22. Custom Environment settings page

Froperty
autkear

Dz & Time

] walue
Marce Hurmichor

" Remowe

Use the Add... and Remove buttons to add or remove items to and from the list.

Figure 2.23. Add Custom Environment Variable

bumon o add the variable 1o the anvironmant.

Enter unigue property name and associated value and press the “Add’

Frap=rty: kosterstalle

Malup: | sthuz 1128

@

Select a variable and press the Change... button if you want to adjust an existing environment

variable.

41

{ Cancel | Add)

CHAPTER 2 CONFIGURATION

Figure 2.24. Change Custom Environment Variable

L Change Environment Yariable

Addjust property name and /or value and press the ‘Change' button to
update tha anvirnnmeant.

fraparty; authc

Wilup fahin Do

1veg |

i, Cancel {Chlngﬂ}

Local Overrides

Custom user variables are stored as part of your code convention and are therefore shared
across a whole team. If you need to define user-specific information, e.g. to automatically
add the name of the developer who creates a class, this is possible via the local overrides
file . user. properties”.

When found in the Jalopy settings directory, the specified variables will override any
other custom or system variables. The overrides file uses the common java.util.Properties
format.

Table 2.3. Typical .overrides locations for user “John Doo”

Operating System Jalopy .overrides Location

Linux /home/John Doo/.jalopy/.user.properties

Mac OS X /Users/John Doo/.jalopy/.user.properties

Solaris /export/home/John Doo/.jalopy/.user.properties

Windows Vista C:\Users\John Doo\AppData\Roaming\.jalopy\.user.properties
Windows XP C:\Documents and Settings\John Doo\.jalopy\.user.properties

Please consult your operating system documentation if your system uses different paths for
the user directories. Detailed information about the Jalopy settings directory can be found
in Chapter 2, Configuration.

Since 1.6

aut hor=John Doo
di vi si on=I T_DEV_AR

The above example would define/override the variables “author” and “division”. Please note

that the environment may be overwritten manually using the Console and Ant Plug-ins as
well. Please refer to the corresponding Plug-in documentation.

CUSTOM VARIABLES 42

http://java.sun.com/javase/6/docs/api/java/util/Properties.html

2.4.2 System environment variables

Lets you view your Java system environment variables. All system environment variables are
automatically available as well, but cannot be changed from within Jalopy.

Figure 2.25. System environment variables

Lt wimas Cuslaim Easlem Dz & Thime
* Clobal Froperty walue
apoie v graphics s eliuartz trise &
File Types apake ol usospeerfdieiu Bar IFLsd ™
mmru velDoubleBufFering frise :
. awt Fopnlkok maple e, Tonlkk
Bl Hleenooding Mac®oman |
Messages file.encading.pka an.ia |
Repasitary lilesdparatoe ! |
feamonProwyHases local|*Jocal 169.254/ 1E[°.169.254/ L6 |
F Jawa i |
gupkerProgyiel Falswe
hmp.nonFroxyHoss local| *Jocal 169254/ 1&]=.169.254/ L& |
v graphics e aopleass L GraphicsEnv ronment L
javad o arinterjab aaplearan CRvinmer ok
Javaclazs. pait Jalapy-1.9.2 Jar
v ks eersian 49100
java endarsed.dirs TSysceras Library {Frasmesorks Mavas ra.
Avaextdirs flibrargi lsad Eetens ons: fSysiem/ Liarary,
java e FEysrers) Libeary | Frasmesorks [Jasays.Ira.
Javalorepdie tmp
Javalibeiey.pith Al Eraryflva S Eatisions Syatemf Likrar..
Javarurzime.name Jawe TR 2 REuntiene Erveiranmeent, Smndard...
(ML rUrSime e ian L5.0_Lb=hih=-284
java s pecificarion, noeres Java Plachores &P S aecificarion
Javaspecificationsendor Sun MicrasysteTs Ine
Javas peilCalBn mrsicen 1.5 -
Javawerdor AppleInc. b
@ Il wp wercor,url hiip: f s | m o

2.4.3 Local environment variables

Additionally, Jalopy provides some local variables that are automatically set depending on
the execution context. The current list of valid local variables reads as follows:

Table 2.4. Local environment variables

Name Description Scope Since

file The absolute path of the currently processed source file global 1.0
(e.g./usr/projects/test/MFile.java)

file.name The name of the currently processed source file (e.g. global 1.0
MFil e.java)

file.format A string representation of the line ending character(s) global 1.0
used to write a file (UNIX, DOS or MAC)

convention The name of the currently active code convention (as global 1.0

specified in the settings)

The description of the currently active code convention global 1.0
(as specified in the settings)

convention.desc

project The name of the currently active project/profile. For IDE global 1.0.1
Plug-ins this resolves to the current IDE project, other-
wise the active Jalopy profile name is used

project.desc The description of the currently active Jalopy profile global 1.0.1

43 CHAPTER 2 CONFIGURATION

Name Description Scope Since

tab.size The current indentation setting (as specified in the set- global 1.0
tings)

date The current date, formatted in the style specified in the global 1.0
Date/Time settings (see Section 2.4.5, “Date/Time" be-
low)

date.year The current year global 1.0

date.long The current date, formatted as j ava. t ext . Dat eFor mat global 1.0
LONG style

date.full The current date, formatted as j ava. t ext . Dat eFor mat global 1.0
FULL style

time The current time, formatted in the style specified in the global 1.0
Date/Time settings (see Section 2.4.5, “Date/Time" be-
low)

time.long The current time, formatted as j ava. t ext . Dat eFor mat global 1.0
LONG style

time.full The current time, formatted as j ava. t ext . Dat eFor mat global 1.0
FULL style

package.name The package name of the currently processed source file global 1.0
(e.g. com.foo.mypackage)

class.name Holds the name of the currently processed class, inter- Javadoc class, in- 1.0
face or enum terface, field, con-

structor, method,
getter, setter

field.name Holds the name of the currently processed field Javadoc field 1.0
field.type Holds the type name of the currently processed field Javadoc field 1.0
method.name Holds the name of the currently processed method Javadoc method 1.0
param.name Holds the name of the currently processed Javadoc pa- Javadoc construc- 1.0
rameter tag tor, method
param.type Holds the type of the currently processed Javadoc pa- Javadoc construc- 1.0
rameter tag tor, method
exception.type Holds the type of the currently processed throws clause Javadoc construc- 1.0
member tor, method
return.type Holds the return type of the currently processed method Javadoc method 1.0
property.name Holds the property name of the currently processed get- Javadoc getter/set- 1.1

ter/setter method. You can control the behavior during ter
variable interpolation with the “Format bean property”

option
Property.Name Holds the capitalized property name of the currently pro- Javadoc getter/set- 1.9.3
cessed getter/setter method ter

2.4.4 Usage

Once defined, variables can be enclosed with dollar signs to form variable expressions and
embedded in comment templates. Variable expressions take the form $[a- zA-Z_] [a- zA-
70-9_.-1*8.

$aut hor $
$project$

During emitting, these expressions will be interpolated and the value of the variable inserted
into the source file.

USAGE 44

http://java.sun.com/javase/6/docs/api/java/text/DateFormat.html#getDateInstance(int)
http://java.sun.com/javase/6/docs/api/java/text/DateFormat.html#getDateInstance(int)
http://java.sun.com/javase/6/docs/api/java/text/DateFormat.html#getDateInstance(int)
http://java.sun.com/javase/6/docs/api/java/text/DateFormat.html#getDateInstance(int)

Example 2.7. Header template with environment variable expressions

/1 file : $file. name$

/|l project: $project$

11

// last change: date: $Dat e$

/1 by: $aut hor $

/1 revision: $Revi si on$

e e L

/1 copyright: BSJT Software License (see class docunentati on)

e e
Example 2.8. Header after interpolation

L R R T R TR T R

/Il file : Byte.java

/] project: bsjt-rt

11

/1 last change: date: $Dat e$

11 by: John Doo

/1 revision: $Revi si on$

LR R

/] copyright: BSJT Software License (see class docunentation)

L R R T R TR T R

As you can see in the above example, if a variable is not defined, Jalopy won’t touch the
expression and simply preserves the original content. This way, the formatter works nicely
with other source code tools and SCM products.

The available user and local environment variables are provided from within the context
menu of the text component when customizing the different templates.

Figure 2.26. Insert variables via context menu

LY @imaE Dpriang Temalara

+ Glcbal “T cw X
o Copy WL
Rraces Paste B/
Lire Wrapping Delete B2
inciermina Select Al HA
White Space
separation Project .
Sarting Custom variables & Compilation Unit k |
lavadoc [
Impors o S
¥ Commerts Time » Sdatefulls
E Javadoc
Header fdate.year§
AnNeLatons
Search & Replace
Code Inspector
L7 il :

CHAPTER 2 CONFIGURATION

Please see Section 2.4.1, “Custom variables”, Section 2.4.2, “System variables” and Sec-
tion 2.4.3, “Local variables” for descriptions of the different available variable types.

245 Date & Time settings

Lets you define the patterns that should be used for the $dat e$ and $t i ne$ expressions
(see Section 2.4.3, “Local variables”).

Figure 2.27. Environment Date & Time settings page

- %

LT Cusbam SpRliin D & Time
¥ Clobal

[t palbarn M ey
Fie Types !

Exclusicns
Messages
Repasibary

F Jawa

For a detailed description, the list of available patterns and further examples, please refer to
the Javadoc for the j ava. t ext. Si npl eDat eFor mat class.

Date pattern

Lets you define the pattern that is used for the $dat e$ variable expression. The default
pattern is M d/ yy, which translates to something like 07/ 23/ 09.

Since 1.2
Time pattern

Lets you define the pattern that is used for the $time$ variable expression. The default
pattern is h: nm a, which translates to something like 02: 56 PM

Since 1.2

DATE/TIME 46

http://java.sun.com/javase/6/docs/api/java/text/SimpleDateFormat.html

2.5

2.5.1

47

Exclusions

Lets you configure exclusion patterns that can be used to omit certain directories or indi-
vidual files from formatting.

Since 1.9.1

Figure 2.28. Exclusions settings page

B Jalapy 1.9.2 B8: Demo License - Only for evaluation purposes
LrsdimaE
Exclusions:
¥ Clobal i .
 farewlow [aod._]
Fle Types
Ersiranment Loli
Messages
Repasitary =
¥ Jawa
L7 Il

Exclusion patterns

Lets you define exclusion patterns that should be used for resource matching. You can spec-
ify an arbitrary amount of exclusion patterns. The patterns will be checked in sequence and
a file will only be formatted if none of the patterns matches the absolute file or parent di-
rectory path. The list component displays all patterns currently defined. Use the button bar
on the right to add, remove or change patterns and define the order in which the patterns

should be checked.

Add...

Lets you add new exclusion patterns. Pressing the button will invoke a new dialog where
you can enter the pattern. The used pattern syntax looks very much like the patterns used in
UNIX: * matches zero or more characters, ? matches one character. For example: to match
all Java files in a specific directory, you could use /test/foo/*.java. To match all files whose
name starts with “Foo”, you could use /test/foo/Foo.*.

To make things a bit more flexible, there is one extra feature which makes it possible to
match multiple directory levels. This can be used to match a complete directory tree, or a file
anywhere in the directory tree. To do this, ** must be used as the name of a directory. When

CHAPTER 2 CONFIGURATION

2.6

MESSAGES

**is used as the name of a directory in the pattern, it matches zero or more directories. For
example: /test/** matches all files and directories under /test/, such as /test/Foo.java or /
test/foo/bar/Bar.java, but not /Foo.java.

Most often you probably want to exclude whole directories from being formatted, e.g. to
exclude some test data from being processed. This might be achieved by defining a pattern
like **/test/** to exclude everything below directories named “test”. If you only want to
exclude something in the project foo it might look like this: **/foo/**/testdata/**.

Please note that patterns only allow forward slashes. Any backslashes will be automati-
cally replaced. The pattern matching itself is platform-agnostic and patterns match even on
platforms that don’t use the forward slash as the file separator.

Change...

Lets you alter an already defined exclusion pattern. The button is only available if an item
is currently selected in the pattern list. Pressing the button will invoke a new dialog where
you can change the exclusion pattern for the currently selected item in the pattern list.

Remove

Lets you remove an already defined exclusion pattern. The button is only available if an
item is currently selected in the pattern list.

Lets you change the position of an already defined exclusion pattern in the pattern list. The
button is only available if an item is currently selected in the pattern list and this is not
the topmost item.

Down

Lets you change the position of an already defined exclusion pattern in the pattern list.
The button is only available if an item is currently selected in the pattern list and this is
not the last item.

Messages

Controls the Jalopy message output. Given the sensitive nature of automatic source code
processing, it is quite important to keep informed about what is going on during the for-
matting process. The default configuration should be sufficient for most users, so there
should seldom arise the need to change anything here.

48

2.6.1

49

Figure 2.29. Messages settings page

Categorks:
* Clobal
Fila T wal & WM
© ES
0 General & WARN
Fralranment Progress i WA EH
Exclusices Barser & "WARHN
 Messages [ERERTURFEVVER & wamn
Repasitary Transformer '- WARN
E Java Code Inspeonor k] WARM
Prinpes ik WAk
Prinmer |awadoc & WA RN
:Fnﬂllll-l filw mgging: flsess fmarcof galopy 193 riemae flog i I:._.lf'h:mw...l:l
B shew Stackirace
 sisomanically shis messages
@ M -

Categories
Jalopy provides different message categories for setting the logging verbosity level. Changing

the threshold from ERROR to DEBUG successively displays more (albeit not necessarily
more useful) messages.

1. General

General purpose chain for I/O activity and all sorts of stuff that doesn’t fit elsewhere.

2. Parsing

Message chain for messages related to the language parsing.

3. Javadoc parsing

Message chain for messages related to the parsing of Javadoc comments.

4. Transforming

Message chain for messages related to the post-processing of the generated parse tree.

5. Printing

Message chain for the main printing engine.

6. Javadoc Printing

CHAPTER 2 CONFIGURATION

2.6.2

LOGGING

Message chain for Javadoc printing related messages.

Logging

Use lodfile

Normally, messages are only printed to the console or the message view of your IDE, here
you can define that all messages should be written to a log file as well. This is most useful
when you use Jalopy as part of an automated build process. Press the Choose... button to
select the file you wish to write logging output to.

Figure 2.30. Choose Log File
Bana Choose Log File

Typa the location of a log file, choose one from the history or prass the
'Browse" button to browse the file system.

dpen: | FUsersimarcal alopy) LE shotdlogSrundog Th|

|
L

| = |

] 4 Hrowse. . __ Canmcel _l{ Choos= :]

T ————————————————
You can either directly enter a location into the combo box, choose one from the history,
or press the Choose... button to display a file chooser that lets you interactively select a file.
Jalopy supports three different log file formats. A custom text format (:/og), an HTML

format (.html) and a flat XML format (xml). These formats can only be selected via the
file chooser.

50

2.6.3

2.7

51

Figure 2.31. Choose Log File format

Bo6 Choose Log File

Have as | mdex iml

g
S

Ieg

Mac Souft bin
Mitmark LENFT L

System linn
lag

THIRD FARTY_ LICEMSE. X

M=kinp
marcc
Applicatioas
Cocumeris
Mol ies
Wusii
Pichares
Torrants

3 -
inrreal HTML Lisg Files [hEm I :':!
" New Falger | _ Cancel) [Choose)

Both the custom text format and the XML output are simple flat file formats, but the
HTML option produces an hierarchical report similar to that generated by the Javadoc tool.
Please note that this feature can be enabled from the Ant, Console and Maven Plug-ins
directly, so it should be normally left disabled here.

Since 1.0

Misc

Show stacktrace

Enables or disables the inclusion of the current execution stack trace with error messages.
This proves useful in case you need to file a bug report as it reveals the source of the error.

Automatically show messages
When enabled, messages are automatically displayed when a formatting run finished. Oth-
erwise you manually need to activate the corresponding view in order to access messages.

This option only applies for the IDE Plug-ins.

Repository

For certain features, Jalopy needs to know about the referenced types. When used inside
an IDE, Jalopy uses the provided infrastructure to access this information. But when run
standalone, such information in maintained in a simple database, called the type repository.
The repository page provides the means to maintain the database. But as an end user you

CHAPTER 2 CONFIGURATION

2.71

2.7.2

usually don’t have to deal with the repository directly and the provided functionality is
purely for forensic purposes.

Figure 2.32. Repository settings page

S 149 : Dema License - Only for evaluation
L arimi

— Fired [search Y
Fle Types (vl)
Erssiranment T
Exclusices e ¥
Messages

F Jawa

H Leg errors during loading
_| Fail g errores during loading

L7 1} &

4

The type repository is only necessary for the Ant, Console and Maven Plug-ins and used
for features that require type resolution like the import optimization. Unlike all other func-
tionality which works purely on the source code level, type information is extracted by an-
alyzing the binary files of a project. It is therefore a necessity that the class path is correctly
configured in order to be able to process all needed files.

Since 1.0.2

Searching the repository

To query the type repository for a specific type or package name, enter the information in
the text field and press the Search button. This is mostly useful only during developing of
the application and might never be used by end users. You can either search for a single
type name (e.g. “String”), a qualified type name (e.g. "java.lang.String") or a package name
(e.g. "java.lang").

Displaying info about the repository
To display some statistics about the type repository, press the /nfo button.

SEARCHING THE REPOSITORY 52

2.7.3

2.7.4

2.7.5

2.8

53

Adding libraries to the repository

To manually add a class library or directory to the repository, click on the Add... button,
select the library to add and click Add. This is most useful only during testing and debug-
ging, and does not provide much pratical need for the casual end-user.

Removing the repository

To remove the type repository from disk, press the Remove button. The database will be
closed if it is currently open and all stored information will be erased.

Initialization

During the initialization of the type repository all project class files are analyzed. Jalopy uses
a byte code reader (ASM) and attempts to gather both the class name and all its referenced
super class names for a given file. For 3rd party libraries, it can be possible that not all
super classes can be loaded (i.e. are defined or even be part of the project). In most cases
this should not be problematic, but it still potentially could hinder the successful execution
of the services that rely on the type repository later on. Therefore, users can control the

behavior of the repository here and specify how problems should be handled.

Log errors during loading

When enabled, Jalopy logs a warning when a class could not be fully analyzed. By default,
this option is enabled as it is recommended that you manually verify that none of the
mentioned files might pose problems later on. The type repository will be initialized despite
the problems. All dependent features will be available.

Since 1.0.3
Fail on errors during loading

When enabled, the type repository will not be initialized when an error occurs. All depen-
dent features will be disabled.

Since 1.0.3

Java

Lets you control all Java related settings.

CHAPTER 2 CONFIGURATION

Figure 2.33. Java settings page

v Cichal Source compadkilig: | J2SES.0 ol
JET
Rraces Kaepan same line: _| Single & L if
Liree Wrapping ez if _ alse
Indentation Enabile far: 8 &) srptesnents
White Space L Only "retura” and “thiow® slEaneimeats
Separation
Sarming Insert parentheses: W Mulbpie expressions
IMpETs _| throww expression
b Camenents | return expressan
Annoksliors
Search & Replace Mizcelaneous: | Only format javedor commens
Code Inspecior] Aray orackers fter idersifier
W tpiic rrudti-variables
Insertlogging cordriona
| lnsere serial version UID
| lasere missing SOwarride
Renowe recundant mocifers
i] .

2.8.1 Source compatibility

Lets you specify the Java platform compliance level.

Table 2.5. Compliance levels

Level Description

Java SE6 assert and enumare recognized as reserved keywords. Section 2.8.5, “Insert @Override
annotation” may be enabled to have missing annotations inserted for overridden and imple-
mented methods

J2SE 5.0 assert and enumare recognized as reserved keywords. Section 2.8.5, “Insert @Override
annotation” may be enabled to have missing annotations inserted for overridden methods

J2SE 1.4 assert is recognized as a reserved keyword

J2SE 1.3 assert and enumare valid identifiers that can be used to name variables and/or methods

It is highly recommended to avoid strings that have become reserved keywords when tar-
geting older Java releases. It’s therefore probably a good idea to stick with at least J2SE 5.0
compliance.

2.8.2 Keep on same line

Lets you print certain statements on just one line when possible, i.e. if they dont exceed
the maximal line length.

Single if

When enabled, prints single i f statements in one line when possible.

SOURCE COMPATIBILITY 54

55

Since 1.2

Example 2.9. Standard single if block

if (cond)
return get Magi cNunber () ;

Example 2.10. Compact single if block
if (cond) return getMgi cNumber () ; |

if
When enabled, prints the i f part of if/else statements in one line when possible.

Since 1.2

Example 2.11. Standard if/else block

i f (cond) |
return get Magi cNunber (); |
el se |
return -1 |

Example 2.12. Compact if of if/else block

if (cond) return getMagi cNunber(); |
el se
return -1; |

Please note that when the i f part has been printed on one line, the following el se i f or
el se part always starts on a new line.

else if

When enabled, prints the el se if part of if/else statements in one line when possible.

Example 2.13. Standard else of if/else block
if (condl)
return get Magi cNunber () ;
else if (cond2)
throw new |11 egal St at eException();

Example 2.14. Compact else if block

if (condl) |
return get Magi cNunber () ;
else if (cond2) throw new || egal StateException(); |

Please note that when the el se i f part has been printed on one line, the following el se
part always starts on a new line.

Since 1.2

Example 2.15. Compact if block
if (condl)
return get Magi cNunber () ;
else if (cond2) throw new ||1egal StateException();
el se
return O;

CHAPTER 2 CONFIGURATION

else

When enabled, prints the el se part of if/else statements on one line when possible.

Since 1.2

Example 2.16. Standard else block

i f (condl) |
return get Magi cNunber () ; |
else if (cond2) |
throw new |1 egal St at eException(); |
el se |
return 0 |

Example 2.17. Compact else block

i f (condl) |
return get Magi cNunber () ; |
else if (cond2) |
throw new || | egal St at eException(); |
el se return O; |

Enable for

You can narrow the scope for the above mentioned options by selecting whether all state-
ments should be printed on one line when possible or only t hr ow or r et ur n statements.

Since 1.2

Example 2.18. All statements on same line

if (true) return result;
else if (false) Systemout.println("unexpected condition");
el se throw new Error();

Example 2.19. Only throw and return statements on same line

if (true) return result;
else if (false)

System out. printl n("unexpected condition");
el se throw new Error();

2.8.3 Insert parentheses

Lets you insert superfluous parentheses automatically to avoid any doubts about how an
expression is evaluated.

Multiple expressions

When enabled, Jalopy inserts parentheses around expressions that involve more than two
terms in order to clarify their precedence. It is always good advise to use more parentheses
than you think you need. They may not be required, but they add clarity and don’t cost
anything.

Example 2.20. How is this expression evaluated?

int result =12 + 4 %3 * 7 /| 8;

Example 2.21. How is this expression evaluated? (continued)
int result =12 + (4 %3 * 7/ 8);

INSERT PARENTHESES 56

284

57

throw expression

Lets you insert parentheses around the throw expression to treat the statement like a func-
tion call.

Since 1.6

Example 2.22. Throw statement

if (condition)
throw new ||| egal St at eException();

Example 2.23. Throw statement with parentheses

if (condition)
throw (new |11 egal StateException());

return expression

Lets you insert parentheses around the return expression to treat the statement like a func-
tion call.

Since 1.6

Example 2.24. return statement

if (condition)
return true;

Example 2.25. return statement with parentheses

if (condition)
return (true);

Miscellaneous

Only format Javadoc comments

When enabled, only Javadoc comments are formatted according to the current Javadoc
settings. Any surrounding source code is left untouched. When you enable this option, the
GUI switches its mode and hides all non-Javadoc related options. In order to display the
full set of options again, you have to disable the Javadoc-only option. You can control the
style of Javadoc comments through the Javadoc settings pages.

Since 1.8

Array brackets after identifier

Lets you choose where the brackets of array types should be placed. By default, Jalopy prints
the square brackets right after the array type.

Example 2.26. Array brackets after type

int[] a;

But C/C++ programmers may expect them to appear after the identifier instead.

Example 2.27. Array brackets after identifier

int a[];

Note that Java allows some strange freedom in the way arrays can be defined. Array brackets
may not only appear after either the type or an identifier, but a mixed style is also allowed

CHAPTER 2 CONFIGURATION

(though not recommended). Jalopy handles all styles well, but is only able to move the
brackets if the dimension of all array declarators is equal.

Example 2.28. Mixed array notation with equal dimensions

float[] f[1[], alI[l, hLI[];

Jalopy would print the above example as

Example 2.29. Mixed array notation with equal dimensions after formatting
float[][]1[] f, g, h; /1 print brackets after type

float f[][1[1, all[1[1, h[1[I[]; /! print brackets after identifier

Mixed array declarators with different dimensions will be printed as-is.

Example 2.30. Mixed array notation with different dimensions
float[J[] f[I[], all[l[]. h[I;

Split multi-variables

When enabled, multi-variables are split into several variable declarations. Otherwise mul-
ti-variables are kept and printed according to the current settings.

Since 1.0.1
Example 2.31. Multi-variable
Biginteger q = null, p =null, g = null;

Example 2.32. Splitted multi-variable

Bi gl nteger q = null;
Bi gl nteger p = null;
Bi gl nteger g = null;

Remove redundant modifiers

The Java Language specification allows certain modifiers that are redundant and should be
avoided. Enabling this option will ensure that these modifiers are removed where present.
The modifiers that will be removed are:

the abst ract modifier of interface declarations (see Java Language specification, section

9.1.1).

public abstract interface Fooable { }

the abst ract and publ i ¢ modifiers of method declarations in interfaces (see the Java
Language specification, section 9.4).

public interface Fooable {
public abstract reportFoo();
}

the fi nal modifier of method declarations that are either declared pri vat e or members

of class or enum declarations that are declared f i nal (see the Java Language specification,
section 8.4.3.3).

public class Foo {
private final perfornfFooOQperation() { }
}

MISCELLANEOUS 58

http://java.sun.com/docs/books/jls/second_edition/html/interfaces.doc.html#30820
http://java.sun.com/docs/books/jls/second_edition/html/interfaces.doc.html#78651
http://java.sun.com/docs/books/jls/second_edition/html/classes.doc.html#11246

285

59

public final class AnotherFoo {
public final performinot her FooQperation() { }
}

e thepublic,static andfinal modifiers of field declarations in interfaces (see the Java
Language specification, section 9.3).

public interface Foo {
public static final int FOO CONSTANT = 1;
}

Since 1.5

Code Generation

Insert serial version UID

Common sense dictates to declare an explicit serial version UID in every serializable class to
eliminate the serial version UID as a potential source of incompatibility (with the additional
benefit of a small performance gain). When this option is enabled and the class directly de-
rives from either j ava. i 0. Seri al i zabl e or j ava. i 0. Ext er nal i zabl e, Jalopy inserts
a serial version UID for the class.

i mport java.io.Serializable;

public class Coordinate inplements Serializable {
private final static long serial VersionU D = -8973068452784520619L;

}

You can choose whether you want to have a default serial version UID added or whether the
serial version id should be generated from the actual class content. Please note that when
choosing the latter, you need to make sure that the source file has been compiled before
formatting is applied, because here the serial version UID is computed from the byte code.

Insert @0verride annotation

When enabled, formatting automatically adds the @Override marker annotation for meth-
ods that override a method from a superclass. The @Override annotation (introduced with
J2SE 5.0) greatly reduces the chance of accidentally overloading when you really want to
override. The @Override annotation tells the compiler that you intend to override a method
from a superclass. If you don't get the parameter list quite right so that you're really overload-
ing the method name, the compiler emits a compile-time error. It’s therefore good practice
to always use the annotation when you override a method to eliminate potential bugs.

Since 1.8

CHAPTER 2 CONFIGURATION

http://java.sun.com/docs/books/jls/second_edition/html/interfaces.doc.html#78642

public class Parent {

int i =0;
voi d doSonething (int k) {
i = k;
}
}
class Child extends Parent {
@verride
voi d doSonet hing (long k) {
i =2 * k;
}

}

This option is only available if the Java compliance level is set to J2SE 5.0 or higher. The
chosen compliance level affects the scope of the annotation. With J2SE 5.0, annotations
may only be inserted for methods that override a method in a super class. But since Java
SE 6.0, the override annotation is also allowed to annotate methods that implement an
interface. Depending on the chosen compliance level, Jalopy therefore performs the corre-
sponding action.

Insert logging conditional
Typically, logging systems have a method that submits a logging message like

| ogger . debug("sonme nmessage: " + soneVar);

This is fine, but if the debug level is set such that this message will NOT display, then time
is wasted doing the string marshalling. Thus, the preferred way to do this is

i f (1ogger.isDebugEnabled()) {
| ogger . debug("sonme nessage: " + soneVar);
}

which will only use CPU time if the log message is needed. Enabling this switch will en-
sure that every logging call with the debug level set will be enclosed with the conditional
expression.

Use this feature with care! The current implementation only supports the Jakarta Log4]
toolkit and is somewhat weak in that every method call named debug is treated as a logging
call which could be incorrect in your application. However, it works fine for the /7log calls.

Insert implicit constructor

If you don’t define a constructor for a class, a default parameterless constructor is automat-
ically created by the compiler. To make this provision more visible, you can let Jalopy insert
the implicit constructor automatically for top-level classes.

Since 1.9.3

public class Watch {
}

public class Watch {
public Watch() {
}

}

CODE GENERATION 60

2.8.6

2.8.6.1

61

Braces

Controls the handling of curly braces (the Java block delimiters).

Layout

Lets you define how the enclosing block delimiters—open and closing curly brace—are
printed. You can either choose from a predefined set of common styles or build one on your
own. The brace style can either be configured individually for each block construct (details
view) or one global style used (global view).

Figure 2.34. Braces Layout settings page (Global view)

Ermaimas

¥ Cloial

¥ Jawa

s
Lire Wrapping
Indencation
‘White Space
Separation
sarting
IMpTs

F Comements
Annoksliors
Search & Replace
Code Inspeoinr

Use global style

Laspnur Bisg CEARALE

A s glekal seple

Chooe frorm commaon stye: | C Skyle

Lik mragning: W L break betore left Brace
B Lirs break afier righn brace

Trear clis | rartkad blocks dfferemn
Triear «lass | rartkead blocks dfTeren il wrippsd
Treal srarement Blocks different iF wraaped
Srricnly oy Brace sty

Wihite space: BeTore lelt Brice no =

Before sight brace: D :]

After right brace

n =

Defines whether one brace style should be used for all block elements. When disabled,
a combo box appears that lets you define the desired brace style for the different block

elements individually.

Since 1.6

CHAPTER 2 CONFIGURATION

Figure 2.35. Braces Layout settings page (Details view)

[T Usa glokal sryle

¥ Jawa
 emos
Lirse Wrapping Configure style far: | Classfinterface A
Indentatisn Chocse fram comman siple :Em Srgle B
S Syrchromize with: " Balect elerent... e
Separation
sarfing
Impes Lire wrapprg: || Line break befare left brace
B Coimemients
Annoksliors White space: Before left brace: :I_:|
Wearch & Replace Before Figha brace: O ':fl

Code Inspeoinr

Configure style for

Lets you choose the block construct whose brace style should be configured. Select an item
to display the available brace style options for the chosen block construct. This option is
only available when the global brace style check box is disabled.

Since 1.6

Choose from common style

Lets you choose a pre-configured brace style. Choosing a style will adjust all individual
brace style options accordingly. The available styles are:

* Cstyle.

Activates the C brace style. This style is sometimes called "Allman style" or "BSD style"
named for Eric Allman, a Berkeley hacker who wrote a lot of the BSD utilities in it.
The style puts the brace associated with a control statement on the next line, indented
to the same level as the control statement. Statements within the braces are indented to
the next level.

BRACES 62

63

private void routine()

{
if (!done)
{
doSoret hi ng() ;
}
el se
{
Systemout. println("Finished");
}
}

Advantages of this style are that the indented code is clearly set apart from the containing
statement by lines that are almost completely whitespace, improving readability and the
ending brace lines up in the same column as the beginning brace, making it easy to find
the matching brace. Additionally, the blocking style delineates the actual block of code
associated from the control statement itself. Commenting out the control statement,
removing the control statement entirely, refactoring, or removing of the block of code is
less apt to introduce syntax errors because of dangling or missing brackets. Proponents of
this style often cite its use by ANSI and in other standards as justification for its adoption.
The motivation of this style is to promote code readability through visually separating
blocks from their control statements, deeming screen real estate a secondary concern.

Sun Java style.

Activates the Sun brace style, a variant of the so called "K&R style" named after
Kernighan & Ritchie, because the examples in their famous "The C Programming Lan-
guage" [Kernighan88] reference are formatted this way. It keeps the first opening brace
on the same line as the control statement, indents the statements within the braces, and
puts the closing brace on the same indentation level as the control statement (on a line
of its own). Most of the standard source code for the Java API is written in this style.

private void routine() {
if (!done) {
doSonet hi ng() ;
} else {
Systemout. println("Finished");
}

}

Advantages of this style are that the beginning brace does not require an extra line by
itself, and the ending brace lines up with the statement it conceptually belongs to. The big
drawback here is that for block statements wrapped expressions require extra indentation
because otherwise the block body is difficult to gather which violates symmetry.

GNU style.
Activates the GNU brace style. A brace style used throughout GNU EMACS and the

Free Software Foundation code. Braces are put on a line by themselves. The braces are
indented by 2 spaces, and the contained code is indented by a further 2 spaces.

CHAPTER 2 CONFIGURATION

BRACES

Example 2.39. GNU style

private void routine()

if (!done)

{
doSoret hi ng() ;

el se

{
System out . println("Finished");

}
}

Synchronize with

Lets you synchronize the brace style of the currently selected block construct with the brace
style of another one. Select an item in the list to have the brace style options updated
accordingly. This option is only available when the global brace style check box is disabled.

Since 1.6

Line Wrapping

Lets you manually adjust the line wrapping behavior for braces. If one of the common brace
styles does not satisfy your needs, you can manually adjust the appearance here.

Line break before left brace

Controls the line break behavior before the left curly brace. When enabled, a line break gets
printed before the left curly brace.

Example 2.40. No line break before left brace

if(true){
doSonet hi ng() ;

-

Example 2.41. Line break before left brace

if(true)

-~

doSonet hi ng() ;

-

Line break after right brace

Controls the line break behavior after the left curly brace. When enabled, a line break gets
printed after the left curly brace whenever possible.

Example 2.42. No line break after right brace

try{
doSoret hi ng() ;
}catch (Exception ex){

-

Example 2.43. Line break after right brace

try{
doSorret hi ng() ;

catch (Exception ex){

-

65

Treat class/method blocks different

It is common in the Java developer community to have the opening brace at the end of
the line of the keyword for all types of blocks (Sun brace style). One may find the C++
convention of treating class/interface and method/constructor blocks different from other
blocks useful (K&R style). With this option you can achieve exactly that: if enabled, class/
interface and method/constructor blocks are then always printed in C brace style (line break

before left brace).

cl ass Vol kswagenBeet| e extends Abstract Aut onobile {
public void tootHorn() {

if (isNull) {
t hr owConstrai nt Vi ol ated();
} else {

updat eVal ue();
}

cl ass Vol kswagenBeet | e ext ends Abstract Aut onobi |l e

{
public void tootHorn()
{
if (isNull) {
t hrowConstrai nt Vi ol ated();
} else {
updat eVal ue();
}
}
}

This option is only available when the global brace style check box is enabled.

Treat class/method blocks different if wrapped

Enabling this option forces a line break before the left brace for class/interface or method/
constructor blocks (C style), if either the parameter list spawns several lines and a t hr ows
clause follows, or one of the possible clauses (extends, inpl enents, throws) was
wrapped. This option is only available when the global brace style check box is enabled.

Treat statement blocks different if wrapped

Using the Sun brace style can make it hard to identify the start of the block body. The
recommended workaround is to increase indentation for the expression statements during
line wrap (see “Block continuation indentation”). But it may be easier to change the style of
the block brace for such cases. Enabling this option does exactly that: It forces a line break
before the opening brace for block statements (if/for/while etc.), if the statement expression
could not be printed in just one line.

Since 1.7

if (((x>0) & (y >0)) || ((x <0) & (y < 0))

&& ((x >y) || (x <-y))) {
reverseCourse();

CHAPTER 2 CONFIGURATION

BRACES

Example 2.47. Wrapped block statement - left curly brace treated different

if (((x>0) & (y >0)) || ((x<0) & (y < 0))
& ((x >y) [(x <-y)))

~

reverseCourse();

—

This option is only available when the global brace style check box is enabled or the style
for Statements is currently configured.

Strictly obey brace style

When “Prefer wrap after assignments” and Section 2.8.6.1.1, “Line break before left brace”
are enabled, a line break may be printed before the left curly brace of array initializers if
the initializer does not fit into one line. But one might prefer to leave the curly brace in
the same line as the variable declaration to obey the general brace style. With this option
you can decide what you favor most: consistent brace style or consistent wrapping after
assignments. The option is only available, if line breaks should be printed before left curly
braces (see Section 2.8.6.1.1, “Line break before left brace”) and either a global brace style
(see Section 2.8.6.1, “Use global style”) used or the brace style for arrays (see Section 2.8.6.1,
“Configure style for”) is configured.

Since 1.8

Example 2.48. Favor consistent brace style

private String[] data = {
" aaaaaaaaaaaaaaaaassSSSSSSSSSSSSSSSSSSSSS”,
"bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb",
B oY of oF o of o of oF o of o of o of o o o o o X o X o of X o X o o o of o o X o of o o X A8
"dddddddddddddddddddddddddddddddddd",
"eeeeeeeceeceeeceeceeceeceeeceeceeeee”, "ffffffffffffffffeffffffefeefr"

b

Example 2.49. Favor wrap after assignment

private String[] data =

{
" aaaaaaaaaaaaaaaaassSSSSSSSSSSSSSSSSSSSSS”,
"bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb",
B oY of oF o of o of X of of o of o of o o o o o X o o o of X o X o o o o o o X o of o o X RN
"dddddddddddddddddddddddddddddddddd",
"eeeeeeeeeeeeeeeeeeeeeeeeeeee", "ffffffffffffffffffffeferfefe™

b

White Space

Lets you adjust the indentation white space for curly braces individually.

Before left brace
Defines the amount of blank space that should be printed before the left curly brace.

Example 2.50. No white space before left brace

if(true){
doSonet hi ng() ;

Example 2.51. One space before left brace

if(true) {
doSoret hi ng() ;

—

—

Before right brace
Defines the amount of blank space that should be printed before the right curly brace.

Example 2.52. No white space before right brace

if(true){
doSonet hi ng() ;
}el sef

quit()();

Example 2.53. One space before right brace

if(true){
doSorret hi ng() ;
telse {

quit()();

After right brace
Defines the amount of blank space that should be printed after the right curly brace.

Example 2.54. No white space after right brace

if(true){
doSoret hi ng() ;
}el se{

quit()();

Example 2.55. One space after right brace

if(true){
doSonet hi ng() ;
} elsef

quit()();

-

2.8.6.2 Misc

Controls miscellaneous brace options.

67 CHAPTER 2 CONFIGURATION

BRACES

Figure 2.36. Braces Misc settings page

Lr it | Lagitist Wi sl i
b Glabad Inyert braces for Eil'lgle if E-F- el E e
¥ jara & while # o, while & switch
m E Cinky inwert when sisterent Eskes more than ane line
Liree Wrapping
Indentation
White Space Remayve braces for: | Single If L] else] for
Separation L while] do.while | switch
B piacks
sarting
IMpTs
(e p— Campct braces Tor: [Mathods [Enueve T Efam £orEant
o E ::::mr g:”iﬁ T dseir
Szarch & Feplace -
Code Inspecior Erakie for: (= &l stamemests
0 Galy Femesa® and Tarim” STAIEEnEnLs
Empty arazes: [Cudcle braces
_Lioey arace shyle
[Insert gmphy viniemers
i] 4

Insert braces for

Per definition braces are superfluous on single statements, but it is a common recommen-
dation that braces should be always used in such cases. With this option, you can specify
whether missing braces for single statements should be inserted for the control statements
i f,for,whileanddo-whil e and labeled statements inside swi t ch blocks. Inserting and
removing braces is mutually exclusive.

Single if

When enabled, braces are inserted around the body of singlei f statements when necessary.

Since 1.9.1

Example 2.56. Brace insertion for if statement

if (condition)
br eak;

would become

if (condition) {
br eak;

}

if...else
When enabled, braces are inserted around the body of i f. . . el se statements when nec-
essary.

68

69

Example 2.57. Brace insertion for if-else statement

if (true)
break;

el se
return;

would become

if (true) {
br eak;
} else {
return;
}

for
When enabled, braces are inserted around the body of f or statements when necessary.

Example 2.58. Brace insertion of for statements

for (int i =0; i < count; i++)
Systemout.println(i);

would become

for (int i =0; i < count; i++) {
Systemout.println(i);

}

while

When enabled, braces are inserted around the body of whi | e statements when necessary.

Example 2.59. Brace insertion for while statements

while (!isDone)
doSoret hi ng() ;

would become

while (!isDone) {
doSonet hi ng() ;
}

do...while

When enabled, braces are inserted around the body of do. . . whi | e statements when nec-
essary.

Example 2.60. Brace insertion for do...while statements

do
somet hi ng() ;
while (condition);

would become

do {
somet hi ng();
} while (condition);

switch

When enabled, braces are inserted around the body of labeled statements inside swi t ch
blocks when necessary. Braces are only inserted if the statement is not empty.

CHAPTER 2 CONFIGURATION

BRACES

Since 1.4

Example 2.61. Brace insertion for labeled statements

switch (c¢) {
case 'a':
case 'b':
Systemout. println();
br eak;

}

would become

switch (c) {
case 'a':
case 'b': {
Systemout. println();
br eak;

}

Only insert when statement takes more than one line

When enabled, brace insertion only happens when the block statement takes more than
just one line to print.

Since 1.8

Example 2.62. Missing braces

if (arg == null)
for (int i =0; i < 10; i++)
Systemout.println("arg " + i);

Above you see an example with two block statements. Enabling brace insertion for if and
for statements would yield:

Example 2.63. Inserted braces

if (arg == null) {
for (int i =0; i <10; i++) {
Systemout.println("arg " + i);
}

}

You see braces inserted for both block statements. But when you've enabled the multi-line
option, you will get:

Example 2.64. Inserted braces limited to multi-line statements

if (arg == null) {
for (int i =0; i < 10; i++)
Systemout.println("arg " + i);

}

The statement of the if-block happens to be another block statement which is printed in
two lines here, therefore the braces are inserted for the if-statement. The for-statement on
the other hand does not have any braces inserted, because here the block can be printed
in just one line.

Remove braces

It is permissible to remove braces in case they are superfluous. This not only applies to
the control statements i f, f or, whi | e and do- whi | e, but also to every block in general

70

71

(remember a block is just a sequence of statements, local class declarations and local variable
declaration statements within braces). Inserting and removing braces is mutually exclusive.

Single if

When enabled, braces around the body of single i f statements are removed when possible.

Since 1.9.1

Example 2.65. Brace removal for single if statements

if (true) {
br eak;

—

would become
if (true)
br eak;

if..else
When enabled, braces around the body of i f. . . el se statements are removed when pos-

sible.

Example 2.66. Brace removal for if statements

if (true) {
br eak;
} else {
return;
}

would become

if (true)
br eak;

el se
return;

for
When enabled, braces around the body of f or statements are removed when possible.

Example 2.67. Brace removal of for statements

for (int i =0; i < count; i++) {
Systemout.println(i);

-

would become

for (int i =0; i < count; i++)
Systemout. println(i);

while
When enabled, braces around the body of whi | e statements are removed when possible.

Example 2.68. Brace removal for while statements

while (!isDone) {
doSonet hi ng() ;

—

would become

CHAPTER 2 CONFIGURATION

BRACES

while (!isDone)
doSonet hi ng() ;

do...while
When enabled, braces around the body of do. . . whi | e statements are removed when pos-

sible.

Example 2.69. Brace removal for do...while statements

do {
somet hi ng() ;
} while (condition);

would become

do
somet hi ng() ;
while (condition);

switch
When enabled, braces are removed around the body of labeled statements inside switch

blocks when possible.

Since 1.8

Example 2.70. Brace removal for switch

switch (c) {
case 'a':
case 'b': {
Systemout. println();
br eak;

}

would become

switch (c) {
case 'a':
case 'b':
System out. println();
br eak;

}
Blocks

When enabled, arbitrary block braces are removed when possible.

Example 2.71. Brace removal for blocks

{
}

Systemout. println();

would become

Systemout.println();

Compact braces

Allows you to print statement blocks in just one line when possible, i.e. when the block
only contains one statement and does not exceed the maximal line length. Please note that

72

73

white space before a compacted block is not controlled by your general brace settings, but
with the "Space before braces" option.

Methods

When enabled, method and constructor bodies will be printed in one line when possible.

Since 1.2

Example 2.72. Standard method declaration

public int getMagi cNunber () { |
return 23; |

-

Example 2.73. Compact method declaration
public int getMagi cNunber() { return 23; } |

Single if

When enabled, single i f statement bodies will be printed in one line when possible.

Since 1.2

Example 2.74. Standard if block

if (cond) { |
return get Magi cNunber (); |

-

Example 2.75. Compact if block
if (cond) { return getMagi cNunber(); } |

if
When enabled, statement bodies of the i f the part of if/else statement will be printed in
one line when possible.

Since 1.2

Example 2.76. Standard if/else block

if (cond) { |
return get Magi cNunber (); |
} else { |
return -1 |

-

Example 2.77. Compact if of if/else block

if (cond) { return getMagi cNunber(); }
el se {
return -1;

-

Please note that when the i f block has been compacted, the following el se i f orel se
statement always starts on a new line.

else if
When enabled, prints el se if statement bodies of if/else statements in one line when

possible.

CHAPTER 2 CONFIGURATION

BRACES

Example 2.78. Standard else of if/else block
if (condl) {
return get Magi cNunber ();
} else if (cond2) {
throw new || | egal St at eException();

-

Example 2.79. Compact else if block

if (condl) { |
return get Magi cNunber (); [
} else if (cond2) { throw new Il|egal StateException(); } [

Please note that when the el se i f block has been compacted, the following el se statement
always starts on a new line.

Since 1.2

Example 2.80. Compact if block

if (condl) {
return get Magi cNunber () ;
} else if (cond2) { throw new ||| egal StateException(); }

else
When enabled, prints el se statement bodies in one line when possible.

Since 1.2

Example 2.81. Standard else block

if (condl) {

return get Magi cNunber () ;
} else if (cond2) {

throw new || | egal St at eException();
} else {

return O

-

Example 2.82. Compact else block
if (condl) {
return get Magi cNunber () ;
} else if (cond2) {
throw new |11 egal St at eException();
} else { return O; }

Arrays

When enabled, array initializers will be printed in one line when possible.

Since 1.7

Example 2.83. Array initializer
String[] s = { I
"First" |
H I

Example 2.84. Compact array initializer
String[] s = { "First" };

74

75

Enums
When enabled, enum declaration bodies will be printed in one line when possible.

Since 1.4

Example 2.85. Enum declaration

public enum Mode { |
OPEN, CLOSE I

Example 2.86. Compact enum declaration

public enum Mode { OPEN, CLOSE } |

-

Enum constants
When enabled, enum constants will be printed in one line when possible. This option is
only useful if you use constant-specific methods in your enums.

Since 1.4

Example 2.87. Enum constants with constant specific methods

public enum Operation {
PLUS {
doubl e eval (doubl e x, double y) {
return x + vy,

}
b
M NUS {
doubl e eval (doubl e x, double y) {
return x - vy; }
b
TI MES {
doubl e eval (doubl e x, double y) {
return x * vy,
}
b

/1 Do arithmetic op represented by this constant
abstract doubl e eval (doubl e x, double y);

-

Example 2.88. Compact enum constants with constant specific methods

public enum Operation {
PLUS { doubl e eval (double x, double y) { return x +vy; } },
M NUS { doubl e eval (double x, double y) { return x - vy; } },
TIMES { doubl e eval (double x, double y) { return x * vy; } },

// Do arithnmetic op represented by this constant
abstract doubl e eval (doubl e x, double y);

Enable for

You can narrow the scope for the above mentioned options by selecting whether all state-
ments should be printed on one line when possible or only t hr owand r et ur n statements.

Since 1.2

All statements
When enabled, all statements are compacted when possible.

CHAPTER 2 CONFIGURATION

BRACES

Example 2.89. All statements on same line

if (true) { return result; }
else if (false) { Systemout.println("unexpected condition"); }
else { throw new Error(); }

Only throw and return
When enabled, only throw and return statements are compacted when possible. All other
statements are printed in normal block style.

Example 2.90. Only throw and return statements on same line

if (true) { return result; }
else if (false) {

System out . println("unexpected condition");
} else { throw new Error(); }

Empty braces

Controls how empty braces should be printed.

Cuddle braces

Prints both braces on one line right after the declaration or statement.

Example 2.91. Cuddled empty braces
class Foo {

public void foo() { }

-

You can control the amount of white space that is printed before the left curly brace. See
“Cuddled braces indent” for more information.

Obey brace style

Causes the left curly brace of the empty brace block to be positioned according to the
current brace style settings. Depending on the style, the left brace is either printed directly
after an element or will have a line break printed before. This option is only available when
Section 2.8.6.2.4, “Cuddle braces” is enabled.

Since 1.7

Example 2.92. Cuddled braces, C brace style

cl ass Foo
{
public void foo() { }
}
Example 2.93. Cuddled braces, C brace style, obey brace style
cl ass Foo
{

public void foo()

{1}

-

o\

7

2.8.6.3

77

Insert empty statement

Inserts an empty statement to make it obvious for the reader that the empty braces are
intentional. Please note that this option does not apply for class/interface and method/
constructor bodies, but is only used for control statements and blocks.

Example 2.94. Empty braces with empty statement
class Foo {

public void foo() {

}

Comments
Lets you control the insertion of trailing comments after a closing brace to assist matching
corresponding braces. Such comments are called identifying comments.

Figure 2.37. Braces Comments settings page

Insert icentfirg comments for [Class [Interface
¥ jra O Comtractar [Methmd
m] iFoelne [while
Lire: Wrapping E far E swkch
Indentation E wyrn branimd E brpaatch,, finally
‘White Space
ol Orly acd whan brace body greaber feguaals than T‘;l lres
sarting
Impoes
F Comemers
Annotalions

Search & Replace
Code Insperinr

Insert identifying comments for

Class
Lets you insert identifying comments for class declarations.

Since 1.3

CHAPTER 2 CONFIGURATION

BRACES

Example 2.95. Identifying class comment

public class Foo {

public String getNanme() {
return ...;
}

} /'l end class Foo

Interface
Lets you enable the insertion of identifying comments for interface declarations.

Since 1.3

Example 2.96. Identifying interface comment

public interface Fooable {

public String get Name();

} /'l end interface Fooable

Constructor
Lets you enable the insertion of identifying comments for constructor declarations.

Since 1.3

Example 2.97. Identifying constructor comment

public class Foo {

public Foo() {
super () ;
} /'l end ctor Foo

-

Method

Lets you enable the insertion of identifying comments for method declarations.

Since 1.3

Example 2.98. Identifying method comment

public class Foo {

public void getName() {
return _nane,
} // end method get Nare

-

if...else
Lets you enable the insertion of identifying comments fori f/ el se statement blocks.

Since 1.3

79

Example 2.99. Identifying if-else comment
if (true) {

Y /1 end if
if (true) {

} else if (false) {

} // end if-else

if (true) {

} else if (false) {
} el se {

} /1 end if-else

while
Lets you enable the insertion of identifying comments for whi | e statement blocks.

Since 1.3

Example 2.100. Identifying while comment
while (true) {

} /] end while

for
Lets you enable the insertion of identifying comments for f or statement blocks.

Since 1.3

Example 2.101. Identifying for comment

for (int i = 0; object.length; i++) {
} I/ end for

switch
Lets you enable the insertion of identifying comments for swi t ch statement blocks.

Since 1.8

Example 2.102. Identifying switch comment
switch (state) {

} /] end switch

try...catch...finally
Lets you enable the insertion of identifying comments for t ry/ cat ch/ fi nal Iy blocks.

Since 1.3

CHAPTER 2 CONFIGURATION

2.8.7

2.8.71

Example 2.103. Identifying try-catch comment
try {

} catch (Throwabl e ex) {

} /'l end try-catch

try {

} caii:ﬁ (1 OException ex) {
}fiﬁél.ly{

} //”eﬁd try-catch-finally
try {

}fiﬁél.ly{
}//”eﬁdtry-finally

synchronized
Lets you enable the insertion of identifying comments for synchr oni zed statement blocks.

Since 1.3

Example 2.104. Identifying synchronized comment
synchroni zed (this) {

} // end synchronized

Only add when brace body greater/equal than n lines

Lets you specify the size of a brace body that is necessary in order to see identifying com-
ments inserted. For example, you might want to require identifying comments only on
brace bodies that have at least 30 lines.

Since 1.3

Line Wrapping

Controls when and how lines are wrapped.

General

Lets you control the general line wrapping options.

LINE WRAPPING 80

81

Figure 2.38. Wrapping settings page

LY adiTias Canara Qptian AiTdys
¥ Clobal .
 wrap lines Lisw leagrse | 20 |7
¥ Jawa =
RrACES
Lire Wrapping Wirap palicy I_‘ljﬂun bafare pparainors "_'\' Wrap after cperators
Indentation
White Space Kazep ire breaks: | Declaration parameters || Call arguments
Separation || Dperators] String concats
sarting | &rray elements
IMpeTs _ Treat twae siring lherals as string concat
B Coimemients
Annotations Miscellanious: [Disable for comalex expressions
Wearch & Replace B &void base left parerahisis
Code Insperann [within call afies assignesent
[within call argusvenes
@ M p

Wrap lines

Enables or disables automatic line wrapping. When enabled, Jalopy tries to keep lines within
the maximal line length and breaks statements across lines when necessary.

NOTE Disabling line wrapping does not mean that existing line breaks are kept,
but rather that no effort is taken to keep lines in between the maximal
line length upon reformatting

Line length
Lets you specify the maximal line length. Jalopy tries (more or less—depending on the used
indentation scheme) to limit each line within the given length.

Policy

Lets you define the wrapping policy for operators. Line wrapping will often occur with
statements that consist of several (possibly long) expressions. Here you specify whether line
wrapping should occur before or after the expression operator.

Wrap before operators
When enabled, line breaks will be inserted before operators.

CHAPTER 2 CONFIGURATION

Example 2.105. Wrap before operators (Standard indented)

if ((conditionl && condition2)
|| (condition3 && condition4)
|| !'(condition5 & condition6)) {
doSonet hi ngAbout I t ();

}

Wrap after operators
When enabled, line breaks will be inserted after operators.

Example 2.106. Wrap after operators (Standard indented)

if ((conditionl & condition2) ||
(condition3 && conditiond) ||
I'(condition5 && condition6)) {
doSorret hi ngAbout It ();

}

Please note that wrapping for the comma and dot operator is currently always performed
after the operators! If you happen to use Sun Brace styling, you might want to enable con-
tinuation indentation for blocks to let the statement body stand out. See “Block continua-
tion indentation” for more information.

Keep line breaks
Lets you specify for which code elements line breaks should be kept.

Declaration parameters

When enabled, existing line breaks after the commas of declaration parameters are kept.
Otherwise line wrapping is performed according to the current settings.

Since 1.6

Example 2.107. Nicely laid out method declaration

void test(String rNaneg,
bool ean rPendandic) {

}

After formatting this code could look like this (because everything fits in one line):

Example 2.108. Method call after formatting

void test(String rName, bool ean rPendandic) {

}

But with the "Keep line breaks” option enabled, it may look like this:

Example 2.109. Method declaration after formatting with kept line breaks (Endline|

indented)

void test(String rNane,
bool ean rPendandic) {

}

Alternatively, you might want to use the // J: KEEP+ pragma comment to keep line breaks
on a case by case basis.

LINE WRAPPING 82

83

Call arguments

When enabled, existing line breaks after the commas of call arguments are kept. Otherwise
line wrapping is performed according to the current settings.

Since 1.6

Example 2.110. Nicely laid out method call

obj . met hod1(test,
test 2,
test3);

After formatting this code could look like this (because everything fits in one line):

Example 2.111. Method call after formatting

obj . methodl(test, test2, test3);

But with the "Keep line breaks" option enabled, it may look like this:

Example 2.112. Method call after formatting with kept line breaks (Endline indented)

obj . net hod1(test,
test 2,
test3);

Alternatively, you might want to use the // J: KEEP+ pragma comment to keep line breaks
on a case by case basis.

Operators

When enabled, existing line breaks before or after infix operators and the comma operator of
method declaration parameters or method call arguments are kept. Otherwise line wrapping
is performed according to the current settings.

Since 1.0

Example 2.113. Operators with forced line breaks

if ((conditionl & condition2)
|| (condition3 && condition4)
|| '(condition5 && condition6))

{
}

After formatting this code could look like this (because not everything fits in one line and
not line breaks are forced):

Example 2.114. Operators after formatting (wrapping is done on-demand)
if ((conditionl & condition2) || (condition3 && condition4) ||

I'(condition5 && condition6))
{

}

But with the "Keep line breaks" option enabled, it may look like this:

CHAPTER 2 CONFIGURATION

Example 2.115. Operators after formatting with kept line breaks

if ((conditionl & condition2) ||
(condition3 && conditiond) ||
I'(condition5 && condition6))

{
}

Please note that it does not matter what wrapping policy for operators you choose. Jalopy
will keep line breaks even if the operators move!

String concats

When enabled, existing line breaks before or after the plus operator of concatenated string
literals are kept. Otherwise line wrapping is performed according to the current settings.

Since 1.0.1

Example 2.116. Nicely laid out string constant

query = "sel ect a.prop_text,
" a.contest _title,
fromcontest a "
where a.l anguage_code = b.|anguage_code "
and b.bob = c.bob "
and a.x = ? "
order by a. bob,
c. | anguage";

+ o+ + o+ o+ o+

After formatting this code could look like this:

Example 2.117. String constant after formatting

query = "select a.prop_text, " + " a.contest _title, " +
" fromcontest a" + " where a.language_code = b.language_code " +
" and b.bob = c.bob " + " and a.x = ? " + " order by a.bob, " +

c. | anguage";

But with the "Keep string concats” option enabled, it may look like this:

Example 2.118. String constant after formatting with "Keep line breaks" (Standard

indented)

query = "select a.prop_text, " +

" a.contest _title, " +
fromcontest a " +
where a.language_code = b.|anguage_code " +
" and b.bob = c.bob "
" and a.x = ? " +
order by a.bob, " +

c. l anguage";

+

Please note that it does not matter what wrapping policy for operators you choose. Jalopy
will keep line breaks even if the operators move!

Array elements

When enabled, existing line breaks after the separator comma between individual array
elements are kept. Otherwise line wrapping is performed according to the current settings
if there can be no pragma comment found that indicates otherwise.

Since 1.5

LINE WRAPPING 84

85

Example 2.119. Array declarations

String[] foo = new String[]

n f 00" ,

H
String[] bar = new String[]

n bal’ n ,
n car n ,

I

Example 2.120. Array declarations after reformat

String[] foo = new String[] { "foo", };

String[] bar = new String[] { "bar", "car", };

Example 2.121. Array declarations after reformat with "Keep line breaks"
String[] foo = new String[]

{
"foo",
b
String[] bar = new String[]
{
"bar",
"car",
b

Example 2.122. Array declarations with pragma comment to keep line breaks

String[] foo = new String[] { "foo", };

String[] bar = new String[]

{ I'1J: KEEP
"bar",
"car",

b

Alternatively, you might want to use the // J: KEEP+ pragma comment to keep line breaks
on a case by case basis.

Strictly obey "Keep line breaks"

When using endline indentation, line breaks may not always be kept because doing so would
break the endline indent contract and lead to inconsistent indentation behavior. Enabling
this option will cause Jalopy to keep existing line breaks even in such cases. Please note that
this option is only available when endline indentation is enabled and any of the "Keep line
breaks" options selected!

Since 1.8

Example 2.123. Method call

String firstSynbol = eraseNonBreaki ngSpaceFr onSynbol (
synbol 1, synbol 2);

When the option is disabled, Jalopy won’t keep the line break before the first call argument
because it goes against the endline indentation rules.

CHAPTER 2 CONFIGURATION

Example 2.124. Method call - endline indented

String firstSynbol = eraseNonBreaki ngSpaceFr onSynbol (synbol 1,
synbol 2);

But if you really favor keeping the line break, enabling the option would yield:

Example 2.125. Method call - line break kept

String firstSynbol = eraseNonBreaki ngSpaceFr onSynbol (
synbol 1, synbol 2);

Treat two string literals as string concatenation

This option lets you control what is considered a string concatenation. By default, Jalopy
treats the plus (+) operator as a string concatenation when either one of the operands is a
string literal. But you might want to narrow this behavior to only treat two string literals as
a string concatenation. Please note that this option is only available when any of the "Keep
line breaks" options is selected!

Since 1.8
Example 2.126. String concatenations
String query = "select a.prop_text, "
+ " a.contest _title, "
+ " fromcontest a "
+ " where a.language_code = b.| anguage_code ";

String nane = "Wl ther"
+ get Ni ck();

When this option is disabled, all operators in the example above are considered string con-
catenations and therefore line breaks are kept.

Example 2.127. String concatenations

String query = "select a.prop_text, "
+ " a.contest _title, "
+ " fromcontest a "
+ " where a.language_code = b. | anguage_code ";

String nane = "Walther" + getNi ck();

When enabled, only those plus operators with two string literals on either side would retain
any line breaks like in the example above.

Miscellaneous

Disable wrapping for complex expressions

For complex expressions a common technique to enhance readability is to break the expres-
sion into several sub-expressions that can be stored in temporary variables that are placed
on different lines.

Example 2.128. Complex expression

if (conditionOne &&
("foo".equals(aStr) || "bar".equal s(aStr)) |
doSoret hi ng() ; |

LINE WRAPPING 86

87

Example 2.129. Refactored expression

bool ean conditi onTwo = "foo0". equal s(aStr);
bool ean conditionThree = "bar". equal s(aStr);

if (conditionOne &&
(conditionTwo || conditionThree))
doSoret hi ng() ;

In order to determine occurrences of complex expressions, enabling this option will cause
automatic line wrapping to be disabled when a complex expression gets printed. A warning
message will be logged in the Printer category that informs you about the location of the
expression.

Since 1.5

Example 2.130. Flagged complex expression

if (conditionOne & (conditionTwo || conditionThree))
doSonet hi ng() ; |

Avoid bare left parenthesis

With Endline indentation and "Wrap on-demand after left parenthesis” or "Keep line break
for operators” enabled, line breaks after left parentheses may look ugly. If this option is
enabled, such line breaks are avoided. This option was mainly introduced to fix some un-
wanted behavior of earlier releases without breaking compatibility. It is recommended to
have it enabled.

Since 1.4

Example 2.131. Bare left parenthesis

thi s. cust omer Nunber = new Cust oner Nunber (
Servi ceManager . creat eServi ce());

Example 2.132. Avoided bare left parenthesis
t hi s. cust oner Number = new Cust oner Nunber (Ser vi ceManager . creat eService());

Prefer within call after assignment

This option lets you define where a line wrap should preferably occur for call statements
after assignments that don't fit into the maximal line length. The option is only meant to
let you adjust behavior when “Prefer wrap after assignments” has been enabled. Please see
explanation there.

Since 1.7

Example 2.133. Wrapping assignment expression

nuMBeans =
NuvegaPr operti esHandl er. get NNuvegaAr r ayPr operty(
NuvegaPr operti es. PROPERTI ES_FI LE_NUVEGA BEAN_NAME) ;

Example 2.134. Prefer wrapping within call

nuMBeans = NuvegaProperti esHandl er. get NNuvegaAr r ayPr operty(
NuvegaPr operti es. PROPERTI ES_FI LE_NUVEGA BEAN_NAME) ;

CHAPTER 2 CONFIGURATION

2.8.7.2

Prefer within call arguments

This option lets you define where a line wrap should preferably occur for call arguments
that does not fit into the maximal line length. Normally a line gets wrapped before a call
argument that don't fit into the maximal line length. Enabling this option will cause a
line break inserted within the call argument for operator expressions when the operator
expression is not immediately preceded with or followed by another operator expression.

Since 1.5

Example 2.135. Wrapping method call (default behavior)

failed(output, "a" + "b", null, |
"Failed to open prefs: " + e.getMessage()); |
I

As you can see from the above example a line break is inserted before the third argument
as it would exceed the maximal line length when printed in the same line.

Example 2.136. Prefer wrapping within call argument

failed(output, "a" + "b", null, "Failed to open prefs: " |
+ e. get Message()); |

When the option is enabled, the line break happens within along the operator of the third

argument.

Example 2.137. Standard wrapping when two operator expressions

failed(output, "a" + "b", |
"Failed to open prefs: " + e.getMssage()); |

But if two operator expressions follow immediately, the standard behavior applies in order
to enhance readability.

Options

Lets you configure the line wrapping behavior for individual elements.

LINE WRAPPING 88

89

Figure 2.39. Wrapping options

L i Caneral Optisns Ariays

& Clobal Dl rations
¥ Jawa Functon calls
Rraces CHPressions
BT
—— Parertheses
whie space I
SepAration Twoe parameler klavrr wrmm
riing Label Foece wrap
ImporTs Paramebzrs/Lxpressions WraD WD MECES ATy
b Coffeers Risgiabey kay v Wi
Annoksliors

Szarch & Feplace
Code Inspecior

@ il r
s

Jalopy supports different wrapping strategies that can be applied to individual elements
as required. To configure wrapping for a specific element, locate the element in the tree
and select the current strategy. A pop-up menu will open that lets you change the strategy.
The preview instantly reflects any change so you can easily recognize what the impact of a
different strategy would be. The current available strategies are:

Never wrap

Disables wrapping for a specific element altogether. Please note that disabling wrapping
might lead to long lines that exceed the maximal line length and should therefore preferably
only be used with certain elements to avoid line wrapping at specific positions.

Example 2.138. Wrapping disabled for import declaration

i mport com myconpanynane. nypr oj ect nane. nypackagenane. MyCl assNane;

Example 2.139. Wrapping enabled for import declaration

i mport com myconpanynane. nmypr oj ect nane. nypackagenane |
. MyCl assNane; |

Wrap when necessary

Only wraps when otherwise the maximal line length limit would be exceeded. One could
refer to this policy as lower level or late line wrapping. This strategy favors the use of hor-
izontal space and leads to compact code, but might make certain constructs difficult to
read because there is sometimes no clear visual boundary between elements when used ex-
clusively.

CHAPTER 2 CONFIGURATION

Example 2.140. Wrap only when necessary after assignment

String value = "XXXXXXXXXXXXXXXXXXXXXXX" + " XXXXXXXXXXXXX" |
+ T XXXXXXXXXXXXX" |

Example 2.141. Wrap when exceed after assignment

String value = |
"XXXXXXXKXXXXXXXKXXXXXXKXK" + T XXXXXXXRXKXXXX + " XXXXXXXXXXXXX" ;|

Wrap when exceed

Wraps if an element would not fit completely into the current line. Think of it as higher
level or early line wrapping. This is probably the most balanced strategy when available that
combines very readable results with moderate vertical space requirements.

Example 2.142. Wrapped within extends clause when necessary

interface Testabl e extends Transferabl e, Recordable, |
Pl ayabl e, I mutable, Serializable { |

—

Example 2.143. Wrapped before extends keyword when exceed

interface Testable |
extends Transferabl e, Recordable, Playable, |
I mmut abl e, Serializable { |

I

-

Wrap all when first wrapped

Forces a line break for all related elements (like declaration parameters) if the first element
has been wrapped. This leads to very uniform and readable code at the expense of higher
vertical space requirements.

Example 2.144. Wrapped expression when necessary
while (
"pi cker". equal S XXXXXXXXXXXXXXXXXXXXXXXXXX. get Nanme()
)

I

) |
& & misStatic() & misPublic() & misFinal ()) { |
I

I

-

Example 2.145. Wrapped all operators as first operand wrapped
while (|
"pi cker". equal S XXXXXXXXXXXXXXXXXXXXXXXXXX.get Nanme()) |

&8 misStatic() |
&& m i sPublic() |
& misFinal ()) { |
I

I

—

Wrap all when exceed

Similar to Wrap all when first wrapped, but forces a line break for all related elements (like
declaration parameters), if the whole element would not fit into the current line.

Example 2.146. Wrapped expression when necessary

_user Dat abase. addUser (|
"John", "Doo", encryptPassword("password", secretKey), |
"123 Nashville", "Surgrass");

LINE WRAPPING 9

S

91

Example 2.147. Wrapped all operators as first operand wrapped

_user Dat abase. addUser (
"John",
" Doo",
encrypt Passwor d(" password", secretKey),
"123 Nashville",
"Surgrass");

Force wrap

Always wraps a specific element or elements (like call arguments). This can be useful to
ensure a consistent style e.g. for chained calls or parameter lists, but also to force line breaks
at unusual positions that would normally not be considered during line wrapping.

Example 2.148. Method declaration

public static int foo() {

}

Example 2.149. Force line break before method name

public static int

foo() {
.
Please note that not all strategies apply to all elements, and therefore you might be pre-
sented with a different set of strategies for each element. Below you find all currently avail-

able elements listed along with some short examples of the output with different wrapping
strategies.

Import declaration

For import declarations you can choose whether they should be wrapped along the dots if
otherwise the maximal line length would be exceeded or not at all.

Since 1.4

Example 2.150. Very long import declaration

i mport com myconpanynane. nypr oj ect nane. nypackagenane. MyCl assNane;

Example 2.151. Wrapped import declaration

i mport com myconpanynane. nypr oj ect nane. nypackagenane |
. MyCl assNane; |

For general information about the available wrapping strategies, please refer to the wrapping
strategies overview.

Before declaration keyword

Lets you choose to force a line break before cl ass, i nterface enumand @nterface
keywords or disable line wrapping completely.

Since 1.4

CHAPTER 2 CONFIGURATION

Example 2.152. Class declaration
public class FooBar {

Example 2.153. Wrapped class declaration

o] -
c

=

o .

cl ass FooBar ({

—

For general information about the available wrapping strategies, please refer to the wrapping
strategies overview.

After class keyword
Lets you force a line break after the cl ass keyword or disable line wrapping altogether.

Since 1.3

Example 2.154. Class declaration
public class FooBar {

‘

Example 2.155. Wrapped class declaration

public class
FooBar {

—

For general information about the available wrapping strategies, please refer to the wrapping
strategies overview.

Before extends keyword

Lets you either force a line break before the extends keyword of class/interface/enum dec-
larations, only print a line break if the extends clause would not completely fit into one
line, or print a line break only if the extends clause would otherwise exceed the maximal
line length. Only wrapping when absolutely necessary will require the least vertical space
and yield the most compact code, but readability might be affected.

Example 2.156. Wrapping necessary

interface InterfaceWthAHugeAndSi || yNane

I
ext ends Am cabl e, Adorable { |
c |
I

-

Enforcing a line break before the keyword if the complete clause would not fit into one
line, provides a good balance between readability and space requirements.

Example 2.157. Extends clause does not fit into one line

i nterface Testabl e extends Transferable, Recordable,
Pl ayabl e { |
. |
I

-

N

LINE WRAPPING 9

93

Example 2.158. Line break because extends clause would not fit into one line

interface Testable
extends Transferabl e, Recordable, Playable { |

-

Always enforcing a line break before the keyword might be a viable strategy to achieve the
most consistent behavior at the expense of slightly higher vertical space requirements.

Example 2.159. No line wrapping necessary

i nterface Enyoyabl e extends Ami cable, Adorable { |

Example 2.160. Wrapping forced

i nterface Enyoyabl e
ext ends Ami cabl e, Adorable {

-

—

You can control the space printed before the keyword via the indentation settings. See “Ex-
tends indent size” for more information. For general information about the available wrap-
ping strategies, please refer to the wrapping strategies overview.

After extends types

Lets you configure the wrapping behavior for the type names of extended classes.

Example 2.161. Class/interface extends types

public interface Channel extends Puttable, Takable {

-

Example 2.162. Wrapped class/interface extends types (Endline indented)

public interface Channel extends Puttable,
Takabl e {

}

For general information about the available wrapping strategies, please refer to the wrapping
strategies overview.

Before implements keyword

Forces a line break before the implements keyword of a class declaration.

Example 2.163. implements keyword

public class Synchroni zedBool ean inpl enents Conparabl e, C oneable {

}

Example 2.164. Wrapped implements keyword (Standard indented)

public class Synchroni zedBool ean
i mpl ements Conparabl e, C oneable {

}

You can control the space printed before the keyword via the indentation settings. See “Im-
plements indent size” for more information. For general information about the available
wrapping strategies, please refer to the wrapping strategies overview.

CHAPTER 2 CONFIGURATION

After implements types

Forces a line wrap after each type name of the implemented classes.

Example 2.165. Class implements types
public class Synchroni zedBool ean i npl ements Conparabl e, Coneable {

‘

Example 2.166. Wrapped class implements types (Endline indented)

public class Synchroni zedBool ean i npl ements Conpar abl e,
Cl oneabl e {

—

For general information about the available wrapping strategies, please refer to the wrapping
strategies overview.

Before throws keyword

Forces a line break before the throws keyword of a method/constructor declaration.

Example 2.167. throws keyword

private File getDestinationFile(File dest, String packageNane,
String filenane) throws | OException {

Example 2.168. Wrapped throws keyword (Endline indented)
private File getDestinationFile(File dest, String packageNane,
String fil ename)
throws | OException {

‘

—

You can control the space printed before the keyword via the indentation settings. See
“Throws indent size” for more information. For general information about the available
wrapping strategies, please refer to the wrapping strategies overview.

After throws keyword
Forces a line break after the t hr ows keyword.

Since 1.3

Example 2.169. Throws signature

public void foo()
t hrows FooExcepti on,
Bar Excepti on {

‘

Example 2.170. Throws signature (wrapped)

public void foo()
t hr ows
FooExcepti on,
Bar Excepti on {

—

N

LINE WRAPPING 9

95

For general information about the available wrapping strategies, please refer to the wrapping
strategies overview.

After throws types

Forces a line wrap after each type name of the throws clause of a method/constructor dec-
laration.

Example 2.171. throws types

private File getDestinationFile(File dest, String packageNane,
String fil enane)
throws | OException, FooException {

-

Example 2.172. Wrapped throws types (Standard indented)

private static final File getDestinationFile(File dest, String packageNane,
String fil enane)
throws | CExcepti on,
FooException {

-

Example 2.173. Wrapped throws types (Endline indented)

private File getDestinationFile(File dest, String packageNane,
String fil ename)
throws | OExcepti on,
FooException {

-

For general information about the available wrapping strategies, please refer to the wrapping
strategies overview.

After enum constant

When enabled, forces a line break after each enum constant of an enum declaration.

Since 1.2

Example 2.174. Enum constants

publi ¢ enum Season {
W NTER, SPRI NG SUMVER, FALL

Example 2.175. Forced line break after enum constants

public enum Season {
W NTER,
SPRI NG,
SUMVER,
FALL

-

-

For general information about the available wrapping strategies, please refer to the wrapping
strategies overview.

Before field name

Forces a line wrap before the name of an instance field declaration. Please note that this
option does not apply for multi-variables.

CHAPTER 2 CONFIGURATION

Since 1.2

Example 2.176. Field declaration

private int _count =0

Example 2.177. Field declaration with line break between before the name

private int
_count =0

For general information about the available wrapping strategies, please refer to the wrapping
strategies overview.

After multi variable type
When enabled, a line break will be printed after the type identifier of the declaration.

Since 1.0

Example 2.178. Standard multi-variable

Biglnteger q = null, p =null, g = null;

Example 2.179. Force wrap after type of multi-variables (Standard indented)

Bi gl nt eger
g=null, p=null, g=null;

For general information about the available wrapping strategies, please refer to the wrapping
strategies overview.

After multi variable declarator

When enabled, each declaration of a multi-variable declaration gets always printed on a
new line. Otherwise, wrapping only occurs when necessary.

Since 1.0

Example 2.180. Standard multi-variable
Biginteger q = null, p =null, g = null;

Example 2.181. Force wrap after each declarator of multi-variables (Endline indented)
Bi gl nteger q = null,
p = null,
g = null;

For general information about the available wrapping strategies, please refer to the wrapping
strategies overview.

Before method name

Forces a line wrap before the name of a method or constructor declaration.

Since 1.0.3

Example 2.182. Method declaration

public static int foo()

{
}

LINE WRAPPING 96

97

Example 2.183. Method declaration with line break between return type and name

public static int
foo()
{

}

For general information about the available wrapping strategies, please refer to the wrapping
strategies overview.

Parameters

Forces a line break after each parameter of a method or constructor declaration.

Example 2.184. Method declaration parameters

public static File create(File file, File directory, int backupLevel)
throws | OException {

Example 2.185. Wrapped method declaration parameters (Endline indented)

public static File create(File file,
File directory,
i nt backupLevel)
throws | OException {

}

For general information about the available wrapping strategies, please refer to the wrapping
strategies overview.

Chained method call

Lets you either force a line break before each call chain, preferably print a line break before
a call chain if the whole call cannot be printed in just one line, only print a line break before
a call chain when absolutely necessary to avoid breaking the line length limit, or disable
line wrapping before call chains altoghether.

TIP You can (and probably should) have the individual call chains aligned.
See below for instructions how to achieve such a style

Example 2.186. Always wrap chained method call

buf . append(" XXXXXXXXXXXXXXX")
. append(" xxxxx")
cinsert (0, "XXXXXXXXXXXXXX")
. append(" xxx")
.insert(0, "xxx");

Stricly enforcing a line break before each call chain is the simplest strategy, and leads to very
uniform und easy to read code, but has the highest vertical space requirements.

Example 2.187. Wrap chained method call when exceed

buf . append(" XXXXXXXXXXXXXXX") . append(" XxXxxx")
cinsert (0, "XXXXXXXXXXXXXX").append("xxx").insert(0, "xxx");

Preferably wrapping before the call chain if the whole chain cannot be printed in one line,
is the most sensible approach if you want a more compact, yet readable result.

CHAPTER 2 CONFIGURATION

Example 2.188. Wrap chained method call when necessary

buf . append(" XXXXXXXXXXXXXXX") . append("xxxxx").insert (0,
"XXXXXXXXXXXXXX") . append(" xxx").insert(0, "xxx");

If you want the most compact

Example 2.189. Never wrap chained method call

I
nessage. f or mat (ERROR_SOURCE_ADDRESS) . par am(m sessi on. get Ai nNane()) . send() ;
I

buf . append(" XXXXXXXXXXXXXXX") . append(" xxxxx").insert (0, |
"XXXXXXXXXXXXXX") . append(" AAA") . insert (0, "xxx"); |

Disabling wrapping before call chains altoghether, only makes a difference for calls without
arguments. Otherwise, wrapping may still happen within the argument list, as you can see
in the above example.

You can control the indentation for chained method calls with either “Indent dotted
expressions” or “Align chained method calls”. For enhanced readability it's probably best
to have chained calls aligned.

Example 2.190. Aligned chained method call

buf . append(" XXXXXXXXXXXXXXX")
.append(" xxxxx")
Linsert (0, "XXXXXXXXXXXXXX")
.append(" xxx")
.insert(0, "xxx");

For general information about the available wrapping strategies, please refer to the wrapping
strategies overview.

Nested chained method call

Forces a line wrap after each method call chain of nested method calls, i.e. method calls
used as call arguments.

Since 1.6

Example 2.191. Chained method call
nmessage. f or mat (ERROR_SOURCE_ADDRESS) . par am (m_sessi on. get Ai mNane()) . send();

Example 2.192. Wrapped chained method call (aligned)

nmessage. f or mat (ERROR_SOURCE_ADDRESS)
. param (m_sessi on. get Ai mNane())
.send();

Please note that you can control the alignment for chained method calls with the Sec-
tion 2.8.8.2.3, “Nested chained method calls” option. For general information about the
available wrapping strategies, please refer to the wrapping strategies overview.

Call arguments

Forces a line wrap after each argument of a method call.

Example 2.193. Method call

doSonet hi ng();

_user Dat abase. addUser (" Nane", encrypt Password("password", _secretKey),
"123 fake address");

doSonet hi ngEl se();

LINE WRAPPING 9

Co

99

doSonet hi ng();
_user Dat abase. addUser (" Nane",
encr ypt Passwor d(" passwor d”,
_secr et Key),
"123 fake address");
doSonet hi ngEl se();

For general information about the available wrapping strategies, please refer to the wrapping
strategies overview.

Nested call arguments

Forces a line wrap after each argument of a method call if at least one argument is a method
call itself. This option can prove especially useful if one prefers to nest method calls as
arguments rather than adding local variables just to hold those arguments.

doSonet hi ng() ;

_user Dat abase. addUser (" Nane",
encrypt Passwor d(" password", _secretKey),
"123 fake address");

doSonet hi ngEl se();

For general information about the available wrapping strategies, please refer to the wrapping
strategies overview.

Marker annotation

Lets you control the wrapping behavior of marker annotations. Marker annotations are
annotations with no elements, e.g. @r el i ni nary. There are four strategies you can choose
from:

Wrap when necessary Only issue a line break after a marker annotation if otherwise the maximal line
length limit would be exceeded

Wrap when exceed Issue a line break after a marker annotation if the declaration does not fit within
the maximal line length. Requires all marker annotations to appear before all
other modifiers

Wrap last Issue a line break after the /ast marker annotation. Requires all marker anno-
tations to appear before all other modifiers

Wrap always Issue a line break after each marker annotation. Requires all marker annotations
to appear before all other modifiers

NOTE You can ensure that marker annotations appear before other Java modi-
fiers via the modifier sorting settings, see Section 2.8.11.2, “Modifiers”
for more information

For general information about the available wrapping strategies, please refer to the wrapping
strategies overview.

Since 1.1

@relimnary public class TineTravel {

}

CHAPTER 2 CONFIGURATION

Example 2.197. Wrap after last

@relimnary
public class TinmeTravel {

—

Example 2.198. No line break after marker annotation when modifier(s) before

public @relimnary class TineTravel {

—

Parameter marker annotation

Lets you control the wrapping behavior of marker annotations that appear within declara-
tion parameters. There are two strategies you can choose from:

Wrap never Never issue a line break after a marker annotation

Wrap when necessary Only issue a line break after a marker annotation if otherwise the maximal line
length limit would be exceeded

The second strategy only makes sense when using one of the endline indentation strategies.
Otherwise line wrapping will preferably happen after the left parenthesis when necessary.

Since 1.9.3

Example 2.199. Wrap never
public Result find(@ame String rNane) {

—

Example 2.200. Wrap when necessary

I
public Result find(@ane |
String rName) { |
I
I

—

For general information about the available wrapping strategies, please refer to the wrapping
strategies overview.

After left parenthesis

Lets you control the wrapping behavior of the left parenthesis of normal and single-member
annotations. You can avoid a line break altogether, only print a line break if the annotation
would otherwise exceed the maximal line length, or print a line break whenever an anno-
tation takes more than just one line.

Never wrapping is the best choice when using Section 2.8.8.1.1, “Strict Endline”, but
with the other indentation strategies it depends on your preference and the annotations you
use whether a line break is desirable. If you don’t want to disable wrapping for annotations
altogether, it is recommended to allow a line break after the left parenthesis.

Since 1.9.2

LINE WRAPPING 100

101

Example 2.201. Never wrap, endline indent

@ebServi ce(nanme = "com conpany. FooDenoSer vi ce", |

t ar get Nanespace = "com foo. denpn") |

public interface Foo { |
@¢bResul t (target Namespace = "com conpany. j axws. space. order")

public Receipt placeOrder(Order order); |

I

—

Example 2.202. Never wrap, standard indent

@\ébSer vi ce(nane = "com conpany. FooDenpSer vi ce", |

t ar get Nanespace = "com f oo. dermp") |

public interface Foo { |
@\ebResul t (target Nanmespace = "com conpany. j axws. space. order")

public Recei pt placeOrder(Order order); |

I

—

Wrapping after the left parenthesis often provides more horizontal space and therefore can
keep your annotations within the maximal line limit. When using anything other than
Section 2.8.8.1.1, “Strict Endline” you probably want to at least enable this strategy if the
line length limit is important.

Example 2.203. Wrap when necessary

@ebServi ce(nane = "com conpany. FooDenoSer vi ce",
t ar get Nanespace = "com foo. denn")
public interface Foo {
@ebResul t (
t ar get Nanespace = "com conpany.j axws. space. order")
public Receipt placeOrder(Order order);

—

Wrap when exceed is the most aggressive strategy that will preferably issue a line break after
the left parentheses whenever the annotation will take more than one line. This works best
when using “Standard indentation”, but might be desirable otherwise as well. But please
note that because of backward compatibility constraints “Wrap before right parenthesis”
must be enabled then.

Example 2.204. Wrap when exceed, standard indent

@\ébSer vi ce(|
nanme = "com conpany. FooDenpSer vi ce", |

t ar get Nanespace = "com f 0o. denn") |
public interface Foo { |
@ebResul t (|

t ar get Nanespace = "com conpany.j axws. space. order") |

public Receipt placeOrder(Order order); |

} I
@\ébSer vi ce(|
name = "com conpany. FooDenoServi ce", |

t ar get Nanespace = "com f oo. denmp") |

public interface Foo { |
@\bResul t (|

t ar get Nanespace = "com conpany. j axws. space. order™") |

public Recei pt placeOrder(Order order); |

} I

Annotation members

Lets you control the wrapping behavior of the member expressions of normal annotations.
You can disable wrapping altogether, only wrap after a member element when really neces-

CHAPTER 2 CONFIGURATION

sary, or force line wrapping after each element. Never wrapping can easily lead to long lines
which exceeded the maximal line length, but this might be acceptable.

Since 1.5

Example 2.206. No line break after members

@ebSer vi ce(nane="FooDenoSer vi ce", target Namespace="com f 0o. Nanespace")
public class BitTwi ddle { |

—

Please note that for nested annotations, wrapping might still happen depending on your
parentheses preferences. If you want to disable wrapping for annotations altogether, you
need to set the parentheses options to "Never wrap" as well.

Example 2.207. No line break after members

@A\ut hor (|
@lanme(first = "Joe", last = "Hacker", location = "Rednond") |

I

public class BitTwiddle { ... } |

If the line length limit it important, you should at least enable "Wrap when necessary".
This ensures that a line break will occur after an annotation member whenever the next
annotation would exceed the maximal line length.

Example 2.208. Wrap when necessary

@\ébServi ce(nane = "FooDenoServi ce", |
t ar get Namespace = "com f 0o. denp. Nanespace") |

I

public class BitTwiddle { ... } |

Taking to the extreme, you can enforce a line break after each annotation member. This
takes more vertical space, but leads to very unified and readable code. Probably best to allow
wrapping after the left parentheses when not using Section 2.8.8.1.1, “Strict Endline”.

Example 2.209. Force wrap

@\ébSer vi ce(|
name = "FooService", |
nanmespace = "com f 0o. Nanespace") |

public class BitTwiddle { ... } |

Example 2.210. Force wrap

@\ut hor (
@ame(
first = "Joe",
| ast = "Hacker"
)

public class BitTwiddle { }

For general information about the available wrapping strategies, please refer to the wrapping
strategies overview.

Before right parenthesis

Lets you control the wrapping behavior of the right parenthesis of normal and single-mem-
ber annotations. You can avoid a line break altogether, only print a line break if the anno-

LINE WRAPPING 102

103

tation would otherwise exceed the maximal line length, or print a line break whenever an
annotation takes more than just one line.

Never wrapping is a good choice from an aesthetical point of view and should suffice
for most needs. Only if you are anal about the maximal line length limit, you really should
select another strategy.

Since 1.9.2

Example 2.211. Never wrap, endline indent

@ebServi ce(nanme = "com conpany. FooDenoSer vi ce", |

t ar get Nanespace = "com foo. denpn") |

public interface Foo { |
@¢bResul t (target Namespace = "com conpany. j axws. space. order")

public Receipt placeOrder(Order order); |

—

Example 2.212. Never wrap, standard indent

@ébServi ce(nane = "com conpany. FooDenoSer vi ce", |
t ar get Nanespace = "com fo0o. denn") |
public interface Foo { |
@¢bResul t (target Namespace = "com conpany. j axws. space. order")
public Receipt placeOrder(Order order); |

—

Wrapping before the right parenthesis should be required only on very rare occasions, be-
cause preferably a line break should happen after the left parenthesis. But if you absolutely
strive to keep lines within the maximal line length limit, you should enable this strategy.

Example 2.213. Wrap when necessary

@\ebResul t (target Namespace = "com conpany. proj ect. as. j axws. space. order"|

public interface Foo { } |

~

In case you prefer to let annotation members stand out, you can enable "Wrap when ex-
ceed". This way, a line break will be printed before the right parenthesis whenever the an-
notation list takes more than just one line to print and a line break has been printed after
the left parenthesis. You might want to enable the corresponding strategy for the left paren-
thesis option if you like such a style.

Example 2.214. Wrap when exceed, standard indent

@ebSer vi ce(
nane = "com conpany. FooDenoServi ce",
t ar get Nanespace = "com foo. denp"

)

Operators

For general information about the available wrapping strategies, please refer to the wrapping
strategies overview.

Chained index operator

Lets you specify whether wrapping along the dots of chained index operators should be
disabled.

Since 1.0

CHAPTER 2 CONFIGURATION

Example 2.215. Wrapped index operator

String value = objects[i].nanmes[j]
first[K];

Example 2.216. Index operator (wrapping disabled)

String value =
objects[i].names[j].first[Kk];

Note how in the above example wrapping does not occur along the dots of the index oper-
ator, but right after the assignment! For general information about the available wrapping
strategies, please refer to the wrapping strategies overview.

Ternary question

Forces a line wrap after the first operand.

Example 2.217. Wrapped ternary expression question mark (Endline indented)

String comma = spaceAfter Conma
? COMVA_SPACE : COWMA;

Indentation for consecutive lines depends on the used indentation scheme. See Sec-
tion 2.8.8.1.1, “Strategies” for more information. You may further want to use continua-
tion indentation. For general information about the available wrapping strategies, please
refer to the wrapping strategies overview.

Ternary colon
Forces a line wrap after the second operand.

Example 2.218. Wrapped ternary expression colon (Endline indented)

String conma = spaceAfter Conma ? COMVA_SPACE
;. COVMA;

If both switches are disabled, ternary expressions are printed in one line (if everything fits
in one line, that is).

Example 2.219. Ternary expressions

String comma = spaceAfterConma ? COWA SPACE : COWMA;

If both switches are enabled, you can force a style like the following:

Example 2.220. Wrapped ternary expressions (Standard indented)

String comma = spaceAfter Conma
? COWA_SPACE
;. COMMVA;

For general information about the available wrapping strategies, please refer to the wrapping

strategies Overview.

Qualifiers
Lets you specify whether wrapping along the dots of qualifiers should be disabled.

Since 1.0

Example 2.221. Wrapped qualifier

com conpany. proj ect
. Met hodNarre. met hodCal | () ;

N

LINE WRAPPING 10

105

Example 2.222. Qualifier (wrapping disabled)

com conpany. proj ect. Met hodNane
.met hodCal | ();

Note how in the above example, wrapping does not occur along the dots of the qualifier,
but before the method call! For general information about the available wrapping strategies,
please refer to the wrapping strategies overview.

Dotted expression

Lets you specify whether wrapping along dotted expressions should be disabled. This op-
tion covers all dotted expressions not handled by the more specific options for chained
method calls, index operators or qualifiers (see above). The option is enabled by default for
compatibility reasons. If you're serious about the maximal line length limit, we recommend
to disable the option.

Since 1.5

Example 2.223. Wrapped dotted expression

bool ean test = ((comfoo.highfly.test.internal.Foo) container) |
.transport DebugFl ag; [

Example 2.224. Dotted expression (wrapping disabled)

bool ean test = |
((com foo. highfly.test.internal.Foo) container).transportDebugFl ag;

For general information about the available wrapping strategies, please refer to the wrapping
strategies overview.

After assignment

Lets you control the way wrapping takes action for assignments. If left disabled, line wrap-
ping preferably occurs as part of the expression printing. Otherwise wrapping will be per-
formed right after the assignment whenever the expression cannot be printed in just one
line.

Example 2.225. Prefer wrap along the expression

this.interessentenNr = new | nteressentenNr(
Fachschl uessel er zeugung. cr eat eSer vi ce()
. get Neuer Fachschl uessel (
Fachschl uessel er zeugungSer vi ce. FACHSCHLUESSEL_KZ_| NTERESSENT
)
)

Example 2.226. Prefer wrap after assignment

this.interessentenNr =
new | nt eressent enNr (
Fachschl uessel er zeugung. cr eat eSer vi ce()
. get Neuer Fachschl uessel (
Fachschl uessel er zeugungSer vi ce. FACHSCHLUESSEL_KZ_| NTERESSENT
)
)

For general information about the available wrapping strategies, please refer to the wrapping
strategies overview.

CHAPTER 2 CONFIGURATION

After return

Lets you control the wrapping behavior for return statements. When enabled, a line break
is inserted after the return statement when the expression would exceed the maximal line

length.
Since 1.2.1
return ((getKey() == null) ? (other.getKey() == null)
get Key() . equal s(other.getKey())); |
return |

((getKey() == null) ? (other.getKey() == null) |
get Key() . equal s(ot her. getKey())); |

For general information about the available wrapping strategies, please refer to the wrapping
strategies overview.

After left parenthesis

Lets you control the wrapping behavior for parameter, statement and expression lists. When
left disabled, the first line break will be preferably inserted behind the first parameter or
expression and only occurs after the left parenthesis if the maximal line length would be
otherwise exceeded.

appSer ver Ref er encesVect or. add(new AppSer ver Ref erence(
"Renot eAppl i cati onManager ",
poa.create_reference_wi th_id(
"Renot eAppl i cati onManager". get Bytes(),
Renot eAppl i cati onManager Hel per.id())));

When enabled, the line break will always occur behind the left parenthesis when the list
parameters, arguments or expressions cannot be printed in just one line.

appSer ver Ref er encesVect or . add(
new AppSer ver Ref er ence(
"Renot eAppl i cati onManager ",
poa.create_reference_wi th_id(
" Renot eAppl i cati onManager". get Bytes(),
Renot eAppl i cati onManager Hel per.id())));

This option affects the output style of method/constructor declarations and calls, creator
callsandi f - el se, f or, whi | e and do- whi | e blocks. As per default, the wrapped lines will
be indented using standard indentation, but you may want to apply another indentation
scheme. See Section 2.8.8.1.1, “Strategies” for more information. For general information
about the available wrapping strategies, please refer to the wrapping strategies overview.

Before right parenthesis

Prints a line break before the right parenthesis of parameter or expression lists when at
least one parameter/expression was wrapped. The parenthesis will be intended according
to the current indentation level. This switch affects the output style of method/constructor
declarations and calls, creator calls and i f - el se, f or, whi | e and do- whi | e blocks.

LINE WRAPPING 106

107

Example 2.231. Right parenthesis (disabled)

public void several Parameters(String one,
int two,
String three,
StringObj ect four,
Anot her bj ect five) {

-

Example 2.232. Right parenthesis (enabled)

public void several Parameters(String one,
int two,
String three,
StringObj ect four,
Anot her Cbj ect five

— —

Both switches combined, looks like the following example:

Example 2.233. Left and right parenthesis

appSer ver Ref er encesVect or . add(
new AppServer Ref erence(
"Renot eAppl i cati onManager",
poa.create_reference_w th_id(
"Renot eAppl i cati onManager". get Bytes(),
Renot eAppl i cati onManager Hel per.id()

~

For blocks the output may go like this:

Example 2.234. Left and right parenthesis (wrapped)

if (

"pick".equal s(mgetName()) && misStatic() & misPublic()
) |

pi ckFound = true;
} elseif (

"pick".equal s(mgetName()) && misStatic() & misPublic()
) |

pi ckFound = true;

-

For general information about the available wrapping strategies, please refer to the wrapping
strategies overview.

Grouping parentheses

Lets you control the wrapping behavior for grouping parentheses. When enabled, line
breaks are inserted after left and before right parentheses of grouped expressions to let the
expression(s) stand out.

Example 2.235. Grouping parentheses (standard indented)
if (
I ((bankver bi ndung i nst anceof Obj ect Val ue)
| | (bankverbi ndung instanceof PrimnitiveValue))

) |

t hrow new Runti neException();

-

CHAPTER 2 CONFIGURATION

Example 2.236. Wrapped grouping parentheses (standard indented)

(bankver bi ndung i nst anceof Cbject Val ue)
| | (bankverbi ndung i nstanceof TkPrimtiveVal ue)

)
) |

}

t hrow new Runti neException();

For general information about the available wrapping strategies, please refer to the wrapping
strategies overview.

Type parameter

When enabled, type parameters of parametrized (generic) types are wrapped, when neces-
sary.

Since 1.4

Example 2.237. Parameterized type that lead to exceeded maximal line length

I
private final Map<Short, String> exanple = new HashMap<Short, String>();

Example 2.238. Wrapped parameterized type (endline indented)

I
private final Mp<Short, String> exanple = new HashMap<Short, |
String>(); |

I

Please note that with Endline indentation enabled, wrapping only happens if both type
parameter names are either not single-lettered or contain one ore more bounds.

Example 2.239. Exceptions when using endline indentation

I
public class Test<A, B extends Conparabl e & C oneabl e> {

} I

For general information about the available wrapping strategies, please refer to the wrapping
strategies overview.

Labels

Forces a line wrap after labels.

Example 2.240. Label

/'l advance to the first CLASS_DEF or | NTERFACE_DEF
LOCP: for (AST child = tree.getFirstChild();
child '= null;
child = child.getNextSibling()) {
switch (child.getType()) {
case JavaTokenTypes. CLASS DEF :
case JavaTokenTypes. | NTERFACE DEF :
next = child;
break LOOP;

def aul t
br eak;

LINE WRAPPING 108

109

Example 2.241. Wrapped label (Standard indented)

/] advance to the first CLASS_DEF or | NTERFACE_DEF
LOOP:
for (AST child = tree.getFirstChild();
child '= null;
child = child. getNextSibling()) {
switch (child.getType()) {
case JavaTokenTypes. CLASS DEF :
case JavaTokenTypes. | NTERFACE _DEF :
next = child;
break LOOP;

defaul t
br eak;

}

For general information about the available wrapping strategies, please refer to the wrapping
strategies overview.

Registry Keys
Forces line wrapping after assignments of public constants that are defined in a class whose
name ends with the “Registry” suffix.

Since 1.7

Example 2.242. Registry keys

cl ass FooRegistry {
public final static bool ean ALLON FAKE_FOOS = "com conpany. | ayer. Foo";

-

Example 2.243. Registry keys (wrapping forced)

cl ass FooRegi stry {
public final static bool ean ALLOW FAKE_FOOS =
"com conpany. | ayer. Foo";

-

For general information about the available wrapping strategies, please refer to the wrapping
strategies overview.

After parameters/expressions

When enabled, this switch will cause all parameters/expressions to be wrapped, if and only
if the first parameter/expression of the list has been wrapped.

if (
"pick".equal s(mgetName()) &&
misStatic() &&
m i sPubl i c()
) |
pi ckFound = true;
} elseif (
"pick".equal s(mgetName()) &&
misStatic() &&
m i sPubl i c()
) |

pi ckFound = true;

-

CHAPTER 2 CONFIGURATION

2.8.7.3

For general information about the available wrapping strategies, please refer to the wrapping
strategies overview.

Arrays

Contains options to control the wrapping behavior for arrays.

Figure 2.40. Arrays settings page

Ganara

Optians | Arrays

Wrap arrays E ‘Wran as needed
(2 WWran all when eeceed

[Wi after alirsant 1 -
Line Wrapping

Indentation
White Space
Separation

Search & Replace
Code Inspecinr

Wrap as needed

Enabling this option means cause line breaks to be inserted, whenever an element would
otherwise exceed the maximal line length limit.

Example 2.245. Wrap as needed

String[] s = new String[] { |
“first", "second", "third", "fourth",|
"fifth", "sixth", "seventh", |
"eighth", "ninth", "tenth", |

I

—

Wrap all when exceed

Forces a line break after every array element when all elements would not fit into the current
line limit.

Since 1.7

Example 2.246. All elements fit into line

String[] s = new String[] { |
"first", "second", "third", "fourth", "fifth", "sixth", "seventh",|

I I

LINE WRAPPING 110

2.8.8

2.8.8.1

111

Example 2.247. Wrap all elements when line would get exceeded

String[] s = new String[] {
"first", |
"second", |
"third", |
"fourth", |
"fifth", |
"sixth", |
"sevent h", |
"ei ghth", |

b I

Wrap after element

Forces a line break after every n-th element.

Example 2.248. Wrap after element 1

String[] s = new String[] { |
"first", |
"second", |
"third", |
"fourth", |
"fifth", |
"sixth", |
"sevent h", |
"ei ghth", |
"ninth", |
"tenth", |

b

Please note that no checking is done regarding the maximal line length limit which might
easily lead to lines exceeding the maximal line length when you set 7 to something bigger
than '1".

Example 2.249. Wrap after element 3

String[] s = new String[] { |
"first", "second", "third",|
"fourth", "fifth", "sixth",|
"seventh", "eighth", "ninth",
"tenth", |

} I

If neither option is enabled, the array elements will be printed in one line, right after the
left curly brace, i.e. automatic line wrapping will be disabled.

Please note that you can further customize the wrapping behavior for arrays with the
following options:

* Section 2.8.6.2.3, “Arrays”

* Section 2.8.7.1.2, “Array elements”

Indentation

Controls the indentation settings. Indentation is core to readability and describes the way
white space is used to emphasize the logical structure of a program—Ilogically subordinated
elements are printed with increased indentation.

General

Lets you change the general indentation settings.

CHAPTER 2 CONFIGURATION

Figure 2.41. Indentation settings page

(SR Canarsd Mo Tasi
¥ Clobal
Cirptegms
¥ Jawa —
T GEneral Srandard a
Braces Declarabon paramebers Stancard
Lirs2 Wrapping Call Arguenens Srandard
m Array intializers Stancard .
White
S H Imcrease indentation on hokspots
Separation
soring .
IMEICTS ariging’ Tab indenc | & T_!
B Comemieris General indent: |4 [®]
Anncéatiors Leading indenc (o _'l']
Search & Replace Continuanion indent

Code Inspeoinr

Commel indinl

Jud

Cuddled sraces indent

|a|

| “eximnds”® indent 1

[rpiements” indenc. ¢ 7

_ “throws"indent ©

Strategies
Lets you choose the general strategy how lines should be indented. Jalopy supports several
indentation strategies with different characteristics. You can even use different strategies for
different elements, if you can’t decide on one global policy.

Changing the general indentation strategy in the tree widget will adjust all subordinated
elements that are configured to use the prior general indentation strategy as well.

Standard

With standard indentation, lines will be always indented according to the current inden-
tation level. The indentation level changes as the block or parentheses level changes. Stan-
dard indentation gives you great consistency: Because indentation always uses the same sizes
(multiples of the defined “Indent size”), source code is very uniformly layed out and the
white space gaps tend to be small.

When standard indentation is enabled, line wrapping will always try to keep lines within
the maximal line length.

Example 2.250. Method declaration

public void several Paraneters(String one, int two,
String three, StringObject four, AnotherCbject five)

{

}

INDENTATION 112

113

Example 2.251. Method call

vect or. add(new AppSer ver (
"Renot eAppl i cati onManager",
poa. create_reference_with_id(
"Renot eAppl i cati onManager". get Byt es(),
Renot eAppl i cati onManager.id())));

Example 2.252. Assignment

doubl ett e[Pf | egeControl | er. GEBURTSDATUM =
resultSetRow{i].field[0].substring(0, 2) +"." +
resultSetRow{i].field[0].substring(2, 4) +"." +
resultSetRow{i].field[0].substring(4, 6);

Mixed Endline

Mixed endline indentation preferably lays out code relative to the most recent left paren-
thesis, assignment or curly brace offset (the hozspots). Whenever rigorously orienting on
only the current hotspot would lead to a crossing of the maximal line length, the preceding
hotspot is checked. This process is done recursively, therefore in rare cases, this strategy
produces the exact same result as standard indentation. Mixed endline indentation uses
bigger white space gaps than standard indentation as code tends to move towards the right
edge—but this keeps related code more closely together. The downside is that indentation
is not so uniformly distributed and more vertical space might be occupied.

When mixed endline indentation is enabled, line wrapping will always try to keep lines
within the maximal line length.

Example 2.253. Method declaration

public void several Parameters(String one, int two,
String three,
StringObj ect four,
Anot her bj ect five)

Example 2.254. Method call

vect or. add(new AppSer ver (
"Renot eAppl i cati onManager",
poa. create_reference_wi th_id(
" Renot eAppl i cati onManager"
.get Bytes(),
Rernot eAppl i cati onManager
-1d())));

‘

Example 2.255. Assignment

doubl ett e[Pfl egeControl | er. GEBURTSDATUM =
resultSetRowfi].field[0].substring(0, 2) +"." +
resultSetRow{i].field[0].substring(2, 4) +"." +
resultSetRow{i].field[0].substring(4, 6);

Strict Endline

Strict endline indentation always lays out code relative to the most recent left parenthe-
sis, assignment or curly brace offset (the hosspors). This way consecutive code sections are
somewhat easier to recognize at the possible downside of consuming more vertical and/or
horizontal space.

Strict endline indentation generally tries to keep lines within the maximal line length,
but favors aligning over wrapping, and thus will often lead to code crossing the maximal
line length.

CHAPTER 2 CONFIGURATION

NOTE It is recommend to avoid this strategy when possible, because depending
on your wrapping settings it can produce quite scary results. It’s mostly
available for historic reasons in order to provide backwards compatibility
and allow for a smooth transition phase

Example 2.256. Method declaration

public void several Paraneters(String one, int two,
String three,
StringObj ect four,
Anot her Cbj ect five)

‘

Example 2.257. Method call
vect or. add(new AppSer ver (" Renot eAppl i cati onManager",

poa
.create_reference_wi th_i d("Renot eAppl i cati onManager"
.getBytes(),
Renot eAppl i cati onManager
-id())));

Example 2.258. Assignment

doubl ett e[Pfl egeControl | er. GEBURTSDATUM = result Set Rowi]

.field[0]
.substring(O0,

2) +
"o
resul t Set Row i]
.field[0]
.substring(2,

4) +
"o
resul t Set Row i]
.field[0]
.substring(4,

6);

Regarding array initializers, any of the endline indentation strategies will cause the initializer
to be printed right after the assignment. But when enabled, standard indentation might
cause the initializer to be printed on a line of its own (but only when the initializer takes
more than one line to print).

Example 2.259. Array initializer (Endline indented)
String[] s ={ "first" };

"first",

I

I

String[] s = { |
I

"second" |

I

String[] s = { "first" };

I

I

String[] s = |
I

"first", |
"second" |

}s I

INDENTATION 114

115

If you want to enforce a line break before #// array initializers, you need to disable the com-
pact brace printing for array initializers. See Section 2.8.6.2.3, “Arrays” for more informa-
tion.

Always increase indentation on hotspots

By default, Jalopy always increases indentation after certain code elements to emphasize
scope and nesting level. Depending on your settings, hotspots might be left curly braces,
left parentheses, operators and certain keywords like return and assert. Now, it can be that
indentation is increased in a way that could be seen as superfluous, because already one level
of indentation would be enough to indicate the basic logical structure of a code statement.

hj ect val ue = cal cul ateVal ue(getFirstNunber (),
» » get SecondNunber (), get Thi rdNunber ());

As you can see from the above example, if the option is enabled, indentation will be in-
creased on every hotspot (here the assignment and left parentheses), which for deeply nest-
ed code can easily take up quite some horizontal space. The second increase does not add
significant information. If you prefer a more dense layout, disabling the option will cause
indentation to be increased only when really necessary. The result often takes considerably
less horizontal space without loosing significant information.

bj ect val ue = cal cul at eVal ue(getFi rstNunber (),
» get SecondNurnber (), get Thi rdNunber ());

Here, the indentation is only increased once within the statement and thus upon wrapping
the remaining call arguments are indented only one level.

Since 1.7

Sizes

Lets you set different indentation sizes.

Original Tab indent

For documents that contain real tabs, specifies the number of spaces per tab stop. Look in
your IDE editor or formatting settings for the “Tab Size” or “Tab Width” option and set
the Jalopy option to the value found there.

IMPORTANT Please be aware that it is essential to set the correct tab size. Oth-
erwise some indentations or alignments may fail.

General indent

Specifies the number of spaces to use for general indentation (studies have found that 2 to
4 spaces for indentation is optimal).

CHAPTER 2 CONFIGURATION

Example 2.263. 2 space general indent

public class Preferences {
->private Preferences()

- >{

- >}

->public static void main(String[] argv) {
->->comtrienax.jal opy. sw ng. Preferencesbhi al og. mai n(argv);

_>}

‘

Example 2.264. 4 space general indent

public class Preferences {
--->private Preferences() {
___>}

--->public static void main(String[] argv) {
--->-->comtriemnmax.jal opy. swi ng. PreferencesDi al og. mai n(argv);
___>}

—

Leading indent
Specifies the number of spaces to prepend before every line printed.

Example 2.265. 6 space leading indent

----- >public class Preferences {

----- > private Preferences() {

_____ > }

----- > public static void main(String[] argv) {

----- > comtriemax.jal opy. swi ng. PreferencesDi al og. mai n(argv);
_____ > }

_____ >}

Continuation indent

Specifies the number of spaces that should be inserted in front of continuation lines, i.e.
the consecutive lines in case of a line wrap. Please note that this option only takes effect if
continuation indentation is enabled. Refer to Section 2.8.8.2.2, “Continuation indent” for
information on how to enable continuation indentation.

Example 2.266. 2 space continuation indent

if ((conditionl & condition2)
->|| (condition3 && condition4)
->|| !'(condition5 && condition6)) {
doSonet hi ngAbout I t () ;

‘

Example 2.267. 4 space continuation indent

if ((conditionl & condition2)
--->|| (condition3 && condition4)
--->||] !(condition5 && condition6)) {
doSonet hi ngAbout I t () ;

—

Comment indent
Specifies the number of spaces to insert between trailing comments and the preceding state-
ment.

INDENTATION 116

117

Example 2.268. 3 space trailing comment indent

new String[] {
"Sunday", -->// Sunday
"Monday", -->// Monday
"Tuesday", -->// Tuesday
"Wednesday", -->// \Wednesday
"Thur sday", -->// Thur sday
"Friday",-->// Friday
"Saturday"-->// Saturday

-

Cuddled braces indent
Specifies the number of spaces to print before the left curly brace of cuddled empty braces.

Example 2.269. 3 space cuddled braces indent

try {
in.close();
} catch (1 OException ignored)-->{}

See Section 2.8.6.2.4, “Cuddle braces” for more information about the empty braces han-

dling.

Extends indent

When enabled, specifies the white space to print before the ext ends keyword in case it
was printed on a new line.

Example 2.270. extends indentation with 6 spaces

public interface Channel
------ >extends Puttable, Takable {

Implements indent

Specifies the white space to print before the i npl ement s keyword in case it was printed
on a new line.

Example 2.271. implements indentation with 8 spaces

public class Synchroni zedBool ean
------- >i npl enent s Conpar abl e, Cl oneabl e {

Throws indent

Specifies the white space to print before the t hr ows keyword in case it was printed on a
new line.

Example 2.272. throws indentation with 3 spaces

private static final File getDestinationFile(File dest, String packageNane,
String fil enane)
-->throws | OException, FooException {

}

CHAPTER 2 CONFIGURATION

2.8.8.2

Misc

Lets you control miscellaneous indentation settings.

Figure 2.42. Indentation Misc settings page

Lr s
¥ Cloaal
¥ Jawa
Rrices
Lire Wrapping
‘White Space
Separation
Sarming
ImpieTs
F Comemerts
Annotations
Search & Replace
Code Inspeoinr

Canara Miac

et

Tasi
EL'L'.!H bocdies

E “smiic " hoches
Eﬁmky

T Dutted mepressions

E Frst column cammerds

Method hodies
E “case” budies

71 Lahels

7] Ternary nperards

Contraation mdent

&lign:

|| Declaration parameters
|| Dperaters

] Enum consiams

T variakle identifiers
] Chairsed methed calls
¥ Ternany cepressions
Tl Arrays

|| Bscks
o Rewrr smtemens

Declaration paramenrs
T Assignments

7] Wested chained method calls

7] AsserTion EXariasians
"] Right parentesis

T Anonymous isnes classes | Evdlioe commienis

Indent

Indent class bodies
When enabled, indentation is increased for statements within class, interface, enum and
annotation type declarations. Disabling this option might only make sense when using the

GNU brace style.

Since 1.4

Example 2.273. Indented class body

public class Foo

INDENTATION

--->public bool ean i sFoo(Cbject other)

{

--->public Foo()
> {

S }

> {

--->

S }

}

return other

i nst anceof Foo;

118

Example 2.274. Class body without increased indentation
public class Foo

{
public Foo()

{
}
publ i ¢ bool ean i sFoo(Obj ect other)
{
return ot her instanceof Foo;
}

Indent method bodies

When enabled, indentation is increased for statements within method and constructor bod-
ies. Disabling this option might only make sense when using the GNU brace style.

Since 1.4

Example 2.275. Indented method body

public void toString()
{

--->return this.line +

}

+ this.colum + " " + this.text;

Example 2.276. Method body without increased indentation

public void toString()
{

return this.line +" " + this.colum + " " + this.text;

}

Indent “switch” bodies

The Sun Java code convention recommends a switch style where case statements are not
indented relative to the switch statement as a whole. However, this option allows you to
indent the case statements to make the entire switch statement stand out.

Example 2.277. Switch statement (unindented)

switch (prio) {
case Priority. ERROR INT :
case Priority. FATAL_INT :
col or = Col or.red;
br eak;

case Priority. WARN_I NT :
col or = Col or. bl ue;
br eak;

defaul t:

col or = Col or. bl ack;
br eak;

119 CHAPTER 2 CONFIGURATION

Example 2.278. Switch statement (indented)

switch (prio) {

--->case Priority. ERROR_INT :
--->case Priority. FATAL_I NT :
---> color = Color.red;
- br eak;

--->case Priority. WARN_I NT :

---> col or = Col or. bl ue;
---> br eak;

--->defaul t:

---> col or = Col or. bl ack;
---> br eak;

}

Indent “case” bodies
When enabled, indentation is increased for statements within case statement bodies.

Since 1.4

Example 2.279. Indented case bodies

switch (prio) {
case Priority. ERROR_INT :
case Priority. FATAL_INT :
--->color = Color.red;
--->break;

case Priority. WARN_I NT :
--->color = Col or. bl ue;
--->break;

defaul t:
--->color = Col or. bl ack;
--->break;

Example 2.280. Case statements without increased indentation

switch (prio) {
case Priority. ERROR INT :
case Priority. FATAL_INT :
col or = Color.red;
br eak;

case Priority. WARN_I NT :
col or = Col or. bl ue;
br eak;

defaul t:

col or = Col or. bl ack;
br eak;

Indent block bodies

When enabled, indentation is increased for statements within blocks. Disabling this option
might only make sense when using the GNU brace style.

Since 1.4

INDENTATION 120

121

Example 2.281. Indented block

if (true)

{
--->doStuff();
--->assert Stuff DoneCorrectly();

}

Example 2.282. Block without increased indentation
if (true)

{
doStuff();
assert St uf f DoneCorrectly();

}

Indent labels
Specifies whether labels should be indented with the current indentation level.

Example 2.283. Unindented label

/1 advance to the first CLASS DEF or | NTERFACE DEF
LOOP:
for (AST child = tree.getFirstChild();
child !'= null;
child = child.getNextSibling()) {
switch (child.getType()) {
case JavaTokenTypes. CLASS_DEF :
case JavaTokenTypes. | NTERFACE_DEF :
next = child;
break LOOP;
def aul t
br eak;

}

Example 2.284. Indented label

--->--->// advance to the first CLASS _DEF or | NTERFACE_DEF
--->-->LO0P:
for (AST child = tree.getFirstChild();
child '= null;
child = child.getNextSibling()) {
switch (child.getType()) {
case JavaTokenTypes. CLASS DEF :
case JavaTokenTypes. | NTERFACE _DEF :
next = child;
break LOOP;

def aul t
br eak;

Indent dotted expressions

When enabled, indentation is increased for dotted expressions. This option is only present
for historic reasons—to be able to address some unwanted behavior without breaking back-
wards compatibility. It is recommended to have this option always enabled.

Since 1.9

CHAPTER 2 CONFIGURATION

Example 2.285. Unindented dotted expression

((org. ong. CORBA 2_3. portabl e. Qut put Stream s)
.write_abstract_interface(o);

Example 2.286. Indented dotted expression

((org.ong. CORBA 2_3.portabl e. Qut put Stream s)
.write_abstract_interface(0);

Indent ternary operands

When enabled, indentation is increased for the operands of the ternary operator. This op-
tion is only present for historic reasons - to be able to address some unwanted behavior

without breaking backwards compatibility. It is recommended to have this option always
enabled.

Since 1.8

Example 2.287. Indented ternary operands

text.set Val i dati onSpec(confi g. get Speci fication(), |
confi g. get Ada(dat a |

.hasTransmittal () |

? data |

.getTransmtter()]|

. get El enent () |

data |

.getElenent())); |

Example 2.288. Unindented ternary operands

text.set Val i dati onSpec(confi g. get Specification(),
config. get Ada(dat a
.hasTransmttal ()
? data
.getTransmitter()
. get El enent ()
dat a

|
|
|
|
|
I
.getElenment())); |

Indent first column comments
By default, all comments will be indented relative to their position in the code to avoid that
comments break the logical structure of the program. But as for certain kind of comments it

may be useful to put them at the first column, you can control here whether such comments
should be printed without indentation.

Example 2.289. First column comment
public static Printer create(AST node) {

*

~

if (node == null) {
return new Nul I Printer();

}

return create(node. get Type());

INDENTATION 122

123

Example 2.290. Indented comment

public static Printer create(AST node) {

/*
if (node == null) {
return new Nul I Printer();

}
*/
return create(node. get Type());

Continuation indent

Lets you specify extra indentation for consecutive lines of certain elements.

Declaration parameters

With standard indentation enabled, this option causes an extra increase of the indentation
level upon wrapping of method and constructor parameters. With endline indentation this
option is meaningless.

Example 2.291. Wrapped method parameters

public void aMethod(int param 1, int parang,
int paran8) {
int a = paraml + paran2 + paransg;

Example 2.292. Wrapped method parameters with continuation indentation

public void aMethod(int param 1, int paran?, |
int paran8) { |

int a = paranml + paranR + paranS; |
I

Blocks

The Sun brace style could make seeing the statement body difficult. To work around this
problem, you may want to use continuation indentation in case you like this brace style.
This setting applies for i f, f or, whi | e and do- whi | e blocks.

Example 2.293. Non-continuation indentation

if ((conditionl && condition2)
|| (condition3 && condition4)
|| !(condition5 &% condition6)) { // BAD WRAPS
doSonet hi ngAbout It () ; /1 MAKE THI'S LI NE EASY TO M SS

}

Example 2.294. Continuation indentation

if ((conditionl & condition2)
|| (condition3 && condition4)
|| '(condition5 & condition6)) {
doSonet hi ngAbout I t () ;

Refer to Section 2.8.6.1, “Layout” for the available brace style options.

Operators
When enabled, indentation will be increased before an operand will be printed.

CHAPTER 2 CONFIGURATION

Example 2.295. Ternary expression (endline indented)

String comma = spaceAfter Conma
--->7 COWA_SPACE
---> COWA;

return statements

Lets you increase the indentation level after return statements. This is only meaningful
when a statement cannot be printed in one line.

Since 1.6

Example 2.296. return statement

return auswahl kriteri umConboBox. get Unsel ect edVal ueCont ent () |
. equal s(auswahl kri teri umConboBox. get Sel ectedltenm()); |

Example 2.297. return statement with continuation indentation

return auswahl kriteri unConboBox. get Unsel ect edVal ueCont ent () |
. equal s(auswahl kriteri unConboBox. get Sel ectedlten()); |

As you can see from the above examples, without continuation indentation it might happen
that wrapped lines are printed at the same indentation level as the return statement. It really
depends where the line wrapping takes place. The two following examples indent both no
matter what setting (though different, of course).

Example 2.298. return statement

return auswahl kriteri umConboBox. get Unsel ect edVal ueCont ent (). equal s([
auswahl kri t eri umConboBox. get Sel ectedl tem()); [

Example 2.299. return statement with continuation indentation

return auswahl kriteri unConboBox. get Unsel ect edVal ueCont ent () . equal s(|
auswahl kri t eri umConboBox. get Sel ectedl ten()); |

Align

Lets you control what elements should be visually aligned to each other.

Enum constants

Lets you align the parameter lists of enum constants. Please note that aligning only takes
¥ g p gning only
place if “Wrap after enum constants” has been enabled as well.

Since 1.8

Example 2.300. Enum constants

public enum Code {
NOT_READY((byte) 0x09),
ERROR((byt e) 0x10),
| LLEGAL((byte) 0x11);

}

Example 2.301. Aligned enum constants

public enum Code {
NOT_READY((byt e) 0x09),
ERROR ((byte) 0x10),
I LLEGAL ((byte) 0x11);

—

INDENTATION 124

125

Declaration parameters

When enabled, aligns the parameters of method/constructor declarations. This only applies
if all parameters will be wrapped; either because wrapping is forced or the max. line length
is reached. To force aligning, you have to enable the wrapping for method parameters. See
“Declaration parameters” for more information.

Example 2.302. Method declaration parameters

public static File create(final File file,
File directory,
i nt backupLevel) {

}

Example 2.303. Method declaration parameters (aligned)

public static File create(final File file,
File directory,
i nt backupLevel) {

-

Variable identifiers

When enabled, the identifiers of consecutive variable declarations are aligned. You can con-
trol what declarations are treated as consecutive with different chunk options. Refer to Sec-
tion 2.8.10.2.1, “Chunks” for more information.

Example 2.304. Variable identifiers

String text = "text";
int a=-1;
Hi story.Entry entry = new History. Entry(text);

Example 2.305. Variable identifiers (aligned)

String text = "text";
int a=-1,
Hi story.Entry entry = new History. Entry(text);

Assignments

When enabled, consecutive assignment expressions and the assignment parts of consecutive
variable declarations are aligned. You can control what statements are treated as consecutive
with different chunk options. Refer to Section 2.8.10.2.1, “Chunks” for more information.

Example 2.306. Variable assignments (aligned)

String text "text";
int a -1;
Hi story.Entry entry new Hi story. Entry(text);

If both variable alignment options are enabled, you can achieve a style like the following:

Example 2.307. Variable identifiers/assignments (both aligned)

String t ext
i nt a
H story.Entry entry

"text";
_1,
new Hi story. Entry(text);

Chained method calls
When disabled, indentation happens according to the current indentation level.

CHAPTER 2 CONFIGURATION

Example 2.308. Method call chain (standard indented)

Schl uessel er zeugung. cr eat eSer vi ce()
. get Neuer Schl uessel Servi ce(
Schl uessel Servi ce. SCHLUESSEL_KZ_| NTERESSENT) ;

Otherwise indentation is performed relative to the column offset of the first chain link.

Example 2.309. Method call chain (aligned)

Schl uessel er zeugung. cr eat eSer vi ce()
. get Neuer Schl uessel Servi ce(
Schl uessel er zeugungSer vi ce. SCHLUESSEL_KZ_| NTERESSENT) ;

Please note that you can enforce line breaks for chained method calls, see “Wrap chained

method call”.

Nested chained method calls
When disabled, indentation happens according to the current indentation level.

Since 1.6

Example 2.310. Method call chain (standard indented)

id = RefData.get Segnent | d(Ref Dat a. get Accessor ().getCutOff(filelnfo
.getCutoffld())
.get Theoretical Date(),
filelnfo.getExternal Senderld(),
_fileType,
filelnfo.getCustonerFormat ()
-getld());

Otherwise indentation is performed relative to the column offset of the first chain link.

Example 2.311. Method call chain (aligned)

i d = Ref Dat a. get Segnent | d(Ref Dat a. get Accessor ()
.getCutFf(filelnfo.getCutoffld())
.get Theoretical Date(),
fil el nfo.get External Senderld(),
_fileType,
fil el nfo.getCustomerFormat ()
-get1d());

Please note that you can force line breaks for nested chained method calls, see “Wrap nested
chained method call”.

Ternary expressions
If disabled, ternary expressions are printed according to the current indentation policy. See
Section 2.8.8.1.1, “Strategies” for more information.

Example 2.312. Ternary operators (standard indented)

al pha = (aLongBool eanExpr ession) ? beta |
ganms,; |

Example 2.313. Ternary operators (endline indented)

al pha = (alLongBool eanExpressi on) ? beta |
ganms; |

When enabled, the second operator will always be aligned relative to the first one.

X

INDENTATION 12

127

Example 2.314. Ternary expressions (aligned)

al pha = (aLongBool eanExpressi on) ? beta |
ganma; |

Note that this option only takes effect, if indeed a line break was inserted before the second
expression. You can enforce such line breaks. See “Wrap ternary expression colon” for more
information.

Assertion expressions
When enabled, the second expression of assertion statements is aligned.

Example 2.315. Assertion expression (standard indented)

assert ((nBits & ~ALL_BITS) !'=0) : "Invalid nodifier bits: " +
(nBits & ~ALL_BITS);

Example 2.316. Assertion expression (endline indented)

assert ((nBits & ~ALL_BITS) !'=0) : "Invalid nodifier bits: " +
(nBits & ~ALL_BI TS);

Example 2.317. Assertion expression (aligned)

assert ((nBits & ~ALL_BITS) !=0) : "Invalid nodifier bits: " +
(nBits & ~ALL_BITS);

Arrays

Forces alignment of the curly braces of array initializers with the declaration. This only
applies when using either the standard indentation policy or mixed endline indentation
policy, because here by default the braces are indented according to the current indentation
level and therefore do not align.

Since 1.0.3

Example 2.318. Array initialization (standard indented)
private static String [] sFields =

{
"LOCATION. I D",
" TRACKI NG_EVENT. CREATE_TI ME",
" TRACKI NG_EVENT. EVENT_TI ME",
" TRACKI NG_EVENT. ORI G N_TI ME_ZONE_OFFSET",
" TRACKI NG_EVENT. EVENT_TYPE",
I

Example 2.319. Array initialization (standard indented, but aligned)
private static String [] sFields =

{
"LOCATI ON. I D",
" TRACKI NG_EVENT. CREATE_TI ME",
" TRACKI NG_EVENT. EVENT_TI ME",
" TRACKI NG_EVENT. ORI G N_TI ME_ZONE_OFFSET",
" TRACKI NG_EVENT. EVENT_TYPE",
b

Right parenthesis

Forces alignment of wrapped right parentheses with the declaration or call. This only ap-
plies when using standard indentation policy, because here by default the parentheses are
indented according to the current indentation level.

Since 1.2.1

CHAPTER 2 CONFIGURATION

Example 2.320. Method call (standard indented, 2 spaces indent)

my Met hod(
get SoneVal ue(
par anl
)

par a

)

Example 2.321. Method call (standard indented, but aligned)

nmy Met hod(
get SoneVal ue(
par anil
) il
par an?

~

Example 2.322. Method declaration (standard indented)

public MyCustonttringTenpl ate createTenpl at e(
Map three, int one, // xXxX
String two // XXX

)

Example 2.323. Method declaration (standard indented, but aligned)

public MyCustonSftringTenpl ate createTenpl at e(
Map three, int one, // Xxxx
String two // Xxxx

AN

Anonymous inner classes

Lets you force alignment of anonymous inner brace blocks according to the current inden-
tation level. Only applies when standard indentation is used.

Since 1.6

Example 2.324. Anonymous inner class (standard indented)

Action action = new AbstractAction("action") {
public void actionPerformed (Acti onEvent ev) {
}
H

Example 2.325. Anonymous inner class (standard indented but aligned)

Action action = new AbstractAction("action") {
public void actionPerformed (Acti onEvent ev) {

}
b

Endline comments

Aligns endline comments that belong together. You can control how Jalopy determines what
comments belong together with the Chunk settings.

Since 1.9

INDENTATION 128

Example 2.326. Endline comments

if (mtryMatch(h)) { // help match
casHead(h, m); // pop both h and m
} else { // lost match
h.casNext(m mn); // help unlink

}

Example 2.327. Aligned endline comments

if (mtryMatch(h)) { // help match
casHead(h, m); /1 pop both h and m

} else { /1 1ost match
h.casNext (m mn); // help unlink

}
2.8.8.3 Tabs

Lets you control the tab settings.

Figure 2.43. Indentation Tabs settings page

Lrmdimi Ganara Miac Tasi

¥ Clotal
¥ Jawa
Rraces | Lise kabs i commenls
Liree Wrapping
Indentation
‘White Space
Separation
sarting
IMpATs
b Comemerts
Annotatiors
Search & Replace
Code Inspecinr

| Use tmnns b imsdbert

_ | s by beading kabs

Use tabs to indent
Normally, Jalopy uses spaces to indent lines. If you prefer hard tabs, check this option. You
can change the original tab indent on the general indentation settings page, see the Original
Tab indent option.

Please note that it is very important that you specify the correct tab size for your
original sources on the general indentation page.

129 CHAPTER 2 CONFIGURATION

2.8.9

Example 2.328. Use tabs for indentation

if (true) {
» » nmet hodCal | (par ant,
» » » par an
» » » par an8) ;

» }

Use only leading tabs

When enabled, tabs are only used up to the current brace level, spaces are used afterwards.

Example 2.329. Leading indentation

if (test()) {
» » nmet hodCal | (par ant,

» » -+ - - parang
» » .- - parang);
» }

Use tabs in comments

When enabled, hard tabs are used for printing indentation in comments.

Since 1.2.1

Example 2.330. Comment that uses spaces for indentation

------ Systemout.printIn("DEBUG |ine=" + _line);

Example 2.331. Comment that uses tabs for indentation

[/» » -.Systemout.println("DEBUG |ine=" + _line);

White Space

The white space settings page lets you configure how white space characters are used to
separate individual syntax elements of source files. Making good use of spacing is considered
good programming style and greatly enhances developer comprehension, therefore Jalopy
provides a vast amount of flexibility to control white space behavior. Because of the sheer
amount of elements, you can choose between two views that group the available options
in different ways to provide a somewhat greater flexibility when adjusting the more than
150 individual options.

Choose view

Lets you choose between different views in which the white space options are presented to
the user. The available choices are:

* Group by Java Token

The token view groups the white space options by the Java separator and operator tokens
like commas, parentheses or assignments. This is the default and preferred view, because
ideally it takes little more than twenty adjustments to configure behavior for all available
options.

* Groupy by Java Element

WHITE SPACE 130

The element view groups the white space options logically by the different available ele-
ments like declarations, control statements or expressions. This way it is easier to adjust
options for just one element as all related options are presented together.

Since 1.6

2.8.9.1 Token view

Figure 2.44. White Space Token View

131

e Chocse view: :t]rm g Jevam Trakomn ﬂ
¥ Clonal
¥ Java = W Belore anieats:)
E W ARe coerator
Lo E [Betore comra
—— # @ AR comma
Indentation * W Before color
| wni= Sonce |l
Separation F |_| Before semcolor
sarting e At semmicolon
E ! ABefure quislicn rrark
i * W Afer guestion mark
» Commeras ¥ [Before elliosis
Annotstiors + & Afer elbpsis

Search & Replace |* B Before ampersane
Code InspeCinr] E Al ampersamd
F W Before left parenthesis
[e loh pareathess
¥ [Before right parerthesis
¢ B &fer right perenchesis
* : Bitwinn evipily purenlbFesis
B | Crther parentheses options
L ! Bedore lef brace ¥

@ il iﬁii .iiilil y

Before operator
Lets you specify what operators should have a blank space printed before.

Assignment operator
Controls whether a blank space will be printed before assignment operators. The assignment

operators are: = += -= *= \= O &= | = "= <<= >>= >>>=
Example 2.332. Assignment operator

a=(b+c) *d;

a+=12;
Example 2.333. Assignment operator with space before

a =(b+c)*d;

a +=12;

Assignment operator in annotations
Controls whether a blank space will be printed before assignment operators in annotations.

CHAPTER 2 CONFIGURATION

Since 1.9

Example 2.334. Assignment operator
@Nane(first="Joe", | ast="Hacker")

Example 2.335. Assignment operator with space before
@\anme(first ="Joe",last ="Hacker")

Bitwise operator

Controls whether a blank space will be printed before bitwise operators. The bitwise oper-

I
—t
o
=
w»
1)
=
[¢)]
R0

Example 2.336. Bitwise operator
return(get OperatingSysten() &PLAT_UNI X) ! =0;

Example 2.337. Bitwise operator with space before
return(get OperatingSysten() &PLAT_UNI X)! =0;

Logical operator
Controls whether a blank space will be printed before logical operators. The logical oper-
ators are: && | |

Example 2.338. Logical operator
TFCCLACL) =="1") &&(LA(2) ! =" *" | | (LA(2) ==""*" &&LA(3)!="*")))

Example 2.339. Logical operator with spaces around
PF((LAC(L) =="1") &&(LA(2)!="*" [[(LA(2)=="*" &&LA(3)!="*")))

Math operator
Controls whether a blank space will be printed before mathematical operators. The math-
ematical operators are: + - / * %

Example 2.340. Mathematical operator
a=(b+c) *d;

Example 2.341. Mathematical operator with space before
a=(b +c) *d;

Relational operator
Controls whether a blank space will be printed before relational operators. The relational
operators are: == | = < > <= >=

Example 2.342. Relational operator
i f((LA(L)=="\n"||LA(L)=="\r"))

Example 2.343. Relational operator with space before
if((LA(1) =="\n"]|LA(L1) =="\r"))

Shift operator
Controls whether a blank space will be printed before shift operators. The shift operators
are: << >> >>>

Example 2.344. Shift operator
i f(((1l<<i)&)!=0)

WHITE SPACE 13

N

133

Example 2.345. Shift operator with space before
i f(((1L <<i)&)!=0)

Postfix operator
Controls whether a blank space will be printed before postfix operators. The postfix oper-
ators are: ++ --

Since 1.6

Example 2.346. Postfix operator
int next = i++;

Example 2.347. Postfix operator with space before
int next =i ++;

String concat operator
Controls whether a blank space will be printed before the string concat operator.

Since 1.0.3

Example 2.348. String concat operator
a="a"+1;
b=1+"b";
c=1+2+3+"c";
d="d" +1+2+3;
e="e"+(1+2) +"e";

Example 2.349. String concat operator with space before
a="a" +1,
b=1 +"b";
c=1+2+3 +"c";
d="d" +1 +2 +3;
e="e" +(1+2) +"e";

After operator
Lets you specify what operators should have a blank space printed after.

Assignment operator
Controls whether a blank space will be printed after assignment operators. The assignment
operators are: = += -= *= \= O &= | = "= <<= >>= >>>=

Example 2.350. Assignment operator

a=(b+c) *d;
a+=12;

Example 2.351. Assignment operator with space after

a= (b+c)*d;
a+= 12;

Assignment operator in annotations
Controls whether a blank space will be printed after assignment operators in annotations.

Since 1.9

CHAPTER 2 CONFIGURATION

Example 2.352. Assignment operator
@\anme(first="Joe", | ast="Hacker")

Example 2.353. Assignment operator with space after
@Nanme(first= "Joe", | ast= "Hacker")

Bitwise operator

Controls whether a blank space will be printed after bitwise operators. The bitwise operators
are: & | 7

Example 2.354. Bitwise operator
ret urn(get Operati ngSyst en{) &PLAT_UNI X) ! =0;

Example 2.355. Bitwise operator with space after
return(get Qperati ngSysten()& PLAT_UN X)! =0;

Logical operator

Controls whether a blank space will be printed after logical operators. The logical operators
are: && | |

Example 2.356. Logical operator
i f((LA(L)=="/")&(LA(2)!="*"||(LA(2)=="*"&&LA(3)!="*"))) ...

Example 2.357. Logical operator with spaces around
if((LA(L)=="/")&& (LA(2)!="*"|| (LA(2)=="*"&& LA(3)!="*"))) ...

Complement operator

Controls whether a blank space will be printed after complement operators. The logical
operators are: ~ !

Example 2.358. Complement operator
f(!'x);

Example 2.359. Complement operator with space after
f(x);

Mathematical operator

Controls whether a blank space will be printed after mathematical operators. The mathe-
matical operators are: + - / * %

Example 2.360. Mathematical operator
a=(b+c) *d;

Example 2.361. Mathematical operator with space after
a=(b+ c)* d;

Relational operator
Controls whether a blank space will be printed after relational operators. The relational

@]
o
<]
=
o
—t
o
=
(7]
=
(¢}
|

|

|
N
\Y
N
|
Vv
|

Example 2.362. Relational operator
i f((LA(1)=="\n'||LA(1)=="\1")) ...

I

WHITE SPACE 13

135

Example 2.363. Relational operator with space after
i f((LA(1)== "\n'||LA(1)== "\r"))

Shift operators

Controls whether a blank space will be printed after shift operators. The shift operators
are: << >> >>>

Example 2.364. Shift operator
i f(((1l<<i)&)!=0)

Example 2.365. Shift operator with space after
i f(((1l<< i)&)!=0)

Prefix operator
Controls whether a blank space will be printed after prefix operators. The prefix operators

)
B
]
+
+
1
1

Example 2.366. Prefix operator
int previous = --i;

Example 2.367. Prefix operator with space after
int previous = -- i;

Unary operator

Controls whether a blank space will be printed after unary operators. The unary operators
are: -+

Since 1.6

Example 2.368. Unary operator
int x =3 * -4;

Example 2.369. Unary operator with space after
int x =3* - 4

String concat operator
Controls whether a blank space will be printed after the string concat operator.

Since 1.0.3

Example 2.370. String concat operator
a="a"+1,
b=1+"b";
c=1+2+3+"c";
d="d" +1+2+3;
e="e"+(1+2) +"e";

Example 2.371. String concat operator with space after
a="a"+ 1;
b=1+ "b";
Cc=1+2+3+ "c",
d="d"+ 1+ 2+ 3;
e="e"+ (1+2)+ "e";

CHAPTER 2 CONFIGURATION

Before comma

Lets you specify what commas should have a blank space printed before.

Annotation array
Controls whether a blank space will be printed before commas of annotation arrays.

Example 2.372. Annotation array

@rar get ({ FI ELD, METHOD, CONSTRUCTOR})
public class Foo { }

Example 2.373. Annotation array with space before comma

@rar get ({FI ELD , METHOD , CONSTRUCTOR})
public class Foo { }

Annotation type member argument
Controls whether a blank space will be printed before commas of annotation member ar-
guments.

Example 2.374. Annotation

@oi nt (x=23, y=-3)
public class Foo { }

Example 2.375. Annotation with space before comma

@oi nt (x=23 ,y=-3)
public class Foo { }

Enum constant
Controls whether a blank space will be printed before commas of enum constants.

Example 2.376. Enum constants
enum Col or { GREEN, BLUE}

Example 2.377. Enum constants with space before comma
enum Col or { GREEN , BLUE}

Enum constant argument
Controls whether a blank space will be printed before commas of enum constants.

Example 2.378. Enum constant arguments
enum Col or { GREEN(0, 255. 0) , BLUE(0, 0, 255) }

Example 2.379. Enum constant arguments with space before comma
enum Col or { GREEN(0 , 255 . 0), BLUE(O , 0 , 255)}

extends/implements
Controls whether a blank space will be printed before the commas of extends and/or im-
plements types.

Extends type
Controls whether a blank space will be printed before the commas of extends types.

Example 2.380. Extends types
i nterface Fooabl e extends Doabl e, Readabl e {}

N

WHITE SPACE 13

137

Example 2.381. Extends types with space before comma

i nterface Fooabl e extends Doabl e , Readabl e {}

Extends type
Controls whether a blank space will be printed before the commas of implements types.

Example 2.382. Implements types

class Foo inplenments 10,11,12 {}

Example 2.383. Implements types with space before comma

class Foo implements 10 ,11 ,12 {}

Multiple declarations
Controls whether a blank space will be printed before the commas of multi-field and/or
multi-variable declarations.

Field

Controls whether a blank space will be printed before the commas of multi-field declara-
tions.

Example 2.384. Multi-field declaration

class Foo {
int a=0, b=1, c=2, d=3;

-

Example 2.385. Multi-field declaration with space before commas

class Foo {
int a=0 ,b=1 ,c=2 ,d=S3;
}

Variable

Controls whether a blank space will be printed before the commas of multi-variable dec-
larations.

Example 2.386. Multi-variable declaration

void foo() {
int a=0, b=1, c=2, d=3;
}

Example 2.387. Multi-variable declaration with space before commas
void foo() {

int a=0 ,b=1 ,c=2 ,d=3;
}

Declaration parameter

Controls whether a blank space will be printed before the commas of method and/or con-
structor declarations parameters.

Constructor

Example 2.388. Constructor declaration

Foo(int pl,int p2,int p3) {
}

CHAPTER 2 CONFIGURATION

Example 2.389. Constructor declaration with space before commas

Foo(int pl ,int p2 ,int p3) {
}

Method

Example 2.390. Method declaration

void foo(int pl,int p2,int p3) {
}

Example 2.391. Method declaration with space before commas

void foo(int pl ,int p2 ,int p3) {
}

Throws clauses

Controls whether a blank space will be printed before the commas of throws clauses of
method and/or constructor declarations.

Constructor

Controls whether a blank space will be printed before the commas of throws clauses of
constructor declarations.

Example 2.392. Constructor declaration throws clause

Foo() throws | OException, FooException {
}

Example 2.393. Constructor declaration throws clause with space before commas

Foo() throws | OException , FooException {
}

Method

Controls whether a blank space will be printed before the commas of throws clauses of
method declarations.

Example 2.394. Method declaration throws clause

void foo() throws | OExcepti on, FooException {
}

Example 2.395. Method declaration throws clause with space before commas

void foo() throws | OException , FooException {
}

Call arguments
Controls whether a blank space will be printed before the commas of call arguments.

Constructor

Controls whether a blank space will be printed before the commas of constructor call ar-
guments.

Example 2.396. Constructor call

Foo(int pl,int p2,int p3){
super (pl, true);

—

WHITE SPACE 138

139

Example 2.397. Constructor call space before commas

Foo(int pl,int p2,int p3){
super(pl ,true);

-

Method

Controls whether a blank space will be printed before the commas of method call argu-

‘ a
[¢]
=i
g

Example 2.398. Method call

—
[0
n
—
—
x
<
N—r

Example 2.399. Method call space before commas
test(x ,y);

Creator
Controls whether a blank space will be printed before the commas of creator call arguments.

Example 2.400. Creator call
Poi nt poi nt =new Poi nt (X, Yy);

Example 2.401. Creator call space before commas
Poi nt poi nt =new Poi nt(x ,Vy);

Array initializer
Controls whether a blank space will be printed before the commas of array initializers.

Example 2.402. Array initializer

int[] foo=new int[]{1,2,3};

Example 2.403. Array initializer with space before commas
int[] foo=new int[]{1 ,2 ,3};

for

Controls whether a blank space will be printed before the commas of for initializer and/
or incrementor parts.

Initializer
Controls whether a blank space will be printed before the commas of for initializer parts.

Example 2.404. for initializer

for(int i=0,j=array.length;i<array.length;i++) {}

Example 2.405. for initializer with space before commas
for(int i=0 ,j=array.length;i<array.length;i++) {}

Incrementor
Controls whether a blank space will be printed before the commas of for incrementor parts.

Example 2.406. for incrementor

for(int i=0,j=array.length;i<array.length;i++j--) {}

CHAPTER 2 CONFIGURATION

Example 2.407. for incrementor with space before commas

for(int i=0,j=array.length;i<array.length;i++ ,j--) {}

Parameterized types
Controls whether a blank space will be printed before the commas of parameterized types.

Type parameter
Controls whether a blank space will be printed before the commas of type parameters.

Example 2.408. Type parameter

cl ass GenericType<S, T>{}

Example 2.409. Type parameter with space before commas

class GenericType<S , T>{}

Type argument
Controls whether a blank space will be printed before the commas of type arguments.

Example 2.410. Type argument

cal l er.<String, El enent >f oo() ;

Example 2.411. Type argument with space before commas

caller.<String , El enent>foo();

After comma

Lets you specify what commas should have a blank space printed after.

Annotation array
Controls whether a blank space will be printed after commas of annotation arrays.

Example 2.412. Annotation array

@rar get ({ FlI ELD, METHOD, CONSTRUCTOR})
public class Foo { }

Example 2.413. Annotation array with space after comma

@arget ({ FI ELD, METHOD, CONSTRUCTOR})
public class Foo { }

Annotation type member argument

Controls whether a blank space will be printed after commas of annotation member argu-
ments.

Example 2.414. Annotation

@oi nt (x=23, y=-3)
public class Foo { }

Example 2.415. Annotation with space after comma

@oi nt (x=23, y=-3)
public class Foo { }

Enum constant
Controls whether a blank space will be printed after commas of enum constants.

WHITE SPACE 140

141

Example 2.416. Enum constants
enum Col or { GREEN, BLUE}

Example 2.417. Enum constants with space after comma
enum Col or { GREEN, BLUE}

Enum constant argument
Controls whether a blank space will be printed after commas of enum constants.

Example 2.418. Enum constant arguments
enum Col or { GREEN(0, 255. 0) , BLUE(0, 0, 255) }

Example 2.419. Enum constant arguments with space after comma
enum Col or { GREEN(0, 255, 0), BLUE(0, 0, 255)}

extends/implements
Controls whether a blank space will be printed after the commas of extends and/or imple-
ments types.

Extends type
Controls whether a blank space will be printed after the commas of extends types.

Example 2.420. Extends types
i nterface Fooabl e extends Doabl e, Readabl e {}

Example 2.421. Extends types with space after comma
i nterface Fooabl e extends Doabl e, Readable {}

Implements type
Controls whether a blank space will be printed after the commas of implements types.

Example 2.422. Implements types
class Foo inplenments 10,11,12 {}

Example 2.423. Implements types with space after comma
class Foo inmplerments 10, 11, 12 {}

IMultiple declarations

Controls whether a blank space will be printed after the commas of multi-field and/or
multi-variable declarations.

Field

Controls whether a blank space will be printed after the commas of multi-field declarations.

Example 2.424. Multi-field declaration

class Foo {
int a=0, b=1, c=2, d=3;

—

Example 2.425. Multi-field declaration with space after commas
class Foo {

int a=0, b=1, c=2, d=3;
}

CHAPTER 2 CONFIGURATION

Variable

Controls whether a blank space will be printed after the commas of multi-variable decla-
rations.

Example 2.426. Multi-variable declaration

void foo() {
int a=0, b=1, c=2, d=3;
}

Example 2.427. Multi-variable declaration with space after commas

void foo() {
int a=0, b=1, c=2, d=3;

-

Declaration parameter

Controls whether a blank space will be printed after the commas of method and/or con-
structor declarations parameters.

Constructor

Controls whether a blank space will be printed after the commas of constructor declarations
parameters.

Example 2.428. Constructor declaration

Foo(int pl,int p2,int p3) {

Example 2.429. Constructor declaration with space after commas

Foo(int pl, int p2, int p3) {

—

-

Method

Example 2.430. Method declaration

void foo(int pl,int p2,int p3) {

Example 2.431. Method declaration with space after commas

void foo(int pl, int p2, int p3) {

-

-

Throws clauses

Controls whether a blank space will be printed after the commas of throws clauses of method
and/or constructor declarations.

Constructor

Controls whether a blank space will be printed after the commas of throws clauses of con-
structor declarations.

Example 2.432. Constructor declaration throws clause

Foo() throws | OException, FooException {

-

Example 2.433. Constructor declaration throws clause with space after commas

Foo() throws | OException, FooException {
}

WHITE SPACE 142

143

Method

Controls whether a blank space will be printed after the commas of throws clauses of method
declarations.

Example 2.434. Method declaration throws clause
void foo() throws | OException, FooException {

‘

Example 2.435. Method declaration throws clause with space after commas
void foo() throws | OException, FooException {

-

Call arguments
Controls whether a blank space will be printed after the commas of call arguments.

Constructor
Controls whether a blank space will be printed after the commas of constructor call argu-

=]
o
=
s

Example 2.436. Constructor call

Foo(int pl,int p2,int p3){
super (pl,true);

‘

Example 2.437. Constructor call space after commas

Foo(int pl,int p2,int p3){
super (pl, true);

-

Method

Controls whether a blank space will be printed after the commas of method call arguments.

Example 2.438. Method call
test(x,Vy);

Example 2.439. Method call space after commas
test(x, y);

Creator
Controls whether a blank space will be printed after the commas of creator call arguments.

Example 2.440. Creator call
Poi nt poi nt =new Poi nt (X, Yy);

Example 2.441. Creator call space after commas
Poi nt poi nt =new Poi nt (X, VY);

Array initializer
Controls whether a blank space will be printed after the commas of array initializers.

Example 2.442. Array initializer
int[] foo=new int[]{1,2,3};

CHAPTER 2 CONFIGURATION

Example 2.443. Array initializer with space after commas
int[] foo=new int[]{1, 2, 3};

for
Controls whether a blank space will be printed after the commas of for initializer and/or
incrementor parts.

Initializer
Controls whether a blank space will be printed after the commas of for initializer parts.

Example 2.444. for initializer

for(int i=0,j=array.length;i<array.length;i++) {}

Example 2.445. for initializer with space after commas
for(int i=0, j=array.length;i<array.length;i++) {}

Incrementor
Controls whether a blank space will be printed after the commas of for incrementor parts.

Example 2.446. for incrementor

for(int i=0,j=array.length;i<array.length;i++j--) {}

Example 2.447. for incrementor with space after commas

for(int i=0,j=array.length;i<array.length;i++ j--) {}

Parameterized types
Controls whether a blank space will be printed after the commas of parameterized types.

Type parameter
Controls whether a blank space will be printed after the commas of type parameters.

Example 2.448. Type parameter
cl ass GenericType<S, T>{}

Example 2.449. Type parameter with space after commas
cl ass GenericType<S, T>{}

Type argument
Controls whether a blank space will be printed after the commas of type arguments.

Example 2.450. Type argument
cal l er.<String, El enent >f oo() ;

Example 2.451. Type argument with space after commas

caller.<String, Elenent>foo();

Before colon
Lets you specify what colons should have a blank space printed before.

assert
Controls whether colons of assert statements should have a blank space printed before.

N

WHITE SPACE 14

145

Example 2.452. assert statement
assert condition:reportError();

Example 2.453. assert statement with space before colon
assert condition :reportError();

case
Controls whether colons of case statements should have a blank space printed before.

Example 2.454. assert statement

switch (list[i]) {
case 't':
br eak;

—

Example 2.455. assert statement with space before colon

switch (list[i]) {
case 't' :
break;

-

Conditional
Controls whether colons of the conditional operator should have a blank space printed
before.

Example 2.456. Conditional operator

String val ue=condi ti on?TRUE: FALSE;

Example 2.457. Conditional operator with space before colon
String val ue=condi ti on?TRUE : FALSE;

for
Controls whether colons of enhanced for statements should have a blank space printed
before.

Example 2.458. Enhancement for statement

for (String s:nanes) { }

Example 2.459. Enhanced for statement with space before colon

for (String s :nanes) { }

Label

Controls whether colons of labeled statements should have a blank space printed before.

Example 2.460. Labeled statement

| abel : {

-

Example 2.461. Labeled statement with space before colon

| abel : {

—

CHAPTER 2 CONFIGURATION

WHITE SPACE 14

After colon
Lets you specify what colons should have a blank space printed after.

assert
Controls whether colons of assert statements should have a blank space printed after.

Example 2.462. assert statement
assert condition:reportError();

Example 2.463. assert statement with space after colon
assert condition: reportError();

Conditional
Controls whether colons of the conditional operator should have a blank space printed after.

Example 2.464. Conditional operator
String val ue=condi ti on?TRUE: FALSE;

Example 2.465. Conditional operator with space after colon
String val ue=condi ti on?TRUE: FALSE

-

or
Controls whether colons of enhanced for statements should have a blank space printed after.

Example 2.466. Enhancement for statement

—_
o
=
—
@
-
=
(o]
@
5
3
(%]
~
~
-

Example 2.467. Enhanced for statement with space after colon
for (String s: nanes) { }

Label

Controls whether colons of labeled statements should have a blank space printed after.

Example 2.468. Labeled statement
I abel : for(;;){

‘

Example 2.469. Labeled statement with space after colon
label: for(;;){

-

Please note that this option only applies when no line break is printed after the colon.

Before semicolon

Lets you specify what semicolons should have a blank space printed before.

-

or
Controls whether semicolons of for statements should have a blank space printed before.

Example 2.470. for statement
for(int i=0;i<array.length;i++) {}

o\

147

Example 2.471. for statement with space before semicolon

for(int i=0 ;i<array.length ;i++) {}

After semicolon

Lets you specify what semicolons should have a blank space printed after.

for
Controls whether semicolons of for statements should have a blank space printed after.

Example 2.472. for statement

for(int i=0;i<array.length;i++) {}

Example 2.473. for statement with space after semicolon

for(int i=0; i<array.length; i++) {}

Before question mark
Lets you specify what question marks should have a blank space printed before.

Conditional operator

Controls whether question marks of the conditional operator should have a blank space
printed before.

Example 2.474. Conditional operator

String val ue=condi ti on?TRUE: FALSE;

Example 2.475. Conditional operator with space before question mark
String val ue=condi ti on ?TRUE: FALSE;

Type parameter

Controls whether question marks of type parameters should have a blank space printed
before. Please note that this option only applies if no white space after the left angle bracket
is forced (See “Space after left bracket type parameter”).

Example 2.476. Type parameter

cl ass QuestionMark<T extends Conparabl e< ? super Number>> {}

Example 2.477. Type parameter with space before question mark

cl ass QuestionMar k<T extends Conparabl e< ? super Number>> {}

Type argument

Controls whether question marks of type arguments should have a blank space printed
before. Please note that this option only applies if no white space after the left angle bracket
and/or commas is forced (See “Space after left bracket type argument”).

Example 2.478. Type argument

Map<X<?>, Y<? extends K, ? super V>>t;

Example 2.479. Type argument with space before question mark

Map<X< ?>,Y< ? extends K, ? super V>>t;

After question mark
Lets you specify what question marks should have a blank space printed after.

CHAPTER 2 CONFIGURATION

Conditional operator

Controls whether question marks of the conditional operator should have a blank space
printed after.

Example 2.480. Conditional operator

String val ue=condi ti on?TRUE: FALSE;

Example 2.481. Conditional operator with space after question mark
String val ue=condi ti on? TRUE: FALSE;

Type parameter

Controls whether question marks of type parameters should have a blank space printed
after. Please note that this option only applies if no white space before the right angle bracket
is forced (See “Space before right angle bracket type parameter”).

Example 2.482. Type parameter

cl ass X10<T extends Map. Entry<?, ?>> {}

Example 2.483. Type parameter with space after question mark

class X10<T extends Map. Entry<? ,? >> {}

Type argument

Controls whether question marks of type arguments should have a blank space printed after.
Please note that this option only applies if no white space before the right angle bracket
and/or commas is forced (See “Space before right angle bracket type argument”).

Example 2.484. Type argument
Map<X<?>, Y>t ;

Example 2.485. Type argument with space after question mark

Map<X<? >, Y>t;

Before ellipsis
Lets you specify whether a blank space should be printed before the ellipsis.

Vararg

Controls whether a blank space will be printed before the ellipsis of a variable arity param-
eter (varag).

Since 1.2

Example 2.486. Vararg ellipsis
public void test(String[]...args) {

Example 2.487. Vararg ellipsis with space before

public void test(String[] ...args) {

—

—

After ellipsis
Lets you specify whether a blank space should be printed after the ellipsis.

WHITE SPACE 14

Co

149

Vararg
Controls whether a blank space will be printed after the ellipsis of a variable arity parameter

(varag).

Since 1.6

Example 2.488. Vararg ellipsis

public void test(String[]...args) {

-

Example 2.489. Vararg ellipsis with space after

public void test(String[]... args) {

—

Before ampersand
Lets you specify whether a blank space should be printed before the ampersand.

Type parameter
Controls whether a blank space will be printed before the ampersand of type parameters.

Since 1.6

Example 2.490. Type parameter

cl ass Foo<S, T extends El ement &Li st> {

—

Example 2.491. Type parameter with space before ampersand

class Foo<S, T extends Element &List> {

—

After ampersand
Lets you specify whether a blank space should be printed after the ampersand.

Type parameter
Controls whether a blank space will be printed after the ampersand of type parameters.

Since 1.6

Example 2.492. Type parameter

cl ass Foo<S, T extends El enment &Li st> {

-

Example 2.493. Type parameter with space after ampersand

cl ass Foo<S, T extends El ement& List> {

-

Before left parenthesis
Lets you specify what left parentheses should have a blank space printed before.

Annotation argument list

Controls whether a blank space should be printed before the left parenthesis of annotation
argument lists.

CHAPTER 2 CONFIGURATION

Example 2.494. Annotation

@\nnot (x=23, y=-3)
cl ass Foo {

}

Example 2.495. Annotation with space before argument list

@nnot (x=23, y=-3)
class Foo {

}

Annotation type member
Controls whether a blank space should be printed before the left parenthesis annotation
type members.

Example 2.496. Annotation type member

@nterface MyAnnot ation {
String val ue();

—

Example 2.497. Annotation type member with space left paren

@nterface MyAnnotation {
String value ();

-

Enum constant argument

Controls whether a blank space should be printed before the left parenthesis of enum con-
stant argument lists.

Example 2.498. Enum constant

enum MyEnum {
GREEN(0, 255, 0)

-

Example 2.499. Enum constant with space before left parenthesis

enum MyEnum {
GREEN (0, 255, 0)

—

Declaration parameter

Controls whether a blank space will be printed before the left parenthesis of method and/
or constructor parameter lists.

Constructor

Control whether a blank space will be printed before the left parenthesis of constructor
parameter lists.

Example 2.500. Constructor declaration

Foo(int pl,int p2,int p3) {
}

Example 2.501. Constructor declaration with space before left parenthesis

Foo (int pl,int p2,int p3) {
}

WHITE SPACE 150

151

Method

Control whether a blank space will be printed before the left parenthesis of method param-
eter lists.

Example 2.502. Method declaration

public void foo(int pl,int p2,int p3) {
}

Example 2.503. Method declaration with space before left parenthesis

public void foo (int pl,int p2,int p3) {
}

Statement expressions

Lets you control whether a blank space will be printed before the left parenthesis of state-
ment expressions.

if
Lets you control whether a blank space will be printed before the left parenthesis of if
expressions.

Example 2.504. if statement

i f(condition) {
}

Example 2.505. if statement with space before left parenthesis

if (condition) {
}

for

Lets you control whether a blank space will be printed before the left parenthesis of for
expressions.

Example 2.506. for statement

for(String s : nanes) {

}

Example 2.507. for statement with space before left parenthesis

for (String s : nanes) {

}

while
Lets you control whether a blank space will be printed before the left parenthesis of while
expressions.

Example 2.508. while statement

whi |l e(condition) {
}

Example 2.509. while statement with space before left parenthesis

while (condition) {
}

CHAPTER 2 CONFIGURATION

switch

Lets you control whether a blank space will be printed before the left parenthesis of switch
expressions.

Example 2.510. switch statement
switch(c) {
}

Example 2.511. switch statement with space before left parenthesis
switch (c) {

throw

Lets you control whether a blank space will be printed before the left parenthesis of throw
expressions.

Example 2.512. throw statement

t hr ow(new Unsupport Oper ati onException());

Example 2.513. throw statement with space before left parenthesis

throw (new Unsupport Qperati onException());

synchronized

Lets you control whether a blank space will be printed before the left parenthesis of syn-
chronized expressions.

Example 2.514. synchronized statement

synchroni zed(this) {
per f or mOper ati on();

-

Example 2.515. synchronized statement with space before left parenthesis
synchroni zed (this) {

per f or nOper ati on();
}

catch

Lets you control whether a blank space will be printed before the left parenthesis of catch
expressions.

Example 2.516. catch statement

try {
I nt eger. parsel nt (val ue);

} cat ch(Nunber For nat Exception ex) {
}

Example 2.517. catch statement with space before left parenthesis

try {
I nt eger. par sel nt (val ue);

} catch (Nunber For mat Exception ex) {
}

return

Lets you control whether a blank space will be printed before the left parenthesis of return
expressions.

WHITE SPACE 152

153

Example 2.518. return statement

return(200 + (a * b));

Example 2.519. return statement with space before left parenthesis

return (200 + (a * b));

Call arguments
Controls whether a blank space will be printed before the left parenthesis of call arguments.

Constructor
Controls whether a blank space will be printed before the left parenthesis of constructor
call arguments.

Example 2.520. Constructor call

Foo(int pl,int p2,int p3){
super (pl,true);

Example 2.521. Constructor call with space before left parenthesis

Foo(int pl,int p2,int p3){
super (pl,true);

—

-

Method

Controls whether a blank space will be printed before the left parenthesis of method call
arguments.

Example 2.522. Method call

test(x,Yy);

Example 2.523. Method call space with space before left parenthesis
test (Xx,y);

Creator
Controls whether a blank space will be printed before the left parenthesis of creator call
arguments.

Example 2.524. Creator call

Poi nt poi nt =new Poi nt (X, y);

Example 2.525. Creator call with space before left parenthesis
Poi nt poi nt =new Poi nt (X,Y);

After left parenthesis

Lets you specify what left parentheses should have a blank space printed after.

Annotation argument list
Controls whether a blank space should be printed after the left parenthesis of annotation
argument lists.

Example 2.526. Annotation

@\nnot (x=23, y=-3)
class Foo {

}

CHAPTER 2 CONFIGURATION

Example 2.527. Annotation with space after left parenthesis

@\nnot (x=23, y=-3)
cl ass Foo {

}

Enum constant argument
Controls whether a blank space should be printed after the left parenthesis of enum constant
argument lists.

Example 2.528. Enum constant

enum MyEnum {
GREEN(0, 255, 0)

-

Example 2.529. Enum constant with space after left parenthesis

enum MyEnum {
GREEN(0, 255, 0)

—

Declaration parameter

Controls whether a blank space will be printed after the left parenthesis of method and/
or constructor parameter lists.

Constructor

Control whether a blank space will be printed after the left parenthesis of constructor pa-
rameter lists.

Example 2.530. Constructor declaration
Foo(int pl,int p2,int p3) {
}

Example 2.531. Constructor declaration with space after left parenthesis

Foo(int pl,int p2,int p3) {
}

Method

Control whether a blank space will be printed after the left parenthesis of method parameter
lists.

Example 2.532. Method declaration

public void foo(int pl,int p2,int p3) {
}

Example 2.533. Method declaration with space after left parenthesis

public void foo(int pl,int p2,int p3) {
}

Statement expressions
Lets you control whether a blank space will be printed before the left parenthesis of state-
ment expressions.

WHITE SPACE 154

155

if
Lets you control whether a blank space will be printed after the left parenthesis of if ex-
pressions.

Example 2.534. if statement

i f(condition) {
}

Example 2.535. if statement with space after left parenthesis

if(condition) {
}

for
Lets you control whether a blank space will be printed after the left parenthesis of for ex-
pressions.

Example 2.536. for statement

for(String s : nanes) {

}

Example 2.537. for statement with space after left parenthesis

for(String s : nanes) {

}

while
Lets you control whether a blank space will be printed after the left parenthesis of while
expressions.

Example 2.538. while statement

whi | e(condi tion) {
}

Example 2.539. while statement with space after left parenthesis

whil e(condition) {
}

switch

Lets you control whether a blank space will be printed after the left parenthesis of switch
expressions.

Example 2.540. switch statement
switch(c) {

Example 2.541. switch statement with space after left parenthesis
switch(c) {

throw

Lets you control whether a blank space will be printed after the left parenthesis of throw
expressions.

CHAPTER 2 CONFIGURATION

Example 2.542. throw statement
t hr ow(new Unsupport Oper ati onException());

Example 2.543. throw statement with space after left parenthesis
throwm new Unsupport Operati onException());

synchronized

Lets you control whether a blank space will be printed after the left parenthesis of synchro-
nized expressions.

Example 2.544. synchronized statement

synchroni zed(this) {
per f or nOper ati on();

‘

Example 2.545. synchronized statement with space after left parenthesis

synchroni zed(this) {
per formOperation();

-

catch

Lets you control whether a blank space will be printed after the left parenthesis of catch
expressions.

Example 2.546. catch statement

try {
I nt eger. parsel nt (val ue);

} catch(Nunber For mat Exception ex) {

-

Example 2.547. catch statement with space after left parenthesis

try {
I nt eger. par sel nt (val ue);

} catch(Nunber For mat Exception ex) {
}

return

Lets you control whether a blank space will be printed after the left parenthesis of return
expressions.

Example 2.548. return statement

return(200 + (a * b));

Example 2.549. return statement with space after left parenthesis

return(200 + (a * b));

Call arguments
Controls whether a blank space will be printed after the left parenthesis of call arguments.

Constructor

Controls whether a blank space will be printed after the left parenthesis of constructor call
arguments.

WHITE SPACE 156

157

Example 2.550. Constructor call

Foo(int pl,int p2,int p3){
super (pl,true);

-

Example 2.551. Constructor call with space after left parenthesis

Foo(int pl,int p2,int p3){
super (pl,true);

-

Method
Controls whether a blank space will be printed after the left parenthesis of method call

arguments.

Example 2.552. Method call
test(x,y);

Example 2.553. Method call space with space after left parenthesis
test(x,y);

Creator

Controls whether a blank space will be printed after the left parenthesis of creator call
arguments.

Example 2.554. Creator call
Poi nt poi nt =new Poi nt (X, y);

Example 2.555. Creator call with space after left parenthesis
Poi nt poi nt =new Poi nt(X,Y);

Parenthesized expression

Controls whether a blank space will be printed after the left parenthesis of parenthesized
expressions..

Example 2.556. Expression
int r =(a*(b+c+d * (e +f));

Example 2.557. Expression with space after left parenthesis
int r=(a*(b+c+d *(e+f));

Type cast
Controls whether a blank space will be printed after the left parenthesis of type casts.

Example 2.558. Type cast

Li neManager m = (Li neManager) a. get Parent ();

Example 2.559. Type cast with space after left parenthesis

Li neManager m = (Li neManager) a. get Parent () ;

Before right parenthesis
Lets you specify what right parentheses should have a blank space printed before.

CHAPTER 2 CONFIGURATION

Annotation argument list

Controls whether a blank space should be printed before the right parenthesis of annotation
argument lists.

Example 2.560. Annotation

@\nnot (x=23, y=-3)
cl ass Foo {

}

Example 2.561. Annotation with space before right parenthesis

@\nnot (x=23,y=-3)
cl ass Foo {

}

Enum constant argument

Controls whether a blank space should be printed before the right parenthesis of enum
constant argument lists.

Example 2.562. Enum constant

enum MyEnum {
GREEN(0, 255, 0)

-

Example 2.563. Enum constant with space before right parenthesis

enum MyEnum {
GREEN(0, 255, 0)

—

Declaration parameter

Controls whether a blank space will be printed after the left parenthesis of method and/
or constructor parameter lists.

Constructor

Control whether a blank space will be printed before the right parenthesis of constructor
parameter lists.

Example 2.564. Constructor declaration

Foo(int pl,int p2,int p3) {
}

Example 2.565. Constructor declaration with space before right parenthesis

Foo(int pl,int p2,int p3) {
}

Method

Control whether a blank space will be printed before the right parenthesis of method pa-
rameter lists.

Example 2.566. Method declaration

public void foo(int pl,int p2,int p3) {
}

WHITE SPACE 158

159

Example 2.567. Method declaration with space before right parenthesis

public void foo(int pl,int p2,int p3) {
}

Statement expressions

Lets you control whether a blank space will be printed before the left parenthesis of state-
ment expressions.

if
Lets you control whether a blank space will be printed before the right parenthesis of if
expressions.

Example 2.568. if statement

i f(condition) {

}

Example 2.569. if statement with space before right parenthesis

if(condition) {

}

for
Lets you control whether a blank space will be printed before the right parenthesis of for
expressions.

Example 2.570. for statement

for(String s : nanes) {

}

Example 2.571. for statement with space before right parenthesis

for(String s : names) {

}

while
Lets you control whether a blank space will be printed before the right parenthesis of while
expressions.

Example 2.572. while statement

whi | e(condi tion) {
}

Example 2.573. while statement with space before right parenthesis

while(condition) {
}

switch

Lets you control whether a blank space will be printed before the right parenthesis of switch
expressions.

Example 2.574. switch statement

switch(c) {
}

CHAPTER 2 CONFIGURATION

Example 2.575. switch statement with space before right parenthesis

switch(c) {
}

throw

Lets you control whether a blank space will be printed before the right parenthesis of throw
expressions.

Example 2.576. throw statement

t hr owm(new Unsupport Oper ati onException());

Example 2.577. throw statement with space before right parenthesis
t hr ow(new Unsupport Oper ati onException());

synchronized

Lets you control whether a blank space will be printed before the right parenthesis of syn-
chronized expressions.

Example 2.578. synchronized statement

synchroni zed(this) {
per f or nOper ati on();
}

Example 2.579. synchronized statement with space before right parenthesis
synchroni zed(this) {

per f or mOper ati on();
}

catch

Lets you control whether a blank space will be printed before the right parenthesis of catch
expressions.

Example 2.580. catch statement

try {
I nt eger. par sel nt (val ue);

} cat ch(Nunber For mat Exception ex) {
}

Example 2.581. catch statement with space before right parenthesis

try {
I nt eger. parsel nt (val ue);

} catch(Nunber For mat Exception ex) {
}

return

Lets you control whether a blank space will be printed before the right parenthesis of return
expressions.

Example 2.582. return statement

return(200 + (a * b));

Example 2.583. return statement with space before right parenthesis
return(200 + (a * b));

WHITE SPACE 160

161

Call arguments

Controls whether a blank space will be printed before the right parenthesis of call argu-
ments.

Constructor

Controls whether a blank space will be printed before the right parenthesis of constructor
call arguments.

Example 2.584. Constructor call

Foo(int pl,int p2,int p3){
super (pl, true);
}

Example 2.585. Constructor call with space before right parenthesis
Foo(int pl,int p2,int p3){

super (pl,true);
}

Method

Controls whether a blank space will be printed before the right parenthesis of method call
arguments.

Example 2.586. Method call

test(x,y);

Example 2.587. Method call space with space before right parenthesis
test(x,y);

Creator

Controls whether a blank space will be printed before the right parenthesis of creator call
arguments.

Example 2.588. Creator call

Poi nt poi nt =new Poi nt (X, Yy);

Example 2.589. Creator call with space before right parenthesis
Poi nt poi nt=new Point(X,y);

Parenthesized expression

Controls whether a blank space will be printed before the right parenthesis of parenthesized
expressions..

Example 2.590. Expression

int r=(a* (b+c+d * (e +f));

Example 2.591. Expression with space before right parenthesis
int r =(a*(b+c+d) * (e+f));

Type cast
Controls whether a blank space will be printed before the right parenthesis of type casts.

Example 2.592. Type cast

Li neManager m = (Li neManager) a. get Parent ();

CHAPTER 2 CONFIGURATION

Example 2.593. Type cast with space before right parenthesis

Li neManager m = (Li neManager)a.getParent();

After right parenthesis

Lets you specify what right parentheses should have a blank space printed after.

Type cast
Controls whether a blank space will be printed after the right parenthesis of type casts.

Example 2.594. Type cast

Li neManager m = (Li neManager)a. get Parent();

Example 2.595. Type cast with space after right parenthesis
Li neManager m = (Li neManager) a.getParent();

Between empty parentheses
Lets you specify what empty parentheses should have a blank space printed between.

Annotation type member

Controls whether a blank space should be printed between the empty parentheses of anno-
tation type members.

Example 2.596. Annotation type member
@nterface M/Annot ation {

String val ue();
}

Example 2.597. Annotation type member with space between empty parentheses
@nterface MyAnnot ation {

String value();
}

Enum constant argument

Controls whether a blank space should be printed between the empty parentheses of enum
constant argument lists.

Example 2.598. Enum constant

enum MyEnum {
GREEN()
}

Example 2.599. Enum constant with space between empty parentheses

enum MyEnum {
GREEN()
}

Declaration parameter

Controls whether a blank space will be printed between the empty parentheses of method
and/or constructor parameter lists.

WHITE SPACE 162

163

Constructor

Control whether a blank space will be printed between the empty parentheses of constructor
parameter lists.

Example 2.600. Constructor declaration

Foo() {
}

Example 2.601. Constructor declaration with space between empty parentheses

Foo() {
}

Method

Control whether a blank space will be printed before the empty parentheses of method
parameter lists.

Example 2.602. Method declaration

public void foo() {
}

Example 2.603. Method declaration with space between empty parentheses

public void foo() {
}

Call arguments

Controls whether a blank space will be printed between the empty parentheses of call ar-
guments.

Constructor

Controls whether a blank space will be printed between the empty parentheses of construc-
tor call arguments.

Example 2.604. Constructor call

Foo(int pl,int p2,int p3){
super () ;
}

Example 2.605. Constructor call with space between empty parentheses

Foo(int pl,int p2,int p3){
super ();
}

Method

Controls whether a blank space will be printed between the empty parentheses of method
call arguments.

Example 2.606. Method call

test();

Example 2.607. Method call space with space between empty parenthesis
test();

CHAPTER 2 CONFIGURATION

Creator

Controls whether a blank space will be printed between the empty parentheses of creator
call arguments.

Example 2.608. Creator call
Poi nt poi nt =new Poi nt () ;

Example 2.609. Creator call with space between empty parentheses
Poi nt poi nt =new Point();

Other parentheses

Lets you control some general parentheses behavior.

Same direction parentheses
When enabled, no white space will be printed before or after parentheses with the same
direction.

Naturally, this option is only meaningful if any of the space after left parenthesis/space
before right parenthesis options have been enabled.

Since 1.0.1

Example 2.610. Parentheses with same direction
if ((LAC 1) =="/") & (LA(2) !="*"))

Example 2.611. Parentheses with same direction (compacted)
if ((LA(1) =="/") & (LA(2) !="*"))

Before left brace
Controls whether a blank space should be printed before the left curly brace.

Compact declaration

Controls whether a blank space should be printed before the left curly brace of compacted
declaration blocks.

Example 2.612. Compact method declaration
void foo(){int i = 1;}

Example 2.613. Compact method declaration with space before left curly brace
void foo() {int i =1;}

Array initializer
Controls whether a blank space should be printed before the left curly brace of array ini-
tializers that fit into one line.

Example 2.614. Array initializer
String[] first=new String[]{"1", "2"};

Example 2.615. Array initializer with space before left curly brace
String[] first=new String[] {"1", "2"};

WHITE SPACE 164

165

After left brace
Controls whether a blank space should be printed after left curly braces.

Annotation array

Controls whether a blank space should be printed after the left curly brace of annotation
arrays.

Example 2.616. Annotation array

@ar get ({FI ELD, METHOD, CONSTRUCTOR})
class FOO {

}

Example 2.617. Annotation array with space after left curly brace

@arget ({ FIELD, METHOD, CONSTRUCTOR})
class FOO {

}

Compact declaration

Controls whether a blank space should be printed after the left curly brace of compacted
declaration blocks.

Example 2.618. Compact method declaration

void foo(){int i = 1;}

Example 2.619. Compact method declaration with space after left curly brace
void foo(){ int i = 1;}

Array initializer
Controls whether a blank space should be printed after the left curly brace of array initial-
izers.

Example 2.620. Array initializer

String[] first=new String[]{"1", "2"};

Example 2.621. Array initializer with space after left curly brace
String[] first=new String[]{ "1", "2"};

Before right brace
Controls whether a blank space should be printed after left curly braces.

Annotation array

Controls whether a blank space should be printed before the right curly brace of annotation
arrays.

Example 2.622. Annotation array

@rarget ({FI ELD, METHOD, CONSTRUCTOR})
class FQOO {

}

Example 2.623. Annotation array with space before right curly brace

@rar get ({ FI ELD, METHOD, CONSTRUCTCR })
class FOO {

}

CHAPTER 2 CONFIGURATION

Compact declaration

Controls whether a blank space should be printed before the right curly brace of compacted
declaration blocks.

Example 2.624. Compact method declaration

void foo(){int i = 1;}

Example 2.625. Compact method declaration with space before right curly brace
void foo(){int i =1; }

Array initializer
Controls whether a blank space should be printed before the right curly brace of array
initializers.

Example 2.626. Array initializer

String[] first=new String[]{"1", "2"};

Example 2.627. Array initializer with space before right curly brace
String[] first=new String[]{"1", "2" };

Between empty braces
Controls whether a blank space should be printed between empty braces.

Compact declaration

Controls whether a blank space should be printed between empty curly braces of compacted
declaration blocks.

Example 2.628. Compact method declaration

void foo(){}

Example 2.629. Compact method declaration with space between empty curly braces

void foo(){ }

Array initializer
Controls whether a blank space should be printed between empty curly braces of array
initializers.

Example 2.630. Array initializer

String[] first=new String[]{};

Example 2.631. Array initializer with space between empty braces
String[] first=new String[]{ };

Before left bracket
Controls whether a blank space should be printed before left brackets.

Array declaration

Controls whether a blank space should be printed before the left bracket of array declaration
statements.

WHITE SPACE 166

167

Example 2.632. Array declaration statement

String[] first={};

Example 2.633. Array declaration statement with space before left bracket
String [] first={};

Array creator
Controls whether a blank space should be printed before the left bracket of array creation
statements.

Example 2.634. Array creator statement

String[] third=new String[3];

Example 2.635. Array creator statement with space before left bracket
String[] third=new String [3];

Array accessor

Controls whether a blank space should be printed before the left bracket of array access
statements.

Example 2.636. Array accessor

val ue=t hird[3];

Example 2.637. Array accessor with space before left bracket

val ue=third [3];

After left bracket
Controls whether a blank space should be printed after left brackets.

Array creator

Controls whether a blank space should be printed after the left bracket of array creation
statements.

Example 2.638. Array creator statement
String[] third=new String[3];

Example 2.639. Array creator statement with space after left bracket
String[] third=new String[3];

Array accessor

Controls whether a blank space should be printed after the left bracket of array access state-
ments.

Example 2.640. Array accessor

val ue=t hird[3] ;

Example 2.641. Array accessor with space after left bracket

val ue=third[3];

Before right bracket
Controls whether a blank space should be printed before right brackets.

CHAPTER 2 CONFIGURATION

Array creator

Controls whether a blank space should be printed before the right bracket of array creation
statements.

Example 2.642. Array creator

String[] third=new String[3];

Example 2.643. Array creator with space before right bracket
String[] third=new String[3];

Array accessor

Controls whether a blank space should be printed before the right bracket of array access
statements.

Example 2.644. Array accessor

val ue=third[3] ;

Example 2.645. Array accessor with space before right bracket
val ue=third[3];

Between empty brackets
Controls whether a blank space should be printed between empty brackets.

Array declaration

Controls whether a blank space should be printed between empty brackets of array decla-
ration statements.

Example 2.646. Array declaration statement
String[] first={};

Example 2.647. Array declaration statement with space between empty bracket
String[] first={};

Array creator

Controls whether a blank space should be printed between empty brackets of array creator
statements.

Example 2.648. Array creator statement
String[] first=new String[]{};

Example 2.649. Array creator statement with space between empty bracket

String[] first=new String[1{};

Before left angle bracket
Controls whether a blank space should be printed before left angle brackets of parameterized
types.

Type parameter
Controls whether a blank space should be printed before left angle brackets of type param-

cters.

WHITE SPACE 168

169

Example 2.650. Type parameter
cl ass Angl eBracket<S, T extends El enent> {}

Example 2.651. Type parameter with space before left angle bracket
cl ass Angl eBracket <S, T extends El ement> {}

Type argument
Controls whether a blank space should be printed before left angle brackets of type argu-

=)
o
=]
b

Example 2.652. Type argument
caller.<String, El enent >f oo();

Example 2.653. Type argument with space before left angle bracket
cal l er. <String, El enent >f oo();

After left angle bracket
Controls whether a blank space should be printed after left angle brackets of parameterized
types.

Type parameter
Controls whether a blank space should be printed after left angle brackets of type param-

a
=
o
-
2]

Example 2.654. Type parameter
cl ass Angl eBracket<S, T extends El enent> {}

Example 2.655. Type parameter with space after left angle bracket
cl ass Angl eBracket< S, T extends El ement> {}

Type argument
Controls whether a blank space should be printed after left angle brackets of type arguments.

Example 2.656. Type argument
cal | er.<String, El enent >f oo();

Example 2.657. Type argument with space after left angle bracket
cal ler.< String, El enent >f oo();

Before right angle bracket

Controls whether a blank space should be printed before right angle brackets of parame-
terized types.

Type parameter
Controls whether a blank space should be printed before right angle brackets of type pa-

rameters.

Example 2.658. Type parameter
cl ass Angl eBracket<S, T extends El enent> {}

Example 2.659. Type parameter with space before right angle bracket
cl ass Angl eBracket<S, T extends El enent > {}

CHAPTER 2 CONFIGURATION

Type argument
Controls whether a blank space should be printed before right angle brackets of type argu-

ments.

Example 2.660. Type argument

caller.<String, El enent >f oo();

Example 2.661. Type argument with space before right angle bracket
caller.<String, El ement >foo();

2.8.9.2 Element view

Figure 2.45. White Space Element View

Chooae view :Grmm’mtmm ﬂ

[S TFT
¥ Clonal T
— Declarations L
S Ceetral Statevenes
Rraces iF—plnge
Lire Wrapping far
|IndenLALGn whiile S do—wfiibe
Separat syrechroeized
cakih
o aseET
IMpeTs i e
B Comsments returm
Anncéatiors EMprassions
Search & Heplape | Arravs |
: ing pacior] Compact parentheses wakn the same direckian
i 1} &

Declarations

Lets you configure the white space behavior for declarations.

Classes
Lets you configure the white space behavior for class declarations.

Before comma in implements clause
Please refer to the explanation for “Space before comma implements type”.

After comma in implements clause
Please refer to the explanation for “Space after comma implements type”.

WHITE SPACE 170

171

Interfaces
Lets you configure the white space behavior for interface declarations.

Before comma in extends clause

Please refer to the explanation for “Space before comma extends type”.

After comma in extends clause

Please refer to the explanation for “Space after comma extends type”.

Enums

Lets you configure the white space behavior for enum declarations.

Before comma between constants

Please refer to the explanation for “Space before comma enum constant”.

After comma between constants

Please refer to the explanation for Section 2.8.9.1.4, “Enum constant”.

Before left parenthesis in constant argument list

Please refer to the explanation for “Space before left parenthesis enum constant argument”.

After left parenthesis in constant argument list

Please refer to the explanation for “Space after left parenthesis enum constant argument”.

Before comma in constant argument list

Please refer to the explanation for “Space before comma enum constant argument”.

After comma in constant argument list

Please refer to the explanation for Section 2.8.9.1.4, “Enum constant argument”.

Before right parenthesis in constant argument list

Please refer to the explanation for “Space before right parenthesis enum constant argument”.

Between empty parentheses in constant argument list

Please refer to the explanation for “Space between empty parentheses enum constant argu-
»
ment .

Annotations

Lets you configure the white space behavior for annotation type declarations.

Before left parenthesis of type members
Please refer to the explanation for “Space before left parenthesis annotation type member”.

Between empty parentheses of type members

Please refer to the explanation for “Space between empty parentheses annotation type mem-
ber”.

CHAPTER 2 CONFIGURATION

Before left parenthesis of member list
Please refer to the explanation for “Space before left parenthesis annotation argument list”.

After left parenthesis of member list

Please refer to the explanation for “Space after left parenthesis annotation argument list”.

Before assignment operator

Please refer to the explanation for “Space before assignment operator in annotations”.

After assignment operator

Please refer to the explanation for “Space after assignment operator in annotations”.

Before comma in member list

Please refer to the explanation for “Space before comma annotation type member argu-
»
ment”.

After comma in member list

Please refer to the explanation for “Space after comma annotation type member argument”.

Before right parenthesis of member list

Please refer to the explanation for “Space before right parenthesis annotation argument list”.

After left curly brace of annotation array

Please refer to the explanation for “Space after left curly brace annnotation array”.

Before comma in annotation array
Please refer to the explanation for “Space before comma annotation array”.

After comma in annotation array

Please refer to the explanation for “Space after comma annotation array”.

Before right curly brace of annotation array

Please refer to the explanation for “Space before right curly brace annotation array”.

Fields

Lets you configure the white space behavior for field declarations.

Before comma in multi-field
Please refer to the explanation for Section 2.8.9.1.3, “Field”.

After comma in multi-field
Please refer to the explanation for Space after comma multi-field.

Constructors

Lets you configure the white space behavior for constructor declarations.

WHITE SPACE 172

173

Before left parenthesis of parameter list
Please refer to the explanation for Section 2.8.9.1.15, “Constructor”.

After left parenthesis of parameter list

Please refer to the explanation for “Space after left parenthesis constructor declaration”.

Before comma in parameter list

Please refer to the explanation for “Space before comma constructor declaration parameter”.

After comma in parameter list

Please refer to the explanation for Section 2.8.9.1.4, “Constructor”.

Before right parenthesis of parameter list

Please refer to the explanation for “Space before right parenthesis constructor declaration
parameter’”.

Between empty parentheses of parameter list

Please refer to the explanation for “Space between empty parentheses constructor declara-
. »
tion”.

Before comma in throws clause

Please refer to the explanation for “Space before comma constructor throws type”.

After comma in throws clause

Please refer to the explanation for “Space after comma constructor declaration throws type”.

Methods

Lets you configure the white space behavior for method declarations.

Before left parenthesis of parameter list

Please refer to the explanation for “Space before left parenthesis method declaration”.

After left parenthesis of parameter list

Please refer to the explanation for “Space after left parenthesis method declaration”.

Before comma in parameter list

Please refer to the explanation for “Space before comma method declaration parameter”.

After comma in parameter list

Please refer to the explanation for “Space after comma method declaration parameter”.

Before ellipsis in parameter list
Please refer to the explanation for Section 2.8.9.1.11, “Vararg”.

After ellipsis in parameter list
Please refer to the explanation for Section 2.8.9.1.12, “Vararg”.

CHAPTER 2 CONFIGURATION

Before right parenthesis of parameter list

Please refer to the explanation for “Space before right parenthesis method declaration pa-
rameter’ .

Between empty parentheses of parameter list

Please refer to the explanation for “Space between empty parentheses enum constant argu-
»
ment”.

Before comma in throws clause

Please refer to the explanation for “Space before comma method throws type”.

After comma in throws clause

Please refer to the explanation for “Space after comma method declaration throws type”.

Local variables

Lets you configure the white space behavior for local variable declarations.

Before comma in multi-variable

Please refer to the explanation for Space before comma multi-var.

After comma in multi-variable

Please refer to the explanation for Space after comma multi-variable.

Labels

Before colon
Please refer to the explanation for Section 2.8.9.1.5, “Label”.

After colon

Please refer to the explanation for “Space after label colon”.

Control Statements

Lets you configure the white space behavior for control statements.

if

Lets you configure the white space behavior for i f statements.

Before left parenthesis of expression list

Please refer to the explanation for “Space before left parenthesis if .

After left parenthesis of expression list
Please refer to the explanation for Section 2.8.9.1.16, “if”.

Before right parenthesis of expression list
Please refer to the explanation for “Space before right parenthesis if”.

WHITE SPACE 174

for
Lets you configure the white space behavior for f or statements.

Before left parenthesis of expression list

Please refer to the explanation for “Space before left parenthesis for”.

After left parenthesis of expression list.

Please refer to the explanation for “Space after left parenthesis for”.

Before comma in initialization

Please refer to the explanation for “Space before comma for initializer”.

After comma in initialization

Please refer to the explanation for “Space after comma for initializer”.

Before comma in increment

Please refer to the explanation for “Space before comma for incrementor”.

After comma in increment

Please refer to the explanation for “Space after comma for incrementor”.

Before semicolon

Please refer to the explanation for “Space before semi colon for”.

After semicolon
Please refer to the explanation for “Space after semi colon for”.

Before colon

Please refer to the explanation for “Space before enhanced for colon”.

After colon

Please refer to the explanation for “Space after enhanced for colon”.

Before right parenthesis of expression list

Please refer to the explanation for “Space before right parenthesis for”.

while/do-while
Lets you configure the white space behavior for whi | e and do/ whi | e statements.

Before left parenthesis of expression list
Please refer to the explanation for “Space before left parenthesis while”.

After left parenthesis of expression list

Please refer to the explanation for “Space after left parenthesis while”.

Before right parenthesis of expression list

Please refer to the explanation for “Space before right parenthesis while”.

175 CHAPTER 2 CONFIGURATION

switch
Lets you configure the white space behavior for swi t ch statements.

Before left parenthesis of expression list

Please refer to the explanation for Section 2.8.9.1.15, “switch”.

After left parenthesis of expression list

Please refer to the explanation for “Space after left parenthesis switch”.

Before right parenthesis of expression list

Please refer to the explanation for “Space before right parenthesis switch”.

Before colon

Please refer to the explanation for “Space before case colon”.

synchronized
Lets you configure the white space behavior for synchr oni zed statements.

Before left parenthesis of expression list

Please refer to the explanation for “Space before left parenthesis synchronized”.

After left parenthesis of expression list

Please refer to the explanation for “Space after left parenthesis synchronized”.

Before right parenthesis of expression list
Please refer to the explanation for “Space before right parenthesis synchronized”.

catch

Lets you configure the white space behavior for cat ch statements.

Before left parenthesis of expression list
Please refer to the explanation for Section 2.8.9.1.15, “catch”.

After left parenthesis of expression list
Please refer to the explanation for Section 2.8.9.1.16, “catch”.

Before right parenthesis of expression list
Please refer to the explanation for Section 2.8.9.1.17, “catch”.

assert
Lets you configure the white space behavior for assert statements.

Before colon

Please refer to the explanation for “Space before assertion colon”.

After colon

Please refer to the explanation for “Space after assertion colon”.

WHITE SPACE 176

throw
Lets you configure the white space behavior for t hr ow statements.

Before left parenthesis of expression

Please refer to the explanation for “Space before left parenthesis throw”.

After left parenthesis of expression

Please refer to the explanation for “Space after left parenthesis throw”.

Before right parenthesis of expression

Please refer to the explanation for “Space before right parenthesis throw”.

return
Lets you configure the white space behavior for r et ur n statements.

Before left parenthesis of expression

Please refer to the explanation for “Space before left parenthesis return”.

After left parenthesis of expression

Please refer to the explanation for “Space after left parenthesis return”.

Before right parenthesis of expression

Please refer to the explanation for Section 2.8.9.1.17, “return”.

Expressions

Lets you configure the white space behavior for expressions.

Constructor call

Lets you configure the white space behavior for constructor calls.

Before left parenthesis of argument list

Please refer to the explanation for “Space before left parenthesis constructor call”.

After left parenthesis of argument list

Please refer to the explanation for “Space after left parenthesis constructor call”.

Before comma in argument list

Please refer to the explanation for “Space before comma constructor call argument”.

After comma in argument list
Please refer to the explanation for “Space after comma constructor call argument”.

Before right parenthesis of argument list

Please refer to the explanation for “Space before right parenthesis constructor call”.

Between empty parentheses of argument list

Please refer to the explanation for “Space between empty parentheses constructor call”.

177 CHAPTER 2 CONFIGURATION

Creator call

Before left parenthesis of argument list
Please refer to the explanation for “Space before left parenthesis creator call”.

After left parenthesis of argument list

Please refer to the explanation for “Space after left parenthesis creator call”.

Before comma in argument list

Please refer to the explanation for “Space before comma creator call argument”.

After comma in argument list

Please refer to the explanation for “Space after comma creator call argument”.

Before right parenthesis of argument list
Please refer to the explanation for Section 2.8.9.1.17, “Creator”.

Between empty parentheses of argument list
Please refer to the explanation for “Space between empty parentheses creator call”.

Method call

Before left parenthesis of argument list

Please refer to the explanation for “Space before left parenthesis method call”.

After left parenthesis of argument list

Please refer to the explanation for “Space after left parenthesis method call”.

Before comma in argument list

Please refer to the explanation for “Space before comma method call argument”.

After comma in argument list

Please refer to the explanation for “Space after comma method call argument”.

Before right parenthesis of argument list
Please refer to the explanation for “Space before right parenthesis method call”.

Between empty parentheses of argument list

Please refer to the explanation for “Space between empty parentheses method call”.
Operators

Before assignment operator

Please refer to the explanation for “Space before assignment operator”.

After assignment operator

Please refer to the explanation for Section 2.8.9.1.2, “Assignment operator”.

WHITE SPACE 178

Before assignment operator in annotations
Please refer to the explanation for “Space before assignment operator in annotations”.

After assignment operator in annotations

Please refer to the explanation for “Space after assignment operator in annotations”.

Before bitwise operator

Please refer to the explanation for “Space before bitwise operator”.

After bitwise operator

Please refer to the explanation for “Space after bitwise operator”.

Before logical operator

Please refer to the explanation for “Space before logical operator”.

After logical operator

Please refer to the explanation for “Space after logical operator”.

Before mathematical operator

Please refer to the explanation for “Space before mathematical operator”.

After mathematical operator

Please refer to the explanation for “Space after mathematical operator”.

Before string concat operator
Please refer to the explanation for “Space before concat operator”.

After string concat operator

Please refer to the explanation for “Space after concat operator”.

Before relational operator

Please refer to the explanation for Section 2.8.9.1.1, “Relational operator”.

After relational operator

Please refer to the explanation for “Space after relational operator”.

Before shift operator
Please refer to the explanation for “Space before shift operator”.

After shift operator
Please refer to the explanation for “Space after shift operator”.

Before conditional question operator

Please refer to the explanation for “Space before question mark conditional operator”.

After conditional question operator

Please refer to the explanation for “Space after question mark conditional operator”.

179 CHAPTER 2 CONFIGURATION

Before conditional colon operator
Please refer to the explanation for Section 2.8.9.1.5, “Conditional”.

After conditional colon operator

Please refer to the explanation for “Space after conditional operator colon”.

Parenthesized expression

Lets you control the white space behavior for parenthesized expressions.

After left parenthesis

Please refer to the explanation for Section 2.8.9.1.16, “Parenthesized expression”.

Before right parenthesis
Please refer to the explanation for Section 2.8.9.1.17, “Parenthesized expression”.

Type cast

Lets you control the white space behavior for type casts.

After left parenthesis

Please refer to the explanation for “Space after left parenthesis type cast”.

Before right parenthesis

Please refer to the explanation for “Space before right parenthesis type cast”.

After right parenthesis
Please refer to the explanation for “Space after right parenthesis type cast”.

Arrays

Lets you control the white space behavior for arrays.

Declaration

Lets you control the white space behavior for array declarations.

Before left bracket

Please refer to the explanation for “Space before left bracket array declaration”.

Between empty brackets

Please refer to the explanation for “Space between empty brackets array declaration”.

Allocation
Lets you control the white space behavior for array allocations.

Before left bracket

Please refer to the explanation for “Space before left bracket creator”.

After left bracket

Please refer to the explanation for Section 2.8.9.1.26, “Array creator”.

WHITE SPACE 180

Before right bracket
Please refer to the explanation for “Space before right bracket array creator”.

Between empty brackets
Please refer to the explanation for “Space between empty brackets array creator”.

Initializer

Lets you control the white space behavior for array initializers.

Before left brace
Please refer to the explanation for “Space before left curly brace array initializer”.

After left brace

Please refer to the explanation for “Space after left curly brace array initializer”.

Before comma

Please refer to the explanation for “Space before comma array initializer”.

After comma
Please refer to the explanation for “Space after comma array initializer”.

Before right brace

Please refer to the explanation for “Space before right curly brace array initializer”.

Between empty braces
Please refer to the explanation for “Space between empty curly braces array initializer”.

Accessor

Lets you control the white space behavior for array accesssors.

Before left bracket

Please refer to the explanation for Section 2.8.9.1.25, “Array accessor”.

After left bracket

Please refer to the explanation for Section 2.8.9.1.26, “Array accessor”.

Before right bracket

Please refer to the explanation for “Space before right bracket array accessor”.

Parameterized types

Lets you control the white space behavior for parameterized (generic) types.

Type parameter

Lets you configure the white space behavior for type parameters.

Before left angle bracket

Please refer to the explanation for “Space before left angle bracket type parameter”.

181 CHAPTER 2 CONFIGURATION

After left angle bracket
Please refer to the explanation for “Space after left bracket type parameter”.

Before comma in brackets

Please refer to the explanation for “Space before comma type parameter”.

After comma in brackets

Please refer to the explanation for “Space after comma type parameter”.

Before ampersand in brackets

Please refer to the explanation for “Space before ampersand type parameter”.

After ampersand in brackets
Please refer to the explanation for “Space after ampersand type parameter”.

Before question mark in brackets

Please refer to the explanation for “Space before question mark type parameter”.

After question mark in brackets

Please refer to the explanation for “Space after question mark type parameter”.

Before right angle bracket

Please refer to the explanation for “Space before right angle bracket type parameter”.

Type argument
Lets you configure the white space behavior for type arguments.

Before left angle bracket

Please refer to the explanation for “Space before left angle bracket type argument”.

After left angle bracket

Please refer to the explanation for “Space before left angle bracket type argument”.

Before comma in brackets

Please refer to the explanation for “Space before comma type argument”.

After comma in brackets

Please refer to the explanation for “Space after comma type argument”.

Before question mark in brackets
Please refer to the explanation for “Space before question mark type argument”.

After question mark in brackets

Please refer to the explanation for “Space after question mark type argument”.

Before right angle bracket

Please refer to the explanation for “Space before right angle bracket type argument”.

WHITE SPACE 182

2.8.10

2.8.10.1

183

Separation

Lets you control the insertion of blank lines to separate statements or declarations with
different functions or meanings. Just as related statements should be grouped together, un-
related statements should be separated from each other. In English, the start of a new para-
graph is identified with indentation or a blank line. This greatly aids reading ease and helps
to improve comprehension and reading speed. When coding, you should strive for a similar
goal and always give the reader hints as to how the program is organized.

With Jalopy you are able to enforce consistent blank lines behavior and divide groups
of related statements into paragraphs, separate routines from one another and highlight
comments. You can give Jalopy complete control over the blank lines handling, or use a
more relaxed style and keep existing blank lines up to a given number.

General

Lets you specify the number of blank lines that should appear before, after and between
different Java source elements.

Figure 2.46. Blank Lines settings page

S 19 : Demao License - Only for evaluation
[T FT Canars ML
¥ Clohal Elemant Hank lines before Hank lines aftar Enanle
¥ java Dac Laration sdclior 1 = i
Fack@ge $Lanemi 1) T
Rraces IBort 2 o {
Lire Wrapping Classes il E) |
|nd enration Iterfares i F = |
White Space EFuifiiG i 1 1': |
CERT &1 o 1 W |
| separaton [N _
sarting variahles 1] i |
Impiems Ll curly Barace class] : :
b COmenems Lefe curly Brace ratkad o = |
. Lehr curly brace endline] E i
AN Lafe curly brace rasdime o W |
Search & Replace Right curly brace 0 g |
Code Inspeoinr | Blocks 1 1 7 |
Case Blocks 1 il |
Conuod s1amements 1 il !
tingle-line cormemants 1 :': :
wulb=lme commeris 1 W
JavdEsy cammrils 1 il u"
EEaranOr CoeTETRNLE 1 1 ol
Header o o il v
[7] I | Fioetmr il :-. &

‘

Declaration section

Lets you control how many blank lines should be printed before a new declaration section.
A declaration section means an arbitary amount of similar declarations, like e.g. instance
initializers, or methods or enum declarations. This option is only meaningful when code
sorting is enabled for declarations. Refer to Section 2.8.11.1, “Declarations” for more in-
formation about the code sorting feature.

Since 1.4

CHAPTER 2 CONFIGURATION

Example 2.662. 2 blank lines before code sections

private Foo aFoo;

= =

Construct or (Foo rFoo) {

—- —.

public static void nmethod(Foo rFoo) {

}

Package statement

Lets you control how many blank lines should be printed after the package statement.

Example 2.663. 3 blank lines after package statement

package comtriemax.jal opy.printer;

E]

import antlr.collections. AST;

i mport comtriemnax.jal opy. parser.JavaAST,
i mport comtriemnmax.jal opy. parser.JavaTokenTypes;

Imports

Lets you control how many blank lines should be printed after the last import statement.

Example 2.664. 4 blank lines after last import statement

package comtriemax.jal opy.printer;
i mport antlr.collections.AST;

i mport comtriemnax.jal opy. parser.JavaAST,;
i mport comtrienmax.jal opy. parser.JavaTokenTypes;

1

1

1

1

public class Printer {
}

Classes

Lets you control how many blank lines should be printed before the first top level class
declaration of a compilation unit and between two class declarations.

Example 2.665. 1 blank line before class declaration

cl ass Foo {

}

=

The blank lines before setting is only meaningful if the class declaration is the first top level
declaration of a compilation unit and not preceded by a package or import statement.

SEPARATION 184

185

Example 2.666. 2 blank lines between two class declarations

class One {

—- —.

class Two {

}

Interfaces

Lets you control how many blank lines should be printed before the first top level interface
declaration of a compilation unit and between two interface declarations.

Example 2.667. 2 blank lines before first interface declarations

—=a =a

nterface Fooable {

—

The blank lines before setting is only meaningful if the interface declaration is the first top
level declaration of a compilation unit and not preceded by a package or import statement.

Example 2.668. 3 blank lines between two interface declarations

nterface One {

i
}
1
1
1
interface Two {
}

Enums

Lets you control how many blank lines should be printed before the first top level enum
declaration of a compilation unit and between two enum declarations. The blank lines
before setting is only meaningful if the enum declaration is the first top level declaration of
a compilation unit and not preceded by a package or import statement.

Since 1.1

Example 2.669. 3 blank lines between two enum declarations

public enum Season {
W NTER, SPRING SUMVER, FALL
}
1
1
1
public enum Day {
MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRI DAY, SATURDAY, SUNDAY

—

Annotations

Lets you control how many blank lines should be printed before the first top level annota-
tion declaration of a compilation unit and between two annotation declarations. The blank
lines before setting is only meaningful if the annotation declaration is the first top level
declaration of a compilation unit and not preceded by a package or import statement.

Since 1.1

CHAPTER 2 CONFIGURATION

Example 2.670. 2 blank lines between two enum declarations

public @nterface Nane {
String first();
String last();

}

1

1

public @nterface Endorsers {
String[] value();

—

Methods

Lets you control how many blank lines should be printed between two method/constructor
declarations.

Example 2.671. 3 blank lines between two method declarations

public static Printer getlnstance() {
return | NSTANCE;

}

1

1

1

public void print(AST node, ASTWiter out)

throws | OException {

}

Variables

Lets you control how many blank lines should be printed before and after variable decla-
rations.

Example 2.672. 1 blank line before variable declarations
Systemout. println();

1
int a=1;
int b =2;
Example 2.673. 2 blank lines after variable declarations
int a=1;
int b = 2;
1
1

Systemout.printlin();

Left curly brace class

Forces the given number of blank lines after left curly braces of class, interface and enum
declarations. You need to explicitly enable the option to take effect. When enabled, this
option takes highest precedence and overrides all other blank line settings.

Please note that you need to set this option only if you want different left curly blank
lines behavior for class level blocks. Otherwise, the corresponding options for left curly
brace endline/newline would be enough to enforce consistent behavior.

Since 1.9.1

SEPARATION 186

187

Example 2.674. Blank lines before Javadoc=1

cl ass Denp {

1
/** Denp nethod */
public void foo() {
}

}

Example 2.675. Blank lines before Javadoc=1, Blank lines after left curly braces=0

class Deno {
/** Denp nethod */
public void foo() {

}
}

Left curly brace method

Forces the given number of blank lines after left curly braces of method and constructor
declarations. You need to explicitly enable the option to take effect. When enabled, this
option takes highest precedence and overrides all other blank line settings.

Please note that you need to set this option only if you want different left curly blank
lines behavior for method level blocks. Otherwise, the corresponding options for left curly
brace endline/newline would be enough to force consistent behavior.

Since 1.9.1

Example 2.676. Keep blank lines=1

private final void | oadVersion() {
1

}

check();

Example 2.677. Keep blank lines=1, Blank lines after left curly braces methods=0

private final void | oadVersion() {
check();

}

Left curly brace endline

Forces the given number of blank lines after left curly braces that are printed at the end of
the line beginning the compound statement (a.k.a. Sun brace style). You need to explicitly
enable the option to take effect. When enabled, this option overrides all other blank line
settings other than Left curly brace class and Left curly brace method.

Example 2.678. Blank lines before blocks=1

public void foo() {

1
if (condition()) {
1
if (anotherCondition()) {
doSonet hi ng() ;
}
}
}

CHAPTER 2 CONFIGURATION

Example 2.679. Blank lines before blocks=1, Blank lines after left curly braces=0

public void foo() {
if (condition()) {
if (anotherCondition()) {
doSorret hi ng() ;
}

}

Left curly brace endline newline
Forces the given number of blank lines after left curly braces that are printed at the beginning

of lines (a.k.a. C brace style). When enabled, this option overrides all other blank line

settings.
Since 1.7

Example 2.680. Blank lines before blocks=1

public void foo()

{
1
if (condition())
{
1
i f (anotherCondition())
{
doSonet hi ng() ;
}
}
}

Example 2.681. Blank lines before blocks=1, Blank lines after left curly braces=0
public void foo()

{ if (condition())
{ i f (anotherCondition())
{ doSoret hi ng();
} / |
Right curly brace

Forces the given number of blank lines before closing curly braces, no matter what other
blank lines settings dictate.

Example 2.682. Blank lines before blocks=1

public void foo() {
if (condititon()) {
if (anotherCondition()) {
doSonet hi ng() ;

SEPARATION 188

189

Blocks

Lets you control how many blank lines should be printed before and after statement blocks
(if-else , for, while, do-while, switch, try-catch-finally, synchronized). Note that the “Blank
Lines After” setting also applies for anonymous inner classes.

Example 2.683. 2 blank lines before and after blocks

AST type = null;
1
1
switch (next.getType()) {
case JavaTokenTypes. LPAREN :
type = PrinterUtils.advanceToFi r st NonParen(next);
br eak;
def aul t
type = next;
br eak;

}
1
1
AST ident = type.getFirstChild();

Case blocks

Lets you control how many blank lines should be printed before each case block of a switch
expression.

Example 2.684. 3 blank lines before case blocks

swi tch (next.getType()) {

1
1
1
case JavaTokenTypes. LPAREN :
type = PrinterUils. advanceToFirst NonParen(next);
br eak;
1
1
1
def aul t
type = next;
br eak;
}

Control statements

Lets you control how many blank lines should be printed before the statements r et urn,
br eak and cont i nue.

Example 2.685. 2 blank lines before case control statements

switch (next.getType()) {
case JavaTokenTypes. LPAREN :
type = PrinterUtils.advanceToFi r st NonPar en(next);

1
1
br eak;
def aul t
type = next;
1
1
br eak;
}

CHAPTER 2 CONFIGURATION

Note that this setting does not apply when a control statement appears directly after the
case ordef aul t keyword or when the statement is the single member of a statement block
without curly braces.

Example 2.686. Setting takes no effect before case control statements

switch (next.getType()) {
case JavaTokenTypes. LPAREN :
br eak;

defaul t :
conti nue;

Example 2.687. Setting takes no effect for single statements in blocks

if (isdean())
return;

Single-line comments

Lets you control how many blank lines should be printed before single-line comments.

Example 2.688. 1 blank line before single-line comment

Systemout. printl n("ERROR");

1
/1 XXX use | og4j |ogger
ex. print StackTrace();

Multi-line comments

Lets you control how many blank lines should be printed before multi-line comments.

Example 2.689. 2 blank lines before multi-line comment

Systemout. printl n("ERROR");
1

1

/* XXX use | og4j |ogger */
ex. print StackTrace();

Javadoc comments

Lets you control how many blank lines should be printed before Javadoc comments.

Separator comments

Lets you control how many blank lines should be printed before and after separator com-
ments.

Since 1.7

Example 2.690. 2 blank lines before/after separator comment

prot ected Foo instance;

1

1

[1~ CONStrUCEOrS == --mmmmmm oo e oo e o e
1

1

public Demo () {}

public Demo (Foo anotherFoo) {}

SEPARATION 190

2.8.10.2

191

Header

Lets you control how many blank lines should be printed before and after headers.

Example 2.691. No blank lines after header

/1 Copyright 1998-2000, Foo, Inc. Al R ghts Reserved.

/1l Confidential and Proprietary Information of Foo, Inc.

/1 Protected by or for use under one or nore of the follow ng patents:
/1 U 'S Patent Nos. X XXX, XXX. O her Patents Pending.

package com f oobar;

Example 2.692. 2 blank lines after header

/] Copyright 1998-2000, Foo, Inc. Al R ghts Reserved.

/'l Confidential and Proprietary Information of Foo, Inc.

/'l Protected by or for use under one or nore of the follow ng patents:
/1 U S. Patent Nos. X XXX, XXX. O her Patents Pending.

1

1

package com f oobar;

Footer

Lets you control how many blank lines should be printed before and after footers.

SQLJ clauses

Lets you control how many blank lines should be printed before and after SQLJ clauses.

Example 2.693. 2 blank lines before/after SQLJ clause

I nt eger sal esRepl D new | nt eger (358);

String sal esRepNane "Jouni Seppanen”;

Dat e dat eSol d new Dat e(97, 11, 6);

1

1

#sql { I NSERT I NTO SALES VALUES(:item D, :itenNane,: dateSold,:total Cost,
: sal esRepl D, : sal esRepNane) };

1
1
Sal esRecs sal es;

Assignment section

Lets you control how many blank lines are printed after a section with several (at least two)
consecutive assignment expressions.

Since 1.4

Example 2.694. 1 blank line after assignment section

c.fill = GidBagConstraints. HORI ZONTAL;
c.insets = new Insets(0, 0, 0, 0);

1

m ddl ePanel . add(butt onsPanel , c);
Misc

Lets you control miscellaneous separation settings.

CHAPTER 2 CONFIGURATION

Figure 2.47. Blank Lines Misc settings page

¥ Cloibal _ =

- Keep blar s up e 2 _l!
Braces E Keep blank lres in eaders up to: !_'_T!
Lire Wrapping
Indentation Decermine chusks by [Comenents
White Space B alesik lines

e
sarting
ImporTs [T Remuwe Blank lines far smettumd protatypes
b Comemers : Iyrare cantral statemerts cetion far "hreak® in “watch®

Annctatives [igrare blucks opton e "switch®

Search & Replace
Code Inspecior

Keep blank lines up to

When enabled, retains up to the given number of blank lines found in the original source.
Note that Jalopy still takes your other blank lines settings into account. If you disable this
option, all original blank lines will be ignored!

Example 2.695. Source code with blank lines to separate declaration sections

aMWsString = new Mul tiVal ueString("abc");
1

Systemout.println("W = "+aWString);
1

System out. println("WO0
Systemout. println("W1
Systemout. println("MW2
Systemout.printlin("");

"+aMString. extract(0));
"+aMVString.extract(1l));
"+aMVString. extract(2));

If this feature is left disabled, Jalopy will print the individual lines according to the current
blank lines settings but won’t try to keep any blank lines.

Keep blank lines in headers up to

When enabled, retains up to the given number of blank lines found in the original source
file between header (and footer) comments. This option is only signficant when you enable
the header/footer feature and specify a multi-header template, without enabling the override
mode.

Since 1.7

SEPARATION 192

193

Example 2.696. Source code with blank lines to separate headers
/ *
* Foo.java

*

* $Header: //depot/foo/src/ main/conlfoo/Foo.java#l3 $

*/

1

/*

* Copyright (c) 2002 FooBar, Inc. Al rights reserved.

*

* This software is the confidential and proprietary information
* of FooBar, Inc. ("Confidential Information"). You shall not
* disclose such Confidential Information and shall use it only
* in accordance with the ternms of the |icense agreenent you

* entered into with FooBar, Inc.

*

/
package com f oobar. | enon;

Chunks

Lets you define what makes a chunk: a section of associated statements. With "Variable
identifiers" and/or "Align assignments” enabled, Jalopy determines what statements can be
aligned using these options. With “Align endline comments” enabled, Jalopy determines
what comments should be aligned together.

By comments
When enabled, a statement with a comment before is recognized as the start of a new chunk.

Example 2.697. Aligned assignments/identifiers

String t ext
i nt a
/1l create a new entry

Hi story.Entry entry = new History. Entry(text);

"text";
_1'

Example 2.698. Aligned assignments/identifiers, chunks by comments

String text = "text";

i nt a = -1;

/'l create a new entry

H story.Entry entry = new History. Entry(text);

By blank lines

When enabled, a statement which has one or more blank lines before is recognized as the
start of a new chunk.

Example 2.699. Aligned assignments/identifiers

String text = "text";

int a = -1

1

Hi story.Entry entry = new History. Entry(text);

String text
i nt a

1

H story.Entry entry = new History.Entry(text);

CHAPTER 2 CONFIGURATION

By line wrap

When enabled, a statement that takes more than just one line to print is recognized as the
start of a new chunk. With standard indentation, it is recommended to have this option
enabled, because otherwise wrapped expressions might obscure aligned assignments. Please
note that this option does not affect endline comments!

Since 1.3

Example 2.701. Aligned assignments

int | abel R x Mat h_m n(iconR x, textR x);
int label R with Mat h_max(iconR x + iconRwidth, textRrr.x) -

| abel R_x;

int labelRwidth = Math_max(iconR x + iconR width, textRrr.x) -
| abel R_x;

int |abelR Yy Math_m n(iconRy, textRYy);

i nt | abel R_hei ght Mat h_max(i conR y + iconR height,
textRy + textR height);

int | abel R x Mat h_m n(iconR x, textR x);

int lab Mat h_m n(iconR x, textR x);

Example 2.702. Aligned assignments, chunks by line wrap, prefer wrap after assign

nt |abel R x = Math_nin(iconR x, textR x);
nt labelRwith =

Mat h_max(i conR x + iconR width, textRrr.x) - |abel R x;
int |abelRwidth =
Mat h_max(i conR x + iconR width, textRrr.x) - |abel R x;

nt labelRy = Math_nin(iconRy, textRy);
nt | abel R_height =
Mat h_max(i conR y + iconR height, textRy + textR height);
nt | abel R x Mat h_mi n(i conR x, textR x);
nt |ab Mat h_mi n(i conR x, textR x);

Remove blank lines for method prototypes

When enabled, blank lines around abstract method declarations are removed. This includes
all methods in interfaces (which are implicitly abstract). And all methods explicitely declared
abstract in classes. If left disabled, blank lines will be printed according to the blank lines
settings for methods (see “Blank lines after methods”).

Since 1.2

Example 2.703. Method prototypes

interface foo {
public void methodl();
public void method2();

public void method3();
}

Example 2.704. Method prototypes without blank lines

interface foo {
public void nethodl();
public void nethod2();
public void nethod3();

—

SEPARATION 194

195

Ignore control statements option for break in switch
When enabled, the “Blank Lines before control statements” option is ignored for br eak
statements within swi t ch blocks.

Since 1.3

Example 2.705. 1 blank lines before control statements

switch (nunber) {
case 1:
Systemout. println();
br eak;

defaul t:
Systemout. println();

br eak;

Example 2.706. 1 blank lines before control statements, but option ignored

switch (nunber) {
case 1:
Systemout. println();
br eak;

defaul t:

Systemout. println();
br eak;

}

Ignore blocks option in switch
When enabled, the “Blank lines for blocks” option is ignored within swi t ch blocks.

Since 1.3

Example 2.707. 1 blank lines before blocks

switch (nunber) {
case 1:

i f (DEBUG
Systemout. println("Fl RST NUMBER") ;

br eak;
defaul t:

while (true)
perforn();

br eak;

CHAPTER 2 CONFIGURATION

Example 2.708. 1 blank lines before blocks, but option ignored

switch (number) {
case 1:

i f (DEBUG
Systemout. println("FI RST NUMBER") ;

br eak;

defaul t:
while (true)
perforn();

br eak;

2.8.11 Sorting
Lets you control the code sorting. Code sorting lets you arrange elements in a specific order
to ease navigation and improve comprehension.

2.8.11.1 Declarations
Lets you control the order of the main declaration elements of Java compilation units:
classes, interfaces, enums, annotations, fields, initializers, constructors and methods.

Figure 2.48. Sorting Declarations settings page

L Detlaratisng Wsd ilir s T RALE
k Clobal
Eﬁ:rfd!rhrnlmm
* Jawa
Rraces
Line Wrapping sort Oroer:
IndeALAToN = e L i EdiL...
Whi =- Statle Infdalizers (Flelds =
Lo i3 Enums i) up
b 8 Enum Constamts W
Dhzvar
| Soring [o
IMpEeTs B Instanoe Inkizizers =
B Comeierts & Constructors W
Annotalions @ Mztods)
Search & Replace O intrfaces ™
Code Inspecinr @ Classes -
(Annctations |
| Beguare hear property Feld
Bealian Gevter: | ~{is)[&-F]\w+ [Edir.
L 7] 1} I

Sort declarations
Enables or disables the sorting of declarations. When disabled, all declarations appear in
their original order. Otherwise they are grouped and sorted according to the defined order.

SORTING 196

197

Sort Order

You can specify the order in which static fields/initializers, instance fields, instance initial-
izers, constructor, method, enum, annotation, class and interface declarations and enum
constants should appear in source files by selecting an element type and moving it up or
down the list with the Up and Down buttons. By default, with sorting enabled, the differ-
ent declaration elements are grouped together, but within one element type the contained
declarations are still placed in their original order. For example all methods will be grouped
together, but otherwise the methods appear in their original order. Enable any of the check
boxes, if you want to have all members of one type sorted, too.

Use the Edit... button to define the order in which the individual members should ap-
pear. A dialog opens that lets you specify the sorting criteria, e.g. modifier or name. You can
select what criteria should be used and in what order. Jalopy checks all significant sorting
conditions in the specified order until the sorting position of a declaration member could
be determined.

For example, if you want your methods to be sorted according to their access modifier
and names, enable both criteria and disable the others. For two methods Jalopy will first
check whether the modifiers are equal. If they differ, the sorting order is already obvious
and no further criteria applied. But if they are equal, it will check their names and sort the
two methods lexicographically.

For modifiers, you can further refine what modifiers should be significant for sorting
and in what order they are tested. Though accessible from different dialogs, the settings for
modifier sorting are global and used across all declaration types to achieve a consistent style.

Methods

Figure 2.49. Configure Sorting Order of Methods

e T Configure Methods Sort Order

Select the sort criteria that should be significant, and specify the order in which
the criteria should be applied,

Sork criteria:

B pndifies [up %
M Hame &

- [pewm
M Perameter Cous

Ragular axpeassian

M Custoer

| Use acoess mocifier a5 description for separatar comments

=

{ Cancel | [Apply)

For methods, you can specify sorting by modifiers, name, parameter count, Java Bean pat-
tern, regular expression pattern or custom ordering. Enable the check box for each criteria
that should be significant and use the Up and Down buttons to specify the order in which
the criteria should be applied. To further refine the way sorting is applied for modifiers,

CHAPTER 2 CONFIGURATION

SORTING

select the “Modifiers” entry and press the Ediz... button to define what modifiers should
be significant and adjust their order.

Example 2.709. Method

public final void setName(String first, String second) {

}

In the above example, the access modifier would be “public final”, the name “set -
Name” and parameter count' 2' ;.

Bean Pattern

Bean pattern refers to the JavaBeans specification naming convention that requires accessor
and mutator methods to begin with either the sez, ger or is prefixes.

Figure 2.50. Configure Sorting Order of JavaBeans Methods

Lpecify the order in which the criteria should be applied.

SOFC CrimeriL

Didinary Mataod i Lip :I
fooiean Getter I:_-' H
Somer

| Group metheds with smilar mames
_ Emep b=an mekhods together

{E— { Cancel | { Apphy)
.
R

You can control the order in which JavaBeans methods and ordinary methods appear by
selecting the entry and press the Ediz... button. Adjust the order of the different elements
in the list component of the new dialog and press Apply. The Ordinary method entry refers
to all non-Bean methods.

Group methods with similar names

Normally bean pattern sorting means that all methods of one type (getters, boolean getters,
setters, ordinary methods) are grouped together according to the specified order. Enabling
this option causes all methods with similar names to be grouped together, i.e. bean methods
and ordinary methods may be mixed, but all bean methods for one property stay together.

Similar methods are determined by stripping the bean prefix and comparing the result-
ing method names. Similar methods are grouped together according to the specified order
(getters, boolean getters, setters, ordinary methods).

Since 1.5

198

199

Example 2.710. Bean pattern sorting

public void aaaaaa() {}
public void bbbbbb() {}
public void ccccce() {}
public Object getAaaaaa() {}
public Object getBbbbbb() {}
public Object getCccccc() {}
public bool ean i sAaaaaa() {}
public bool ean i sBbbbbb() {}
public bool ean isCccccec() {}
public void setAaaaaa() {}
public void setBbbbbb() {}

public void setCccccc() {}

Example 2.711. Bean pattern sorting, group similar
public void aaaaaa() {}

public Object getAaaaaa() {}
public bool ean isAaaaaa() {}
public void setAaaaaa() {}
public void bbbbbb() {}

public Object getBbbbbb() {}
publ i c bool ean isBbbbbb() {}
public void setBbbbbb() {}
public void ccccce() {}

public Object getCcccce() {}
public bool ean isCccccc() {}
public void setCccccc() {}
Keep bean methods together
Grouping similar methods will let you group all bean methods for one property together,

but the bean methods are otherwise still mixed with ordinary methods. If you instead prefer
to have a// bean methods grouped together, you can enable this option to build one large

block with all bean methods.

Since 1.8

CHAPTER 2 CONFIGURATION

Example 2.712. Bean pattern sorting, group similar
public void aaaaaa() {}

public Object getAaaaaa() {}
public bool ean i sAaaaaa() {}
public void setAaaaaa() {}
public void bbbbbb() {}
public Object getBbbbbb() {}
publ i c bool ean i sBbbbbb() {}
public void setBbbbbb() {}
public void ccccce() {}
public Object getCccccc() {}
public bool ean isCccccc() {}

public void setCccccc() {}

Example 2.713. Bean pattern sorting, group similar, bean methods kept together
public Object getAaaaaa() {}

public bool ean isAaaaaa() {}
public void setAaaaaa() {}
public Object getBbbbbb() {}
publ i c bool ean isBbbbbb() {}
public void setBbbbbb() {}
public Object getCcccce() {}
public bool ean isCcccecc() {}
public void setCccccc() {}
public void aaaaaa() {}
public void bbbbbb() {}
public void ccccece() {}
Regular expression

Lets you define arbitrary regular expressions to match method signatures to specify absolute
positions for specific methods.

SORTING 200

Figure 2.51. Configure Regular Expression Sorting

Add {remove regular expression patterns and specify the order in which
thay should be applied,

Begex patberns:

public Cajpect clone [acd.
aublic Boesabzan eouals

public Ecalean wcospk

pubslic String taferiag

Matching is performed against a simplified signature: only modifiers, return type and
method name are used.

Example 2.714. Method declaration
publ i ¢ bool ean equal s(hject rQther) {

}

The above method declaration would yield the following signature: public boolean equals

Add...

To add a new regular expression, press the Add... button.

Figure 2.52. Add Regular Expression

Enterfadjust the regex pattern. Type in a test string and press the

Test' burten, i yow woubd like o validate your reges.

Bpgea: I]

Sreim:

(7 [Test) Cancel J | Add
e

Enter the regular expression into the Regex text field and press the Apply... button to apply
the addition. If you want to test the regular expression before you submit it, enter a test
string in the S#ring field and press the 7ést button to perform pattern matching.

201 CHAPTER 2 CONFIGURATION

Remove

To remove an existing regular expression, select the expression you want to remove and
press the Remove button.

Change...

To change an existing regular expression, select the expression you want to change and press

the Change... button.

Figure 2.53. Change Regular Expression

ALY Change Reqular Expression

Change the regex to your liking. Type in a test string and press the
Test' Button, T you wauld like o validare yaur regex.

decan muhlic String bakkremg

Serireg

(7 " Test i { Cancel | f Change}

Adjust the regular expression in the Regex text field and press the Apply... button to apply
the change. If you want to test the regular expression before you submit it, enter a test string
in the String field and press the 7ész button to perform pattern matching.

Custom Sort Order

As it might not always be sufficient to rely on method signature information alone, devel-
opers can take total control over method ordering using special Javadoc tags.

IMPORTANT Javadoc formatting, see Section 2.8.14.1.1, “Format comments”,
must be enabled for this feature to work.

In order to have methods grouped by purpose, check the Custom entry in the upper list
of the dialog, move it to the top and utilize two custom Javadoc tags in your method com-
mentary. In your method declaration comments, you need to add the Javadoc standalone
tag @ al opy. gr oup followed by a logical group name. This name can be freely chosen and
defines the group a method belongs to.

/**

* Returns the value of the Foo property.
*

* @al opy. group Accessors
*/
public int getFoo () {

}

Then you specify the order of methods with the @ al opy. gr oup-order (you can use
@ al opy. group_or der to circumvent a bug in the Sun 1.4.2 Javadoc implementation)

SORTING 202

203

in the class or interface Javadoc comment. Simply place all group names defined with
@ al opy. group tags in the desired order here and all methods will be sorted accordingly.

There is no special requirement on how the logical group names should be written, but
it is good practice to separate them by commas.

/**

* | want methods ordered by value provided in the @al opy.group tag of
* each method in this order. If the nethod doesn’'t have a @ al opy. group tag,

* fall back on project defaults.
*

* @al opy. group-order Constructors, Queries, Accessors
*/
cl ass Foo {

}

This works recursively for all methods of a compilation unit, i.e. for inner classes Jalopy
first checks the inner class declaration comment and if no @ al opy. gr oup- or der tag can
be found, it recursively searches all parent class/interface declarations of the unit. A group
name not only defines the sorting order, but is used for separator comments also (Refer to
Section 2.8.11.3, “Comments” for more information on this feature).

Please note that all methods that have no custom group information associated are
placed below the ones with grouping tags. Within each group the methods are sorted ac-
cording to the normal criteria (access modifier, name, parameter count).

Since 1.1
L]~ QUEIT @S - - - - - oo oo oo oo oo
/**

* This method gets object by primary key

* @aram inConn db conn

@aram inPK the primry key

*

* @al opy.group Queries
*/

public static Myd ass get ByPK (Connection inConn, Long inPK) {

}

[~ ACCESSOr S == m - o mm oo o oo m oo

/**

* This method returns the Name property.

*

* @al opy. group Accessors
*/
public String getNane (Connection inConn, String inLogi nNane) {

}

Classes, Interfaces, Enums

Class, interface, enum and annotation declarations can be sorted according to access mod-
ifier and/or name.

CHAPTER 2 CONFIGURATION

SORTING

Figure 2.54. Configure Sorting Order of Classes, Interfaces and Enums

Select the sort criteria that should be significant, and specify the order in which
the criveria should be applied.
sark criteria
& Access Moot [up
& Hame " Duwn
Edir..
@ (_Cancel | { Apply)
P

To further refine the way sorting is applied for access modifiers, select the Access Modifier
entry, press the Edit... button, configure what modifiers should be significant and adjust
the order in which testing should be applied.

Example 2.718. Classes/Interfaces

protected abstract class AbstractPage {

}

In the above example, the modifiers would be “protected abstract” and the name
“Abst ract Page” .

Access Modifier

Lets you define what modifiers should be significant when sorting by modifier and in which
order the declarations should be sorted. The position of the Modifiers entry in the parent
dialog defines when the modifiers are compared to determine the order of two declarations.
E.g. if you want to sort by modifier first, Modifiers must be the topmost entry in the parent
dialog.

204

205

Figure 2.55. Configure Sorting Order of Modifiers

Select the sort criteria that should be significant, and specify the order in
which the criveria should be applied.

Jortoriteri

|!n~='c ||:u_n:|

M pacaape protecres
M privare

W abstraco

M sric

= Fmal

T patve

@ {Em:ﬂjm
——————————————————

Select the check box of each access modifier that should be used to determine the order of
declarations and use the Up and Down buttons to define the order in which the declarations
should be sorted.

For example, if you want to place all static methods together above the other ones, you
would check the “static” modifier and move it to the top of the list.

Example 2.719. Sort by static modifier first, then access modifier
class Foo {

public static void x() {}
static void y() {}

public void c() {}

public void d() {}
protected void b() {}

private void a() {}

}

But if you only want to have the methods sorted by access modifier, just check the four
access modifiers and specify the order in which the declarations are to be sorted, e.g. private,
package protected, protected and public.

CHAPTER 2 CONFIGURATION

SORTING

class Foo {
private void a() {}
static void y() {}
protected void b() {}
public void c() {}
public void d() {}

public static void x() {}
}

Require bean property field

By default all methods following the JavaBeans naming conventions are recognized as Jav-
aBeans methods. In order to limit JavaBeans detection to methods that actually contain a
corresponding property field, enable this option.

Bean property field detection is somewhat fuzzy as no attempt is made to match method
names exactly in order to support field prefixes. Given the method name “getImportance-
Value”, Jalopy would match all fields that end with “importanceValue” as a correspond-
ing property field (case is ignored). But a field name “importanceValue_” would not be
matched.

Since 1.9

private bool ean i nportanceValue; // property field

public void setlnportanceVal ue(bool ean val ue) {}
publ i ¢ bool ean i sl nportanceVal ue() {}
public void setTestValue(String value) {}

When the option is disabled, all methods in the above example would be recognized as
JavaBeans methods and handled accordingly. But if the option is enabled, only the first two
methods would be treated as JavaBeans methods, because only they contain a matching
property field.

This option might affect the sorting of methods when the Bean Pattern criteria is en-
abled, please refer to Section 2.8.11.1.1, “Bean Pattern”. It also impacts what Javadoc tem-
plate might be chosen when generating Javadoc comments, see Section 2.8.14.5, “Tem-
plates”.

Boolean Getter

Lets you configure the regular expression that is used to determine what method declara-
tions are recognized as Boolean Getters. According to the JavaBeans naming conventions,
only method declarations starting with the “i s” prefix are Boolean Getters, but it might
make sense to lift this restriction. In certain cases it is more reasonable to name methods in
a way that better describes their purpose, but still treat them as Boolean Getters, like e.g.
canDel et e() or shoul dDel et e().

206

IMPORTANT The prefix must be enclosed with matching parentheses! Always
use something like ~(i s| shoul d| can) [A- Z]\ w+ rather than
Ais| shoul d| can[A- Z] \ w+.

Since 1.1

2.8.11.2 Modifiers

207

Controls the sorting of declaration modifiers.

Figure 2.56. Sorting Modifiers settings page

(S TUFT Oeclarariang Misdiflirs CoNTRALE
¥ Clooal
Eﬁurr o ifiers
¥ Eﬁurr annoAstions
Rraces
Lirse Wrapping
SortOrder:
Indentation -
Fanroation Up
‘White Space kil
Separation proaicned 13w
nhsiracl
Impores sTatic
F Comsments firal
Syrat Feaized
Annotalions
transiers
Search & Replace walatde
Code Inspecinr native
sirictfp
@ i p

Sort modifiers

Enables or disables the sorting of modifiers. When disabled, the modifiers appear in their
original order. Otherwise they are sorted according to the specified order (see below).

Sort annotations

Controls whether annotations should be sorted lexicographically.

Since 1.9

Example 2.722. Unsorted annotations

@renot e(What ever . cl ass)
@ nterceptors(Test.class)
@t at ef ul

class Foo {}

CHAPTER 2 CONFIGURATION

Example 2.723. Sorted annotations

@nterceptors(Test.class)
@renot e(What ever . cl ass)

@t at ef ul
class Foo {}

Sort Order

Lets you specify the order in which the individual modifiers should appear. Select an entry
in the list and use the Up and Down buttons to move it to the desired location. The list
contains the different available Java modifiers as of J2SE 6.0. The @nnot ati on entry
represents annotations.

Example 2.724. Marker annotation placed before public modifier
@relimnary public class TineTravel ({

-

Example 2.725. Marker annotation placed after public modifier

public @relimnary class TineTravel {

—

Please note that normal annotations and single-member annotations are always printed
before all other modifiers!

Example 2.726. Normal annotation

@Request For Enhancenent (

id = 2868724,

synopsis = "Provide tine-travel functionality",
engi neer = "M . Peabody",

date = "4/1/2004"

~

public static void travel ThroughTi ne(Date destination) {

-

Example 2.727. Single-member annotation

@Copyri ght ("2002 Yoyodyne Propul sion Systens, Inc., Al rights reserved.")
public class OscillationOverthruster {

-

2.8.11.3 Comments

SORTING

Lets you control the behavior of the separator comments. When the sorting of declarations
is enabled, separator comments may be inserted before every element section to make it
easier to identify the different parts of a source file.

A separator comment usually starts with a leading / / ~ followed by the specified descrip-
tion text of a section and a certain number of fill characters to take up the rest of the space.
But the style of the comments is fully configurable as well.

Example 2.728. Separator comment

[/~ MBEROUS = = - =« =« =« =« =« x o x ot ottt ot i iiiiiiiolo.-

208

Figure 2.57. Comments Separator settings page

Lrudimiae Oeflaralisng Risd ilir & C oAl L

¥ Clooal
insert bebween declarations: @ Top-leel clisses | inner cleses
¥ Insert hetwenn methods: : Top-level classas : inner classes
Rraces
Lirs2 Wrapping
Saction Descriptons:
Indentation
_ taction Texr EdiL...
White Space Static variables frtializers. Skabe wariables Jinibabzers
Separation Instance fekds irlance viriablis
m Instance inmzizers rstance Inibalzers
Constrchan Consbruciore
Impeets Macaods “ezhods
F Caremerts Inbarfaces irner Inkerfaces
An . Classes Irair Clissas
Enums Enwmns
Search & Replace Erum anslirils Friw-n enonslants
Code Inspecinr Annosations AFFrLIt ars
Crdmary methods Drdinary metheodsy
Fill charasar: :..- % |:_ Edir... __|
Linie engeh: 00 I=
i 1} &

Insert
Controls when separator comments should be inserted.

Between sections

Enables the insertion of separator comments between the different code sections of a
compilation unit. You can control the appearance of the comments as described in Sec-
tion 2.8.11.3.2, “Separator Comment Descriptions” and Section 2.8.11.3.3, “Separator
Comment Style”.

209 CHAPTER 2 CONFIGURATION

public class Foo {
I/~ Static fields/initializers ---------------oo
static final String LABELED BY_PROPERTY = "| abel edBy";
I~ lInstance fields ---------o-mmmmmmm e
private lcon defaultlcon = null;
[~ CONStrUCtOrS =----- oo oo e oo e e
public Foo(String text, lcon icon) {
} :
public Foo(String text) {
}
[1~ Methods --------mmmmm e oo e
public Icon getDi sabl edl con() {
}
public lcon getlcon() {
}
[T~ 1nner € asSes ----------mmm oo oo e

protected cl ass FooContai ner {

}

IMPORTANT The option requires the “Sort declarations” option to be enabled
in order to take effect

Between sections of inner classes
The insertion of separator comments for inner classes/interfaces may lead to confusion,
therefore you can control it here separately.

SORTING 210

211

public class Foo {
/1~ Static fields/initializers ---------------oo o
static final String LABELED BY_PROPERTY = "l abel edBy";
I~ lInstance fields -----------mmmmmmm e
private lcon defaultlcon = null;
[~ CONStruUCtOrsS -------mmmm oo e oo
public Foo(String text, lcon icon) {
} .
public Foo(String text) {
} .
[1~ Methods --------mmmmm e e
public Icon getD sabl edl con() {
} .
public lcon getlcon() {
}
[T~ 1nner CasSes ----------mmmmmm oo
protected cl ass FooContai ner {
publ i ¢ Conmponent getParent() {
} o
[1~ Methods --------mmmmm e e

public int getConponent Count () {

}

IMPORTANT The option requires the “Sort declarations” option to be enabled
in order to take effect

Between methods

When enabled, separator comments are inserted between method declarations.

Since 1.3

CHAPTER 2 CONFIGURATION

SORTING

Example 2.731. Method comment separator

/**

* Returns the value of the disabledlcon property if it’s been set

*

* @eturn The val ue of the disabl edl con property.
*/
public Icon getDi sabl edl con() {

}
S

/**

* Return the keycode that indicates a menonic key.

*

* @eturn int value for the menonic key
*/
public int getDi splayedvhenonic() {

}

IMPORTANT The option requires the “Sort declarations” option to be enabled
in order to take effect

Between methods of inner classes

When enabled, separator comments are inserted between method declarations of inner
classes.

Since 1.7

IMPORTANT “Sort declarations” must be enabled in order to take effect

Example 2.732. Method comment separator of inner classes

public class Foo {

static class Item {

/**

* Returns the value of the disabledlcon property if it’'s been
* set

*

* @eturn The val ue of the disabl edl con property.
*/
public Icon getDisabl edl con() {

}
I NN NN

/**

* Return the keycode that indicates a menonic key.

*

* @eturn int value for the menonic key
*/
public int getDi splayedvhenonic() {

}

212

213

Descriptions

Lets you define the description texts for the individual code sections. Select a row in the list
and press the Change... button to invoke a dialog that lets you specify the text for a specific
section. The dialog may be invoked directly by double-clicking on the list.

Figure 2.58. Configure Section Description Text

Change the separator text for the “Constructors” section.

TeaR: CoNSErUCIDrS

@ i Cancel | [Apply)

&

If you want to disable the insertion for specific sections, you can achieve this means by
removing the corresponding description text. Please note that the “Ordinary methods” text
is only used when custom grouping is enabled, and specifies the section name for those
methods that have no custom grouping info associated (see Section 2.8.11.1.1, “Custom

Sort Order”).

Style

Lets you control the style of separator comments.

Fill character
Lets you define the fill character that should be used in comments.

Example 2.733. Fill character styles

/1~ Met hods
T~ Mt hOdS ..
[~ MethOdS - - - - - e m oo oo oo
/1~ Met hods

//,._ I\bt hods EEEE R E R R E R RS SRR E RS SRR SRR R RS RS EEEEEEEEEEEEEEEEEEES

[~ Nethods [//1 11T TIIEEEEEEEEEEEEEE i gy

Edit...

Press the Edft... button to adjust the templates that will be used for separator comments. The
templates may contain one or several single-line or multi-line comments. You can configure
two different templates: one for the comments between the different declaration sections,
and one for comments between method declarations.

Example 2.734. Default separator template

/]~ ${description} ${fill.character}*

CHAPTER 2 CONFIGURATION

2.8.12

IMPORTS

As you can see in the example above, certain variables may be used that are substituted
during formatting to include the code section description or stretch the comment to com-
pletely fill a line.

Table 2.6. Separator template variables

Variable Description

${description} Lets you include the description text of the current code section (Refer to Sec-
tion 2.8.11.3.2, “Separator Comment Descriptions” for information on how to
adjust the descriptions).

S${fill.character} Lets you include the fill character as defined by the corresponding combo box.
Please note that you have to place an asterix (*) after the variable if you want
to have a comment line stretched to the full line length.

Please note that Jalopy needs a way to differ between user comments and separator com-
ments, because separator comments must be removed on each run in order to ensure cor-
rect locations and behavior. Jalopy recognizes all single-line comments starting with / / ~ as
separator comments. If you would rather use a multi-line comment instead or don't like
the default identifier, you need to make sure that the comments get removed. This means
can be achieved by adding a unique identifier into the template and configure a custom
removal pattern for it (see Section 2.8.13.3, “Comment Removal”).

[**${fill.character}*
* ~#~ ${description}:
${fill.character}//

In the example above, ~#~ would be configured as the removal pattern.

Since 1.4

Line length

Lets you define the maximal line length for separator comments. The specified fill charac-
ter might be used to increase the length of a separator comment to span exactly until the

specified line length.

Since 1.2.1

Imports

Controls the handling of import declarations. With Java, import declarations are used to
make types available within a compilation unit. There are two types of import declarations:

Single-type imports import a single named type.

import java.util.ArraylList;
i mport java.util.List;

On-demand imports import all accessible types declared in the type or package.

i mport java.util.*;
i mport java.util.regex.*

214

Figure 2.59. Imports settings page

L‘ Sort imparts
¥ Clobal
¥ Java
RrACEs Eart Or dai:
Lire Wrapping Parsage Groupirg Depth |:-_ st :I
B Java L
Indentation B} jerean 1 Edit.
White Space B cam.rienas 2
= L HKem
Separation &=
sarting |
| impos | —
B Coimemients
Annotabors
tearch & Replace Dwfault grousing death: | L T_!
Code Inspecinr Croup static Imports: E'Hmr :. Top ,: Bothom
Oprevize imperts: B Expand or-demaad Freors
[Use custom Frakmentation
[Tl Collaase single-vae impores
o il -

2.8.12.1 General

Lets you control the general imports settings.

Sort imports

Enables or disables the sorting of import declarations. Enabling this option will sort all
declarations. When disabled, the declarations are printed in their original order.

Sort Order

Lets you control the sorting order and grouping behavior of import declarations. When
sorting is enabled, import declarations will be sorted according to the positions of the pack-
age names as specified in the list component. To specify the order in which the declarations
should appear, you can use the Up and Down buttons.

You can add/remove package names (e.g. javax, javax.swing or com.foo.sarah) to and
from the list via the Add... and Remove buttons. A dialog appears that lets you add a new
grouping definition. The star character (*) represents all undefined packages and cannot
be removed.

215 CHAPTER 2 CONFIGURATION

IMPORTS

Figure 2.60. Add new Grouping Definition

0 e ey SonioniReBioitios

Enter a package fragment, select the significant grouping depth and press
the ‘Add’ butoen 10 subimit your addition.

Pas kage .|l'.l|Il
Degth: | L =)
= r i1
(2 { Cancel)} - idd)

o

If you want to change an existing grouping definition, you can do so by selecting the defini-
tion you want to change in the list, and pressing the Change... button. A dialog appears that
lets you change an existing grouping definition. Alternatively, you can invoke the dialog by
just double-clicking with the mouse on the grouping definition you want to change.

Figure 2.61. Change existing Grouping Definition

6 Eesebopiioiion
Adjust the package fragment and for significant grouping depth and press
the 'Change' Bumman e submin your changes.
Package: | javax
Desth: 2 =)
l?? |: Cancel : [Change }
A

Note that the * that represents all undefined packages, cannot be changed (you can only
adjust the grouping depth).

Grouping
In addition to sorting, associated declarations can be grouped together to reduce complex-
ity by packing related information into a common unit. Grouping means that associated
declarations are separated by one blank line. Grouping only happens if sorting is enabled.
Via the grouping depth you can control how many parts of a package name should be
considered when determine whether two import declarations are to be grouped together.
Grouping only happens when all relevant parts are equal. So via the grouping depth you
can effectively specify how many package name parts are relevant.

Default grouping depth

This switch lets you define the default grouping depth that should be used when no group-
ing depth was defined for a specific package name (see below). To disable grouping at all,
set the default grouping depth to '0'.

216

Example 2.738. Grouping depth ==

i mport java.aw . Col or;

i mport java.awt . Conponent;

i mport java.awt.GidBagConstraints;

i mport java.awt.G i dBaglLayout;

i mport java.awt.event.Acti onEvent;

i mport java.awt.event. ActionLi stener;
import java.util.ArraylList;

i mport java.util.List;

Only the first part of the package name will be used to determine grouping.

Example 2.739. Grouping depth ==

i mport java.awt . Col or;

i mport java.awt . Conponent;

i mport java.awt.GidBagConstraints;

i mport java.awt.G i dBaglLayout;

i mport java.awt.event.Acti onEvent;

i mport java.awt .event. ActionLi stener;

import java.util.ArraylList;
import java.util.List;

The first two parts of the package name will be used to determine grouping.

Example 2.740. Grouping depth ==

i mport java.aw . Col or;

i mport java.awt . Conponent;

i mport java.awt. G i dBagConstraints;
i mport java.awt. G i dBaglLayout;

i mport java.awt.event.ActionEvent;
i mport java.awt.event. ActionLi stener;

i mport java.util.Arraylist;
i mport java.util.List;

The first three parts of the package name will be used to determine grouping,.

Group static imports

To better differ between standard import declarations and the static imports introduced
in J2SE 5.0, you can control whether static imports should be grouped separately. You
can select whether static import declarations should be printed together with the standard
import declarations (“Never”) or placed above (“Top”) or below (“Bottom”) all standard
import declarations.

Since 1.4

Example 2.741. Mixed static/standard import declarations
i mport java.awt . BorderLayout;

i mport javax.swi ng.SwingUilities;
i mport static javax.sw ng. WndowConst ants;

i mport z. Foo;

217 CHAPTER 2 CONFIGURATION

2.8.12.2

IMPORTS

i mport static javax.sw ng. WndowConst ants;
i mport java.awt . BorderLayout;
i mport javax.swi ng.SwingUilities;

i mport z. Foo;

i mport java.aw . BorderLayout;
i mport javax.swi ng.SwingUtilities;
i mport z. Foo;

i mport static javax.sw ng. WndowConst ant s;

Optimization
Lets you optimize the import declarations by either expanding or collapsing them, obsolete
or unused imports are removed.

NOTE When using either one of the Ant, Console or Maven Plug-ins, you have
to explicitly configure the class path for this feature to work. Please refer
to the documentation of the individual Plug-ins to learn how one can
accomplish this (see Part II, “Plug-ins”)

Expand on-demand imports

When enabled, tries to expand all on-demand import declarations. Expanding means to
resolve all on-demand imports (sometimes called wildcard imports) and replace them with
single-type imports (sometimes called explicit imports) of the types that are actually used
in the source file.

TIP Sorting (see Section 2.8.12.1, “Sort imports”) should be enabled when
different IDEs are used, as otherwise implementation details may yield
to differences regarding import placement.

Single-type imports have several advantages and should be preferred over on-demand im-
ports.

* They avoid any class path conflicts that could break your code when a class is added to
a package you import

* They make dependencies explicit, so that anyone who has to read your code later knows
what you meant to import and what you didn’t mean to import

* They can make some compilation faster, because the compiler doesn’t have to search
the whole package to identify dependencies, though this is usually not a huge deal with
modern compilers

i mport java.util.x*;
could become

218

2.8.13

219

Example 2.745. Single-type import declarations

i mport java.util.ArraylList;
i mport java.util.List;

In the examples above, the on-demand import declaration has been expanded into two
single-type import declarations that reference the needed types for this package.

Use custom implementation

The IDE Plug-ins usually leverage the build-in import optimization facility, but sometimes
these may contain bugs that prevent their usage. Here, you can enable a custom implemen-
tation instead. It’s the same implementation that is used by the non-IDE Plug-ins.

NOTE Please note that the custom import optimization implementation only
supports expanding on-demand imports

Since 1.7

Collapse single-type imports

When enabled, tries to collapse all single-type declarations. Collapsing means to remove
all single-type imports of a given package and replace them with one on-demand import
declaration.

Example 2.746. Single-type import declarations

i nport java.awt.event. MouseEvent;
i mport javax.sw ng.JButton;

i nport javax.sw ng.JTabl e;

i nport javax.sw ng. JText Fi el d;

could become

Example 2.747. On-demand import declarations

i mport java.awt.event.*;
i mport javax.sw ng.*;

Please note that there might be collisions that prevent collapsing when two types have the
same name.

Example 2.748. Single-type import declarations

i mport java.aw . Col or;
import java.util.List;

In the example above, collapsing both packages is not possible because this would lead to
invalid code, as both j ava. awt and j ava. util contain a type named Li st . In such cases
only one package will be collapsed (if no further conflicts are detected).

NOTE The NetBeans Plug-in currently does not support import collapsing.

Comments

Controls how Jalopy handles comments in source files.

CHAPTER 2 CONFIGURATION

Figure 2.62. Comments settings page

Lisimias
P Remove [Single-ling comments T
¥ Java D Fulti=ine ¢ rmemenks F Fdit ., |
RrACEs [Jrvadec coemenents
Lire Wrapping
Inidentatcn Frermal : Single-line comments : MuaEi-line commeni=s
White Space
Separation Wrape | Single-line comments | Muki-ling camments
sarting __ Raflow ! Reflow
IMpTs)
Wrap commests when colamn greacer than: 50 T
Annoctatiors Linky wrap when minimal ava ahle spaie greaker than ..-'I' E
Search & Replace
Code Inspecinr

| keep first-colurnm comments as-%
_| Mowve commeras after block brace

2.8.13.1 Comment types

Describes what comments Jalopy recognizes and how they are treated. As far as Jalopy is
concerned, there are five types of comments:

Single-line comments
An end-of-line comment: all text from the ASCII characters / / to the end of the line

Example 2.749. Single-line comment

/1 [PENDI NG this should be part of the ErrorManager

Single-line comments are normally printed as-is, but can be formatted as well (see Sec-
tion 2.8.13.4, “Format”).

Multi-line comments
A traditional comment: all text from the ASCII characters / * to the ASCII characters */

Example 2.750. Multi-line comment

/*
public int getSubregionStartOffset(int line, int subregion)
{
ChunkCache. Li nel nfo[] I|inelnfos = cache. getLi nel nfosFor Physi cal Li ne(line);
return buffer.getlLineStart O fset(linelnfos[subregion].physicallLine)
+ l'i nel nfos[subregi on]. of fset;
}
*

COMMENTS 220

221

Multi-line comments are normally printed as-7s, but can be formatted as well (see Sec-
tion 2.8.13.4, “Format”).

Javadoc comments

A documentation comment: actually a special kind of multi-line comment as defined by the
Sun Javadoc specification; all text from the ASCII characters / ** to the ASCII characters
*/.

/**

* A scroll listener will be notified when the text area is scrolled, either
* horizontally or vertically.

*/

Javadoc comments are normally printed as-7s, but can be formatted according to the code
convention settings (see Section 2.8.14.1, “Format”).

Separator comments

A Jalopy-specific separator comment: actually a special kind of single-line comment; all text
from the ASCII characters / / ~ to the end of the line.

[1~1nner classes ----------mmmmm

Separator comments are always removed during parsing and may be re-inserted during
emitting according to the code convention settings. Refer to Section 2.8.11.3, “Comments”
for more information about separator comments.

Pragma comments //J[directive]

A Jalopy-specific control comment: actually a special kind of single-line comment; all text
from the ASCII characters/ / J to the end of the line. Pragma comments are always printed
as-1s.

Currently, Jalopy supports the following pragma comments:

/13- and //J+

Lets you selectively disable formatting for certain code sections. / / J- tells Jalopy to disable
formatting until / / J+ will enable it again. All code between (and including) the two com-
ments will be printed as-zs.

/13-

if (operator.equals("EQ')) return (left == right);
else if (operator.equal s("NE')) return (left !'=right);
else if (operator.equal s("LT")) return (left < right);
else if (operator.equal s("GI")) return (left > right);
else if (operator.equal s("LE")) return (left <=right);
else if (operator.equal s("CGE")) return (left >=right);
el se
{

throw new |11 egal Argunment Excepti on("Unknown int if operator: " +

operator);

}
[13+

CHAPTER 2 CONFIGURATION

IMPORTANT The two comments must always be used in conjunction and they
must always appear on a line by themselves. Never place them
after code elements!

/1 IDOC-

When placed in front of a Javadoc comment, disables the Javadoc generation feature no
matter what the code convention dictates.

Example 2.754. //JDOC- comment

/**

* DOCUMENT ME!
*/
public class Test {

/1 JDOC-
public void test(String input) {

/1 J: KEEP+

Instructs Jalopy to keep existing line breaks within array initializers and parameter or argu-
ment lists. The comment must be placed either directly after the left curly brace of array
initializers, or the left parenthesis of parameter or argument lists, or the first element of the
initializer or list.

Since 1.9.3

Example 2.755. Keep line breaks within call argument list

FormLayout | ayout = new FornlLayout(//J: KEEP+
"fill:d:grow(1l.0), 15px",
"7px, d, 7px, fill:d:grow(1.0)");

Example 2.756. Keep line breaks within array initializer
String[] options =

{ 11J: KEEP+
"-jar", alLauncher. get Absol ut ePat h(),
"-application", "org.foo.application. Main",
"-debug",
"-consol el og"

s

Please refer to the documentation of the wrapping options in Section 2.8.7.1.2, “Keep line
breaks”, for information how to configure the general wrapping behavior.

2.8.13.2 Comment association

COMMENTS

Jalopy associates comments using an assignment heuristics considering empty lines and/or
column offsets. If you plan to switch between several code conventions on a regular basis,
e.g. to toggle between personal preference and company guidelines, you should make sure

222

to use similar separation settings in order to avoid any association differences. It is good
practice to always craft a code convention that reflects the personal style from a master code
convention (usually the company code convention) and only adjust those settings that run
counter to personal taste. Please refer to the Profiles section for more information.

2.8.13.3 Remove

Controls whether and what types of comments should be removed during formatting.

Single-line comments

When enabled, removes all single-line comments found in a source file that matches cer-
tain criteria. To customize what single-line comments should be removed, you can use the
Customize... button to specify the desired behavior (since 1.1).

Figure 2.63. Configure single-line comment removal

e A Custamize Single-fineg Comment Remowal

Choose whether you want to hawe all comments removed, or set a regex pattern to
remove only selected comments,

) Remove 3l

E‘H!mllwlnr.—lm FILETTERISE T TER W THLUILYS '-.I‘I‘|I|

. Cancel f Applhy :}

CY)

You can choose whether all single-comments should be removed or specify a regular expres-
sion (regex) to match only certain comments. Note that the regex defines a pattern that is
contained in a comment - it must not match exactly.

You can either enter the regex directly into the provided text field or craft one with the
help of a little tool that lets you interactively test the validity of your regex. You can invoke
the regex helper via the Change... button. Note that the Remove custom radio box must be
selected in order to be able to change the regex. The specified regular expression is only
matched against the contents of comments, not any surrounding code elements! The regex
helper is explained in detail below, see Section 2.8.13.3.1, “Regular expression tester” for
more information.

Multi-line comments

When enabled, removes all multi-line comments (sometimes called block comments) found
in a source file that matches certain criteria. To customize what multi-line comments should
be removed, you can use the Customize... button to specify the desired behavior (since 1.1).

223 CHAPTER 2 CONFIGURATION

Figure 2.64. Configure multi-line comment removal

Choose whether you want to have all comments removed, or set a regex pattern to
remove only selected cormments,

Remove 2l

) Remaove cuskam: it

@ (_Cancel) (" Aply)

You can choose whether all multi-comments should be removed or specify a regular expres-
sion (regex) to match only certain comments. Note that the regex defines a pattern that is
contained in a comment, it must not match exactly.

You can either enter the regex directly into the provided text field or craft one with the
help of a little tool that lets you interactively test the validity of your regex. You can invoke
the regex dialog via the Change... button. Note that the Remove custom radio box must be
selected in order to be able to change the regex. The specified regular expression is only
matched against the contents of comments, not any surrounding code elements! The regex
tester is explained in detail below, see Section 2.8.13.3.1, “Regular expression tester” for
more information.

Javadoc comments

When enabled, removes all Javadoc comments found in a source file that matches certain
criteria. This may prove useful in conjunction with the Javadoc auto-generation capabilities
to build Javadoc from scratch. To customize what Javadoc comments should be removed,
you can use the Customize... button to specify the desired behavior (since 1.1).

Figure 2.65. Configure Javadoc comment removal

Choose whether you want to hawe all comments removed, or set a reges pattern to
remove only selected comments,

! Remowe 1

E Remove caskom: | Descripbon ::Fd:r :I
S b1

L ".: Cancel | E Apphy }

You can choose whether all single-comments should be removed or specify a regular expres-
sion (regex) to match only certain comments. Note that the regex defines a pattern that is
contained in a comment, it must not match exactly.

COMMENTS 224

225

You can either enter the regex directly into the provided text field or craft one with the
help of a little tool that lets you interactively test the validity of your regex. You can invoke
the regex dialog via the Change... button. Note that the Remove custom radio box must be
selected in order to be able to change the regex. The specified regular expression is only
matched against the contents of comments, not any surrounding code elements! The regex
tester is explained in detail below, see Section 2.8.13.3.1, “Regular expression tester” for
more information.

Regular expression tester

The regular expression tester lets you interactively craft a valid regular expression that con-
tains a certain test string.

Figure 2.66. Regular expression tester

e L Change Comment Remaval Pattern

Enterfadjust the regex pattern. Type in a test string and press the
Test' button, i you would like o validare your regex,

Legmn fPFUELIL GETTERFSETTER METHLILM

el JJ FUBLIC CETTER/SETTER METHODS = == = o s i

P |

Test) | Cancel .. [Ehunp:_}

Regex

The Regex text field is where you have to insert the regular expression. This text field initially
contains the current pattern for the comment type that is under construction. Jalopy uses
Java’s build-in regular expression engine which is roughly equivalent with Perl 5 regular
expressions. The syntax is explained here: http://java.sun.com/javase/6/docs/api/java/util/
regex/Pattern.html. For a more precise description of the behavior of regular expression
constructs consult Mastering Regular Expressions [Fried197].

String

The String text field is where you have to enter a string that should be matched by the
specified regular expression. This text field is initially empty. Once you have edited the two
text fields you may want to use the 7ész button to perform a pattern matching test in order
to make sure that the specified pattern matches as desired. If testing is successful, a green-
colored message appears, to indicate that fact.

CHAPTER 2 CONFIGURATION

http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html
http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html

Figure 2.67. Successful regex test

Enterfadjust the regex pattern. Type in a test string and press the
Test' Butten, i you woubd like o validate your reges.

Begea: { PUBLIC GETTERJSETTER METHODS

Serirg: J § FUBLIC GETTERSSETTER METHODS = =ccmsmmm e e m e -

i Patbern enaiches!

@} I:_ Test :I I: Cancel :I E‘Ehnlp'-}}}
T —-

Otherwise a red-colored message is displayed, and you may want to change your pattern
and/or test string and restart the procedure.

Figure 2.68. Failed regex test

Enterfadjust the regex pattern. Type in a test string and press the
Test' burten, i yow woubd like o validate your reges.

Begex: {7 PUBLC GETTERJSETTER METHODS

Sreire: J = FJEUC CETTER/SETTER METHOD0S mm cm e mm s e e e - -

3 Partern coes mot match!

I,ri} I:_ Test :I I: Cancel J t.-.ﬂ__}
N _J

When you are done editing the regular expression, you can press the Apply button to take
over (note that you are not required to perform any testing, the regex is accepted even when
invalid!). You can always use the Cancel button to cancel editing at any time. The dialog
will be closed and no changes applied.

2.8.13.4 Format

Controls the reformatting of comments.

Single-line comments

Enables the reformatting of single-line comments. Only affects the space between leading
delimiter and comment text as shown in the examples below.

Since 1.0.3

COMMENTS 226

2.8.13.5

227

Example 2.757. Single-line comment

/] Someti mes people run
//the comrents against the delimters

Example 2.758. Single-line comment (reformatted)

/1 Sometines people run
/'l the comments against the delinmters

Multi-line comments

Enables the reformatting of multi-line comments. Only affects the leading asterixes of con-
secutive comment lines as shown in the examples below.

Example 2.759. Multi-line comment

/* Multi-line
* comment .

* end.

*/

Example 2.760. Multi-line comment (reformatted)

/* Multi-line
* comment .

* end.

*/

Please note that as of Jalopy 1.6 you can disable formatting of individual comments using
the special / *- delimiter.
Example 2.761. Multi-line comment that keeps its style

/*- Comment that
* shoul d NOT

* be formatted
/

*

Wrap

Controls the wrapping behavior of comments.

Single-line comments

When enabled, Jalopy tries to ensure that single-line comments do not exceed the maximal
line length.

Since 1.0.3

Example 2.762. A long single-line comment
I
/1 this is along coment so | would like it to wap

Example 2.763. A long single-line comment that was wrapped
I
/1 this is a long coment so
/11 would like it to wap |

Reflow

By default, wrapping happens on a line-by-line basis, i.e. every line that would exceed the
maximal length will be split and the resulting chunks will be each printed on a line of its

CHAPTER 2 CONFIGURATION

own. To put it in another way: all existing line breaks are kept. This is no problem with
a single comment, but when there are multiple comments in row, wrapping may leave
annoying artifacts like in the example below.

Since 1.0.3
Example 2.764. Wrapped single-line comments
/'l when comments are reflowed (both single and nulti-line), enpty

I
/1 comrent |ines are kept to allow some |
/'l sort of control how things are broke up |
11 |
/] otherwise it might be very dangerous to use this feature. |
/1l The choice is yours |

A better strategy might be to ignore existing line breaks and have the comments reflowed.

Example 2.765. Reflowed single-line comments

/1 when coments are reflowed (both single and nulti-line), enpty |
/1l comment lines are kept to allow sonme sort of control how things |
/'l are broke up |
11 |
/1l otherwise it might be very dangerous to use this feature. The |
/'l choice is yours |

Please note that existing blank lines are always kept!

Multi-line comments

When enabled, ensures that multi-line comments do not exceed the maximal line length.

Since 1.0.3
Example 2.766. A long multi-line comment
I
/* Amulti-line conment that spans nultiple |lines but exceeds the max.
* line length [
*/ |

Example 2.767. A long multi-line comment that was wrapped
|

/* A multi-line conment that]|
* spans nultiple lines but |
* exceeds the max. |
* line length [
* [|

I

Please note that as of Jalopy 1.6 you can disable wrapping of individual comments using
the special / *- delimiter.

Example 2.768. Multi-line comment that keeps its style

/*- Comment that
* shoul d NOT

* be wrapped

*/

Reflow

Works similar to single-line comments (see Reflow single-line comments).

COMMENTS 228

229

Since 1.0.3

I

/* A multi-line conment that|
* gspans nultiple |lines but |
* exceeds the max. line |
* length |
*/ |
I

Compare this to the result of Example 2.767, “A long multi-line comment that was
wrapped” and see how the last two lines differ.

Wrap comments when line length greater than

Lets you define the maximal column width that comments are allowed to use. Jalopy keeps
y py keep
the comments within this range. This option is only available with either “Wrap single-line
comments” or “Wrap multi-line comments” enabled. Please note that this setting only cov-
ers non-Javadoc comments. Javadoc comments are controlled independently, see “Javadoc
line length”.

Since 1.6

Only wrap when space greater than

Lets you define the minimal amount of horizontal space that is required to let wrapping
occur. This is the space between the current line offset and the maximal line length as de-
fined above (see “Comment Line Length”). If the difference between these two boundaries
is greater than the specified lower bound, wrapping occurs. In contrast, if the difference
between current offset and maximal line length is smaller or equal to the specified lower
bound, no wrapping will occur.

Please note that this option is only available with either “Wrap single-line comments”
or “Wrap multi-line comments” enabled.

Since 1.0.3

Systemout.println("Hello");|// quite a |ong endline coment that
| // appears after the statenent |

| | |
o} M S

In the above example the space between the current column offset [O] and the maximal
line length [M] is smaller than the specified minimal width (space between [O] and [S]),
therefore wrapping is not possible.

I
Systemout.printin("Hello");|// quite a long endline |

| // comment that appears after
|// the statenent |

I

I

I

I
I I I
o S M

CHAPTER 2 CONFIGURATION

2.8.13.6

COMMENTS

In the above example the space between the current column offset [O] and the maximal
line length [M] is greater than the specified minimal width (space between [O] and [S]),
therefore wrapping is performed.

Misc

Lets you control miscellaneous comment options.

Keep first column comments as-is

When enabled, first column comments are never formatted and/or wrapped. As the name
implies, first column comments are those comments that start at column one. They are
typically used for commenting out blocks of code during development—something you
might not want to be changed by a formatter.

Since 1.6

Example 2.772. First column comment

/] System out.println("appendi ngRermai ni ngNane: " + nane.toString());
/] Exception e = new Exception();
/] e.printStackTrace();

Example 2.773. Wrapped first column comment

/1l System out.println("appendi ngRenai ni ngNane: " + nanme.toString()); Exception
/1 e = new Exception(); e.printStackTrace();

Move comments after brace block

When enabled, single comments that appear in the first line after the left curly brace of a
statement block and only cover one line, are moved right after the brace. This way you can
achieve a more dense layout in case you want to save vertical space.

Since 1.7
Example 2.774. Comments after left curly braces
voi d test()
{
/**
* @odo eval uate whether this is still necessary
*/
if (conditionl)
{

/1 i should do sonething
doSonet hi ng();

}

else if (condition2)

{
/1 [PENDING this should be part of whatever, ask Jeff
/1 what to do
t akeAction();

}

—

When the option is enabled, the example above would be printed as:

230

2.8.14

2.8.14.1

231

voi d test()
{

/**

* @odo eval uate whether this is still necessary
*
/
if (conditionl)
{ /1 i should do sonething
doSorret hi ng() ;

else if (condition2)

/1 [PENDING this should be part of whatever, ask Jeff
/'l what to do
takeAction();

Please note how only the single comment within the if statement is affected. The comment
before the if statement and the consecutive comments after the else statement have been
left untouched.

Javadoc

Lets you control all Javadoc-related options. Javadoc is a tool that parses the declarations
and documentation comments in a set of Java source files and produces a corresponding
set of HTML pages describing the public API or implementation documentation. Jalopy
includes functionality to generate and maintain such comments automatically.

Format

Lets you control the Javadoc formatting options.

CHAPTER 2 CONFIGURATION

JAVADOC

Figure 2.69. Javadoc settings page

L i Fafmal Wi asalag Cimsfation Cesraction

¥ Cloibal
E Formal comments
¥ |awa
Rraces
Lirse Wrapping Block tags: H Indent descriptdan E Group equal
Indentalion H.ﬁ.lgn ram gescription _ Align atributes
Whi # ot block tags W 5ot antributes
e
pace _ | SomXDodet tags
Separation
e T h
sarting Confgare Tag Orger... |
IMpTs

T CoOffeneris Cospact elaments: || Dass oo mmerts EfiLiif COmAEnns

Fiel corrrents [Method camments

T Singe block mgs Eirghe amributics

Header

Foymer
ANNCEATORS Miszelaneous 5 Bemaoee skars m cpres tags
feaich & Replace W rarmalize white space

Code Inspecior _| Saparate mulb-lme 0oclet tagy

Format comments
Enables or disables the formatting of Javadoc comments. When enabled, Javadoc comments
are always formatted according to the options specified below.

NOTE The formatting style of leading and closing comment delimiter and lead-
ing asterisk characters are determined by analyzing the templates defined
for the different declaration elements. Please refer to Section 2.8.14.5,
“Templates” for more information about Javadoc templates

Block tags

Lets you control the handling of Javadoc block tags.

Indent description

When enabled, the description of a Javadoc block tag is indented/aligned beyond the tag
name or tag parameter upon line wrapping. Otherwise successive description lines will start
at the same column offset with the tag.

Since 1.6

232

Example 2.776. Indented tag descriptions

This is overridden to return false if the current <code>l con</code>'s
<code>l mage</ code> is not equal to the passed in <code>l nage</ code>
<code>i ng</ code>.

~
*

E I B S R N B I S N N N

~

@ee java.aw .imge. | mageCbserver
@ee java.aw . Conponent #i mageUpdat e(j ava. awt. I mage, int, int, int,
int, int)

@aram inmg the <code>l nage</code> to be conpared

@aram infoflags flags used to repaint the button when the inmage is
updat ed and whi ch deternine how nmuch is to be
pai nt ed

@aram x the x coordinate

Example 2.777. Unindented tag descriptions

This is overridden to return false if the current <code>lcon</code>'s
<code>| mage</ code> i s not equal to the passed in <code>l mage</ code>
<code>i ng</ code>.

~
*

LI R R A T T N

~

@ee java.aw .image. | mageoserver
@ee java.aw . Conponent #i mageUpdat e(j ava. awt . | mage, int, int, int,
int, int)

@aram ing the <code>l mage</code> to be conpared

@aram infoflags flags used to repaint the button when the inmmge is
updat ed and which determ ne how much is to be painted

@aram x the x coordinate

Group equal
When enabled, sections with equal tags are separated by a single blank line.

Since 1.0

Example 2.778. Javadoc without grouped tags

out of bounds

/**

* Returns the next list element that starts with a prefix.

*

* @aram prefix the string to test for a match

* @aram startlndex the index for starting the search

* @aram bi as the search direction, either Position.Bias.
* Forward or Position. Bi as. Backwar d.

* @eturn the index of the next list elenment that starts with the
* prefix; otherw se -1

* @xception |Illegal Argunment Exception if prefix is null or startindex is
*

*

*

@i nce 1.4

~

233 CHAPTER 2 CONFIGURATION

JAVADOC

/**

* Returns the next list elenment that starts with a prefix.

*

* @aram prefix the string to test for a match

* @aram startindex the index for starting the search

* @aram bi as the search direction, either Position.Bias.
* Forward or Position. Bi as. Backwar d.

*

* @eturn the index of the next list elenent that starts with the
* prefix; otherwi se -1

*

* @xception |llegal Argunent Exception if prefix is null or startlndex is
* out of bounds

*

* @ince 1.4

*/

Align name/description

When enabled, the names and/or descriptions of tags are aligned in a table like manner to
enhance readability. Otherwise each tag description is indented on its own. You need to
have the indentation of descriptions enabled to see descriptions aligned.

Since 1.0

/**

* Returns the next list elenment that starts with a prefix.

*

* @aram prefix the string to test for a match

* @aram startlndex the index for starting the search

* @aram bias the search direction, either Position.Bias.Forward or

* Posi tion. Bias. Backward.

* @eturn the index of the next list elenent that starts with the prefix;
* ot herwi se -1

* @xception |llegal Argument Exception if prefix is null or startlindex is
* out of bounds

* @&ince 1.4

*/

/**

* Returns the next list elenent that starts with a prefix.

*

* @aram prefix the string to test for a match

* @aram startindex the index for starting the search

* @aram bi as the search direction, either Position.Bias.
* Forward or Position. Bi as. Backward.

* @eturn the index of the next |list elenent that starts with the
* prefix; otherwi se -1

* @xception |llegal Argument Exception if prefix is null or startlindex is
* out of bounds

* @i nce 1.4

*/

Align attributes

When enabled, all attributes of tags with multiple attributes are indented to the level of
the first' . character in the name of the tag. Otherwise all attributes are indented by two
spaces.

234

Since 1.0.1

Example 2.782. Javadoc with standard indented tag attributes

/**
* @jb.resource-ref
* res-auth
* res-ref-name
* res-type
*/

" Cont ai ner"
"${ki rus. resource. dat abase. nane}"
"j avax. sql . Dat aSour ce"

Example 2.783. Javadoc with aligned tag attributes

/**
* @jb.resource-ref
* res-auth = "Cont ai ner"
* res-ref-nane = "${Kkirus.resource. dat abase. nane}"
* res-type = "javax. sql . Dat aSour ce"
*/

Sort block tags

When enabled, block tags are sorted. By default, the order is as recommended by the
Javadoc creators (see http://java.sun.com/j2se/javadoc/writingdoccomments/ for more in-
formation), but you can configure the order manually yourself (see below). When disabled,
block tags are printed in their original order.

Since 1.0

Sort attributes

When enabled, if a block tag contains multiple attributes, these are sorted by name. Oth-
erwise the attributes are printed in their original order.

Since 1.0

Example 2.784. Unsorted XDoclet tag attributes

/

*

Sets the nodel that represents the contents or “value” of the list and
clears the list selection after notifying <code>
Pr opert yChangelLi st ener s</ code>. <p> This is a JavaBeans bound property.

@ar am nmodel the <code>Li st Model </ code> that provides the |ist of
itens for display

@eani nfo
bound: true
attribute: visual Update true
description: The object that contains the data to be drawn

* 0% 0k F kX 2k X X X X X X

~

235 CHAPTER 2 CONFIGURATION

http://java.sun.com/j2se/javadoc/writingdoccomments/index.html#tag

Example 2.785. Sorted XDoclet tags

/**
* Sets the nodel that represents the contents or “value” of the list and

* clears the list selection after notifying <code>
* PropertyChangeli st eners</code>. <p> This is a JavaBeans bound property.

*

* @aram nmodel the <code>Li st Model </ code> that provides the |ist of
* itens for display

*

* @eaninfo

* attribute: visual Update true

* bound: true

* description: The object that contains the data to be drawn

*/

Sort XDoclet tags

When enabled, XDoclet block tags are sorted by name. Otherwise the order is not changed.
Please note that this option requires “Sort block tags” to be enabled.

Since 1.9.1

Example 2.786. Unsorted XDoclet tags

/ *
@j b. hone
ext ends
| ocal - ext ends
@jb.interface
ext ends
| ocal - ext ends

"j avax. ej b. EJBHon®"
"j avax. ej b. EJBLocal Hore"

"javax. ej b. EJBbj ect "
"javax. ej b. EJBLocal Obj ect"

@webl ogi c. transacti on-descri ptor
trans-ti nmeout - seconds = "122"

@webl ogi c. transaction-isol ation
TRANSACTI ON_READ_COWM TTED

@j b.transaction
type = "Requi r esNew"

@webl ogi c. enabl e-cal | - by-reference
True

@j b. resource-ref
res-ref-name
res-type
res-auth

"j dbc/ f oo- pool "
"j avax. sql . Dat aSour ce"
" Cont ai ner"

E o I T S N N N BN S SN N S N N S N SN N S

~

JAVADOC 236

Example 2.787. Sorted XDoclet tags

/**

*

*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

@j b. hone
ext ends = "javax. ej b. EJBHone"
| ocal -extends = "javax. ej b. EJBLocal Hore"
@jb.interface
ext ends = "javax. ej b. EJBObj ect"
| ocal -extends = "javax. ej b. EJBLocal Obj ect"
@j b. resource-ref
res-ref-name = "jdbc/foo-pool"
res-type = "javax. sql . Dat aSour ce"
res-auth = "Cont ai ner"
@j b.transaction
type = "Requi r esNew"
@webl ogi c. enabl e-cal | - by-reference
True
@webl ogi c. transacti on-descri ptor
trans-tineout-seconds = "122"
@webl ogi c. transacti on-isol ation
TRANSACTI ON_READ_COWM TTED

Configure Tag Order...

Lets you configure the order of block tags when tag sorting is enabled. Pressing the button
will display a configuration dialog that lets you specify both the order of block tags and a
grouping section to define what tags should be separated.

Figure 2.70. Configure Javadoc tag order

ans Configure Block Tag Soet Ordes

Salect a tag name and usa the 'Up/Down' buttons to specify the order.
et Qrder

| Hock Tag Group —

PEaran Farameer

Bretum Lo T [l

EEhrows Taroms

fautor Cormman

Enersinn Eprmrmmn

Thaie COrmenda

e ince Common

Brial Correndn

Pserialbata Comman

ErerialFiekd L ermrman

faceprecaed Corminaa

rustors L prmrmcin

ez anin Mo

rattribute Mot

i i wadid e

froda Commman

Eclolet LTt

Pakoy group Mo

Bcall-ires More

@ (_Cancel) {_Apply)

Select an entry in the list and use the Up and Down buttons to configure the sort order.
To adjust grouping, specify the grouping section each tag should be part of. “None” means

237

CHAPTER 2 CONFIGURATION

JAVADOC

that tags are always separated. Otherwise two consecutive tags are only separated if their
grouping section is different.

Since 1.8

Compact elements

Javadoc start and end delimiters are usually printed on its own line. When the comment
body does not contain much text, emitting everything in one line might be an easy way to
save vertical space. Same with tags and attributes.

Class comments

Lets you specify how Javadoc comments of class, interface and annotation type declarations
that fit into one line should be printed.

Since 1.5

Example 2.788. Class Javadoc comment

/**

* A sinmple container for Foo data.
*/

public class Foo {

—

When enabled, Javadoc comments will be printed in a single line, when possible.

Example 2.789. Class Javadoc comment (shortened)

/** A sinple container for Foo data. */
public class Foo {

—

Enum comments

Lets you specify how Javadoc comments of enum declarations that fit into one line should
be printed.

Since 1.7

Example 2.790. Enum Javadoc comment

/**

* The foo enuneration.
*/

enum Foo {

—

When enabled, Javadoc comments will be printed in a single line, when possible.

Example 2.791. Enum Javadoc comment (shortened)

/** The foo enuneration. */
enum Foo {

—

Field comments
Lets you specify how Javadoc comments of fields or enum constants, that fit into one line

should be printed.

238

239

Example 2.792. Field Javadoc comment

/**

* What history policy should be used?
*/
private History.Policy _historyPolicy = H story. Policy. Dl SABLED;

When enabled, Javadoc comments for fields or enum constants will be printed in a single
line, when possible.

Example 2.793. Field Javadoc comment (shortened)

/** \What history policy should be used? */
private History.Policy _historyPolicy = Hi story.Policy. Dl SABLED;

Method comments

When enabled, Javadoc comments for methods are printed in a single line when possible.
This depends not only on the length of the description section, but also on your correction
settings. If the auto-correction feature for the tag section is enabled, the comment is only
printed in a single line, if the method does contain a void return type and no parameters
(because otherwise Javadoc tags are inserted).

Since 1.3

Example 2.794. Methods
/**
* Transfer all entries fromsrc to dest tables
*/
private void transfer(Entry[] src, Entry[] dest) {

-

When enabled, Javadoc comments for methods and constructors will be printed in a single
line, when possible.

Example 2.795. Method Javadoc comment (shortened)

/** Transfer all entries fromsrc to dest tables */
private void transfer(Entry[] src, Entry[] dest) {

-

Single block tags

Lets you choose whether comments that only consists of a single block tag should be printed
in one line when possible. Please note that enabling this option only affects those comments
for which compacting has been enabled. E.g. if you want to compact fields with single block
tags, you need to enable the "compact field comments" option.

Since 1.8

Example 2.796. Single block tag

/**
* @ee com foo. Wd ass
*/

cl ass Deno{

-

CHAPTER 2 CONFIGURATION

JAVADOC

Example 2.797. Single block tag compacted

/** @ee com foo. WO ass */
cl ass Deno{

}

Single attributes

Lets you choose whether single attributes should be printed in just one line after the tag
name when possible. Otherwise, a line break is printed after the tag name.

Since 1.9.1
Example 2.798. Single XDoclet attribute
/**
* @webl ogi c. transacti on-descri ptor
* trans-tineout-seconds = "122"
*/
cl ass Deno{
}
Example 2.799. Single XDoclet attribute compacted
/**
* @webl ogi c. transacti on-descriptor trans-tineout-seconds = "122"
*/
cl ass Deno{
}

Remove stars in <pre> tags

Lets you remove leading stars in pre-formatted sections. It is often tedious to manually
maintain leading stars in front of code snippets enclosed with <pre> tags. They are ignored
by Javadoc anyway. With this option you can control whether Jalopy should remove any
leading stars in pre-formatted sections or have them printed.

Since 1.6

Example 2.800. Javadoc comment with preformatted section

/**
* <p>As with <code>l nput Map</code> if you create a cycle, eg:
* <pre>
* Acti onMap am = new Acti onMap();
Acti onMap bm = new Acti onMap():
am set Par ent (bm) ;
bm set Par ent (an);
</ pre>
* some of the methods will cause a StackOverflowError to be thrown.
*/

*
*
*
*

240

Example 2.801. Javadoc comment without leading stars in preformatted section

/**

* <p>As with <code>l nput Map</code> if you create a cycle, eg:
* <pre>
ActionMap am = new Acti onMap();
ActionMap bm = new ActionMap():
am set Parent (bm ;
bm set Parent (an);
* </ pre>
* some of the nmethods will cause a StackOverflowError to be thrown.
*/

Normalize white space
When enabled, all white space gaps are reduced to a single blank space (normalized). Oth-

erwise Jalopy will left white space gaps after sentences alone.

Since 1.8

Example 2.802. White space gaps

/**

* This is the first sentence. This is the second sentence. This is the
* third sentence. This is the forth sentence. This is the fifth

* sentence. Thi SSSSSSSSSSSSSSSSSS

*/

Example 2.803. Normalized white space

/**

* This is the first sentence. This is the second sentence. This is the

* third sentence. This is the forth sentence. This is the fifth sentence.
* Thi SSSSSSSSSSSSSSSSSS

*/

Separate multi-line XDoclet tags

When enabled, a blank line is printed before and after XDoclet tags that require more than
one line.

Since 1.9.1

Example 2.804. Javadoc XDoclet tags

/**
* @jb. hone

* ext ends "j avax. ej b. EJBHone"

* | ocal - ext ends "j avax. ej b. EJBLocal Hone"

* @] b. bean

* name = "AboActi onManager"

* type = "Statel ess”

* di spl ay- nane = "FooManager Bean"

* description = "FooManager EJB"

* Vi ewtype = "all"

* j ndi - nane = "FooMyr"

* @jb.interface extends = "javax. ej b. EJBObj ect "
*

/

241 CHAPTER 2 CONFIGURATION

Example 2.805. Separated Javadoc XDoclet tags

/**
* @j b. hone
* ext ends = "javax. ej b. EJBHone"
* | ocal -extends = "javax. ej b. EJBLocal Horne"
*
* @jb. bean
* nane = "AboAct i onManager"
* type = "Statel ess”
* di spl ay- name = "FooManager Bean"
* description = "FooManager EJB"
* Vi ewtype ="all"
* j ndi - nane = "FooMyr"
*
* @jb.interface extends = "javax.ejb. EJBObj ect”
*

~

2.8.14.2 Line Wrapping

JAVADOC

Wrapping

Lets you control the wrapping options for Javadoc comments.

Line length
Lets you define the maximal column width that Javadoc comments are allowed to use.
Jalopy tries to keep the comments within this range upon reformatting.

Since 1.0

Disable wrapping for in-line tags

Lets you disable automatic line wrapping for in-line tags. Please note that this means that
in-line tags will always print in just one line. If the tag would exceed the maximal line
length, a line break is inserted before the tag. But please be aware that the maximal line
length could still be exceeded when the tag does not fit in a whole line!

Since 1.5

Example 2.806. Wrapped Javadoc in-line tag
/** |
* This is overridden to return false if the {@ink java.awm .l con |

* lcon's} Image is not equal to the passed in | nage. |
*/ |

Example 2.807. Javadoc in-line tag (wrapping disabled)

/**

* This is overridden to return false if the

*
C—
=)
=~
23}
<
o
2
o
o
=
o
o
:-'
[}
-
«Q
D
[
>
o
—
[0}
Qo
c
=3
—
o
~—
>
D
o
9
[}
[
D
o

Misc

Lets you control miscellaneous Javadoc settings.

Inner spacing
Lets you define the amount of white space that gets printed between block tags and their
description text.

242

Since 1.0

/**

* Returns the next list elenment that starts with a prefix.

*

* @aram prefix the string to test for a match
* @aram startindex the index for starting the search
* @aram bi as the search direction, either Position.Bias. Forward
* or Position. Bias.Backward.
*
* @eturn the index of the next list elenent that starts with the prefix;
* ot herwi se -1
*
* @xception |11l egal Argunent Exception if prefix is null or startlndex is out
* of bounds
* N
N
* @i nce 1.4
*/
/**

* Returns the next list elenent that starts with a prefix.
*

* @aram prefix the string to test for a match
* @aram startlndex the index for starting the search
* @aram bi as the search direction, either Position.Bias.
* Forward or Position. Bi as. Backwar d.
* @eturn the index of the next list elenment that starts with the
* prefix; otherwi se -1
* @xception |llegal Argunent Exception if prefix is null or startlndex is
* out of bounds
* AN
AN
* @i nce 1.4
*/
Indent HTML tags

Enables the indentation of most HTML block tags (like lists, tables and the like). Please
note that the HTML contents have to be well-formed for this feature to work! By default,
Jalopy will inform you about invalid HTML when this feature was enabled. Another choice
might be to enable the "Check HTML tags" feature to automatically ensure well-formed
HTML (among other things, see below).

Since 1.0

2.8.14.3 Generation

Controls the general handling of Javadoc comments.

243 CHAPTER 2 CONFIGURATION

JAVADOC

Figure 2.71. Javadoc settings page

L i Faf il Wi asalag Cimsfation Cosraction

¥ Clobal
B Cararaie bvadoo ommanks
¥ Jawa
Rraces
Lire Wrapping ! Indude Inner classes E Include Cemer MEaiter
e U Ewclude owerriddenimnalemented | Create Ssee tags
White S H Reuse exsting commss s E Format bean property
ite Space
Separation Emabde Tor
sarting pukric profec bed chefade arrie
IMEICTS Clasgesfinterfaces 9 E E ﬂ
B — & Constrictors =] o «
@ Methods i B [=
Javadoc
o Felds i & = =
Header
Foomr Disable far:
ANNCLAHNTS { Asa_
Saarch & Replace
Edit
Code Inspecion !
Hermay
@ il p

Please refer to Section 2.8.14.5, “Templates” for information about how to define templates
that are used for Javadoc comment generation.

Generate Javadoc comments

Enables or disables the comment auto-generation as a whole.

Since 1.2.1

Include inner classes

Enables comment auto-generation for inner classes, too. Auto-generation does not apply
to anonymous inner classes.

Include Getter/Setter

Controls whether the auto-generation should be enabled for methods that follow the Jav-
aBeans naming convention (Getter/Setter). Please note that you can control what methods
should be recognized as Boolean Getters via a regular expression. Refer to “Boolean Getter
Regex” for more information.

Since 1.3
Exclude Overridden/Implemented

Controls whether Javadoc comments should be generated for methods that are implement-
ing/overriding others.

244

public interface Foo {

/**

* Does foo.

*/

public void doFoo();
}

public abstract class BaseFoo inplenents Foo {
public void doFoo() {
[* ... %
}

}

public abstract class Fool npl extends BaseFoo {
@verride public void doFoo() {
[* ... 0%
}

}

With this option enabled, Jalopy would not generate Javadoc for doFoo() in BaseFoo or
Fool npl , because they implement or override another method.

Since 1.8

Generate @see tags

Controls whether Javadoc generation for methods that are implementing or overriding oth-
ers, creates @see tags to point to the referenced method. When disabled, Javadoc generation
uses the descriptions given in the different templates.

245 CHAPTER 2 CONFIGURATION

JAVADOC

Example 2.811. Generated Javadocs

package com f oo;

public interface Foo {

/**
* Does foo.
*/
public void doFoo();
}
public abstract class BaseFoo inplenents Foo {
/**
* DOCME!
*/
public void doFoo() {
}
/**
* DOCME!
*/
public void doBar() {
}
}
public abstract class Fool npl extends BaseFoo {
/**
* DOCME!
*/

@verride public void doFoo() {

}

But when this option has been enabled, Jalopy automatically creates @see tags that refer-
ences the overridden or implemented method in order to point to the documentation avail-
able there.

246

247

Example 2.812. Generated Javadocs

package com f oo;

public interface Foo {
/**
* Does foo.
*/
public void doFoo();
}

public abstract class BaseFoo inplenents Foo {

/* @ee com f oo. Foo#doFoo()
pu()l ic void doFoo() {
} .
[**
* DOCME!
pu()l ic void doBar () {
} .

}

public abstract class Fool npl extends BaseFoo {

/: @ee com f oo. Foo$doFoo()
@J//erri de public void doFoo() {
} c

}

Since 1.8

Reuse existing comments

When enabled, the textual contents of all existing comments that appear before a certain
node are used as the description section (instead of the one defined in the template). Oth-
erwise the generated Javadoc comment is simply inserted below any already existing com-

ments.
Since 1.5
/:/HTI\/L is the top | evel el enent

public static Node parseDocunent (Lexer |exer) {}

When the option is left disabled, the above example would become

CHAPTER 2 CONFIGURATION

JAVADOC

/*

* HTML is the top level elenent

*/
/**

*

L

/

DOCME!
@aram | exer DOCME!

@eturn DOCME!

public static Node parseDocunent (Lexer |exer) {}

But when the option is enabled, the result would be

*

/

* 0% kX kX %

/

HTML is the top | evel elenent
@aram | exer DOCME!

@eturn DOCME!

public static Node parseDocunent (Lexer |exer) {}

Format bean property

Lets you control whether the value of the "property.name" local environment variable

should be split into several chunks or just have its prefix stripped upon interpolation.
When enabled, the property name is determined from the method name by stripping the

bean prefix and taking any upper case letter followed by a lower case letter and put a space in
front of it. E.g. “getImportanceValue” would result in "Importance Value", “getABSValue”

in "ABS Value" and “isValid” in “Valid”. The case of all chunks is adjusted according to
the rules as sketched below.

"8.8 Capitalization of inferred names.

When we use design patterns to infer a property or event name, we need
to decide what rules to follow for capitalizing the inferred name. If we ex-
tract the name from the middle of a normal mixedCase style Java name
then the name will, by default, begin with a capital letter. Java programmers
are accustomed to having normal identifiers start with lower case letters.
Vigorous reviewer input has convinced us that we should follow this same
conventional rule for property and event names.

Thus when we extract a property or event name from the middle of an
existing Java name, we normally convert the first character to lower case.
However to support the occasional use of all upper-case names, we check
if the first two characters of the name are both upper case and if so leave
it alone. So for example,

“FooBah” becomes “fooBah”
[

“Z” becomes “z

“URL” becomes “URL”

[taken from the JavaBeans Spec]

248

http://java.sun.com/products/javabeans/docs/spec.html

249

When disabled, just the bean prefix is stripped and the case of the first letter adjusted

according to the rules laid out in the JavaBean spec.

Since 1.3

Example 2.816. Javadoc template for Setter

/**

* Sets the value of the $property. name$ property.

*

* @aram nanme $property. nane$ property val ue.
*/
public void setlnportanceVal ue(String val ue) {

Example 2.817. Generated Javadoc comment with formatted JavaBeans propert
name

/**

-

* Sets the value of the Inportance Val ue property.

*

* @aram nanme inportance value property val ue.
*/
public void setlnportanceVal ue(String val ue) {

Example 2.818. Generated Javadoc comment with unformatted JavaBeans propert
name

/**

-

* Sets the value of the InportanceVal ue property.

*

* @aram nane inportanceVal ue property val ue.
*/
public void setlnportanceVal ue(String val ue) {

—

Enable for

The table component lets you selectively enable the auto-generation of missing Javadoc
comments for specific code elements and access levels. Please note that you can selectively
disable Javadoc generation in source code files by using a special pragma comment. Refer
to the Pragma comments section for more information.

Disable for

Lets you disable Javadoc generation within classes that extend a certain class or implement
a certain interface. This option is useful if you generally want to document inner classes,
but obmit documentation for certain inner classes like e.g. Swing listeners. Use the Add...
button to define the type names of ext ends or i npl enent's clauses that should disable
Javadoc generation when found.

Please note that Javadoc generation will only be disabled for the methods, fields etc.
defined within a class - the class declaration itself is not affected. Please note further that
comparison is done using exact string matching: you need to specify the type name exactly
as itappears in the source file. Act i onLi st ener andj ava. awt . event . Acti onLi st ener
are treated as two different type names. If you mix qualified and simple type names in your
source, you need to define both type names here.

CHAPTER 2 CONFIGURATION

JAVADOC

Since 1.6

Example 2.819. Java source file with missing Javadoc

/**

* A sanpl e class.
*/

public class Foo {

class MyAction inplenents ActionListener {

public void actionPerfornmed(Acti onEvent ev) {

}
}

Javadoc generation without exclusions could look like:

Example 2.820. Javadoc generation without exclusion

/**

* A sanpl e cl ass.
*/

public class Foo {

/**

* DOCME!

*

* @ut hor Joe Tiger

* @ersion $version$

*/

class MyAction inplenents ActionListener {

/**

* DOCME!

*

* @aram ev DOCME!

*/

public void actionPerfornmed(Acti onEvent ev) {
}

}

But with Javadoc generation disabled for Act i onLi st ener, the result could look like:

Example 2.821. Javadoc generation with exclusion

/**
* A sanpl e class.
*/
public class Foo {
/**
* DOCME!

*

* @ut hor Joe Tiger

* @ersion $version$

*/

class MyAction inplenents ActionListener {

public void actionPerforned(ActionEvent ev) {

}

250

2.8.14.4 Correction

251

Figure 2.72. Javadoc Correction settings page

Please note how Javadoc is added for the inner class declaration but omitted for the con-
tained method!

Lets you control the Javadoc comment checking and auto-correction features.

LT Forimial Wragaing Geilrisi it

¥ Clobal
E Carrect HTML tags
w
Jawa E Carrect serience punchaabon
Rraces
Lirse Wrapping
— W Correct cescripron section
. _| Only when generat o
ite Space
o ® Only when no @see
Separation
Sarting
— M Correct tag sectien
| DOnly when generarc
¥ Comsments

& only whan ne fse
5 5 e s

Header weep Emhrows g ! Add cerepdane 1ags
Foomar T Add merhod epe aaramete: tags [Remove missed tgs
ANNCEATOrS | s description for @eerdrn E.iuh:- Peissing descripran
Search & Replace

Code |nspectior

Cerraction

| Onty when @paraen or @retarn
[]

Use taxk from @returm

[Tl nly when Sparaen or @oetarn
[Mias pelled tag narnes
B lgrare ruetine exceproas

Please note that unlike with the Open Source version, auto-correction may be enabled
independently from Javadoc formatting. Still, it is recommended to enable the formatting
of comments too, because otherwise you may encounter slight style differences when
descriptions or tags are inserted/removed.

Correct HTML

This feature lets you enforce valid HTML. When enabled, Jalopy ensures that the com-
ments only contain valid HTML 4.01 markup. Missing tags like optional end tags will be

inserted to ensure well-formed contents.

CHAPTER 2 CONFIGURATION

JAVADOC

Example 2.822. Javadoc comment with missing paragraph tags

/**
* | ndicates the kinds of programelement to which an annotation type
* is applicable. |If a Target neta-annotation is not present on an
* annotation type declaration, the declared type may be used on any
* programelement. |f such a neta-annotation is present, the conpiler
* will enforce the specified usage restriction
*
* For exanple, this meta-annotation indicates that the declared type is
* jtself a meta-annotation type. It can only be used on annotation type
* decl arati ons.
*/

Example 2.823. Javadoc comment with inserted paragraph tags

I ndi cates the kinds of programelenment to which an annotation type
is applicable. |If a Target neta-annotation is not present on an
annotation type declaration, the declared type nay be used on any
programelenent. |If such a neta-annotation is present, the conpiler
will enforce the specified usage restriction.

~
*

L R S B T R

~

<p>For exanple, this neta-annotation indicates that the declared type
is itself a neta-annotation type. 1t can only be used on annotation
type declarations. </ p>

Example 2.824. Javadoc comment with missing tags

/**
* Returns a short description of this throwable.
* |f this <code>Throwabl e</ code> object was created with a non-null detail
* message string, then the result is the concatenation of three strings:
*
* <|i> The name of the actual class of this object
* ": " (a colon and a space)
* <|i>The result of the {@ink #get Message} nethod for this object
*
*/
Example 2.825. Javadoc comment with inserted tags
/**
* Returns a short description of this throwable. If this <code>
* Thr owabl e</ code> obj ect was created with a non-null detail nessage
* string, then the result is the concatenation of three strings:
*
*
* The nane of the actual class of this object</Ii>
* ": " (a colon and a space)
* The result of the {@ink #get Message} nethod for this object
*
*/
Since 1.0

Correct sentence punctuation

When enabled, ensures that the first sentence of the description section ends with punc-
tuation. If no punctuation is present, a dot character will be added at the end of the first
sentence. The first sentence is determined by either a blank line between two text chunks

or by a HTML block tag. If no obvious sentence break could be found, the dot is added

at the end of the description section.

Since 1.6

252

253

*

The nmethod used for creating the tree

<p>

Thi s net hod adds an anonynmous TreeSel ectionListener to
the returned JTree. Upon receiving TreeSel ectionEvents,
this listener calls refresh with the selected node as a
par aneter.

* 0%k Xk X X X X

~

/**

* The method used for creating the tree.

* <p>Thi s nethod adds an anonynous TreeSel ectionLi stener to the

* returned JTree. Upon receiving TreeSel ecti onEvents, this |istener
* calls refresh with the sel ected node as a paraneter.

*/

Description Section

Provides option to control the behavior of the description section of a Javadoc comments.
The description begins after the starting delimiter / ** and continues until the tag section.
The tag section starts with the first block tag, which is defined by the first @character that
begins a line (ignoring leading asterisks, white space and comment separator). The main
description cannot continue after the tag section begins.

/**

* This sentence would hold the main description for this doc comrent.
* @ee java.l ang. Obj ect
*/

Correct description section

When enabled, Jalopy inserts a missing description into existing Javadoc comments. Un-
like specified otherwise (see “Use text from @return” below), the description is taken
from the template for the code element that contains the Javadoc comment. Refer to Sec-
tion 2.8.14.5, “Templates” for information on how to customize the templates.

Since 1.2.1

Only when generation

Only inserts the missing description when Javadoc auto-generation has been enabled for
the declaration element that contains the Javadoc comment.

Since 1.2.1

/**

* @al opy. group accessor
*/
protected int getFoo () {

}

will only be formatted to

CHAPTER 2 CONFIGURATION

/**

* DOCIVE!

*

* @ al opy. group accessor
*/

protected int getFoo () {
}

when Javadoc comment auto-generation is enabled for method declarations that have an
access level of pr ot ect ed.

Only when @param or @return

Only inserts the missing description when a @ar amor @ et ur n block tag can be found
in the Javadoc comment.

Since 1.2.1

With this option enabled, code like

/**

* @al opy. group accessor
*/
protected int getFoo () {

}

will be formatted as

/**

* @al opy.group accessor
*/
protected int getFoo () {

}

because the Javadoc comment neither contains a @ar amnor a @ et ur n block tag. But

/**

* @eturn returns the foo property.
* @al opy.group accessor

*/

protected int getFoo () {
}

will be formatted as

/**

* DOCME!

*

* @eturn returns the foo property.

*

* @al opy.group accessor
*/
protected int getFoo () {

}

because a @ et ur n tag can be found.

JAVADOC 254

Only when no @see

Only inserts the missing description when no @ee block tag can be found in the Javadoc
comment. The default behavior is to disable the insertion of a missing description if the
comment only consists of a single @ee block tag or starts with an { @ nher i t Doc} in-line
tag. In order to avoid adding information that is redundant, one may enable this switch
when @ee tags are used to point to related documentation.

Since 1.2.1

/**

* @ al opy. group accessor
*/
protected int getFoo () {

}

would be formatted as

/**
* DOCMVE!
*
* @al opy.group accessor
*/
protected int getFoo () {
}
because the Javadoc comment contains no @ee tag.
But
/**
* @al opy.group accessor
* @ee #com f oo. O her d ass
*/

protected int getFoo () {

}

would be formatted as

/**

* @al opy. group accessor

* @ee #com f oo. O her d ass
*/

protected int getFoo () {

}

because a @ee tag can be found.

Use text from @return
When enabled, the description text of the @return tag is used (when present) for a missing
description. The first letter of the text will upper-cased.

Since 1.5

255 CHAPTER 2 CONFIGURATION

JAVADOC

Example 2.831. Javadoc with missing description section

/**

* @eturn returns the result of the operation.
*/
public Object getResult() {

}

Example 2.832. Missing description generated from template
/ * %

* TODO DOCME!

*

* @eturn returns the result of the operation.
*/
public Object getResult() {

}

Example 2.833. Missing description generated from @return tag

/**

* Returns the result of the operation.
*

* @eturn returns the result of the operation.
*/
public Object getResult() {

}

Tag Section

Provides options to control the behavior for the block tags of Javadoc comments. The de-
scription begins after the starting delimiter / ** and continues until the tag section. The tag
section starts with the first block tag, which is defined by the first @character that begins a
line (ignoring leading asterisks, white space and comment separator). The main description
cannot continue after the tag section begins. There can be any number of tags - some types
of tags can be repeated while others cannot. In the following example, the @ee tags starts
the tag section:

/**
* This sentence would hold the main description for this doc conment.

* @ee java.lang. Obj ect
*/

Correct tag section

When enabled, missing Javadoc block tags will be inserted, obsolete tags can be removed.
Spelling errors of block and in-line tags are corrected. The description of a tag is taken
from the template for the code element that contains the Javadoc comment. Refer to Sec-
tion 2.8.14.5, “Templates” for information on how to customize the templates.

Only when generation
Only corrects tags when Javadoc auto-generation has been enabled for the declaration ele-
ment that contains the Javadoc comment.

Since 1.2.1

256

257

Example 2.834. Only correct tags when auto-generation enabled

/**

* @ al opy. group accessor
*/
protected int getFoo () {

}

will only be formatted to

/**

* @eturn DOCME!

*

* @ al opy. group accessor
*/
protected int getFoo () {

}

when Javadoc comment auto-generation is enabled for method declarations that have an
access level of pr ot ect ed.

Only when @param or @return
Only corrects tags when a @ar amor @ et ur n block tag can be found in the Javadoc com-
ment.

Since 1.2.1

Example 2.835. Only correct tags when @param or @return tag present

With this option enabled, code like

/**

* @al opy.group accessor

*/

protected int getFoo (int param {

}

will be formatted as

/**

* @al opy. group accessor

*/

protected int getFoo (int param {

}

because the Javadoc comment neither contains a @ar amnor a @ et ur n block tag. But

/**

* @aram param a paraneter
* @al opy.group accessor

*/

protected int getFoo (int param {
}

will be formatted as

CHAPTER 2 CONFIGURATION

JAVADOC

/**

* @aram param a paraneter

*

* @eturn returns the foo property.

*

* @al opy. group accessor
*/
protected int getFoo (int param {

}

because a @ar amtag can be found.

Only when no @see

Disables the auto-correction when a @ee tag is found in the comment. The default be-
havior is to disable auto-correction if the comment only consists of a single @ee block
tag or starts with an { @ nherit Doc} in-line tag. In order to avoid adding information
that is redundant, one may enable this switch when @ee tags are used to point to related
documentation.

Since 1.0.1

Misspelled tag names
When enabled, misspelled Javadoc tag names will be corrected when possible. When Jalopy

encounters an invalid tag name, i.e. the name is not part of the list with valid tag names,
it determines whether the tag name is vastly similar with one on the list. If so, Jalopy
will pick the one from the list otherwise it reports an error. For information about the
build-in list with valid Javadoc tag names refer to Section 2.8.14.6.1.1, “Block tags”, Sec-
tion 2.8.14.6.1.2, “In-line tags” and Appendix B, Build-in XDoclet tags.

Since 1.3

Add @throws tags

When enabled, performs an additional check for exceptions that are actually thrown from
within a constructor or method body, but not documented and adds block tags. E.g. if a
method only declares to throw an | OExcept i on, but actually throws a Fi | eNot FoundEx-
cepti on, and this Fi | eNot FoundExcept i on has not been documented with a @throws
tag, it will be added.

/**

* Description

*

* @aram rFile input file.
*
* @hrows | OException if an |/O problem occurred.
*/
public void sanple(File rFile) throws | OException {
if (rFile.exists())
t hrow new Fi | eNot FoundException();

258

259

Example 2.837. Added exception

*

~
* 0%k Xk X X X X

~

Description
@aram rFile input file.

@hrows | OException if an 1/ 0O probl em occurred.
@hrows Fil eNot FoundExcepti on DOCUMENT ME!

public void sanple(File rFile) {
if (rFile.exists())
t hr ow new Fi | eNot FoundException();

—

Ignore runtime exceptions

When enabled, no tags will be added or removed for runtime exceptions and errors that are
thrown from within a method or constructor body. Please note that enabling this option
will cause present @ hr ows tags that document runtime exceptions or errors to be removed!
If you want to keep existing tags, please enable the "Keep @throws tags" option as well.

You have to explicitly enable type repository services for the Ant, Console and Maven
Plug-ins to activate this feature! Please refer to the documentation of the individual Plug-
ins to learn how one can accomplish this (see Part II, “Plug-ins”).

Since 1.0

Example 2.838. Generated missing throws clause

/**
* Description
*
* @hrows |l egal Argunent Excepti on DOCME!
*/
public void isNewine(int offset) {
if (input <= 1) throw new ||| egal Argunent Exception();

}

Example 2.839. No throws clause generated for runtime exception

/**
* Description
*/
public void isNewine(int offset) {
if (input <= 1) throw new ||| egal Argunent Excepti on();

—

Keep @throws tags

When enabled, no existing @throws tags are removed from comments. This feature proves
useful if you have comments with existing @throws tags for runtime exceptions that are not
actually thrown from within a method body.

Since 1.0

Add template tags

When enabled, tags that are defined in the Javadoc template but missing in the Javadoc
comment of the corresponding declaration node, are inserted. Missing tags are only inserted

CHAPTER 2 CONFIGURATION

JAVADOC

when their declaration has its Javadoc generation option enabled for the current scope. This
holds true if even when the Javadoc comment generation is disabled globally in order to
allow fine grained control when and for what declarations missing tags should be inserted.
Please refer to Enable Javadoc generation for for information on how to enable Javadoc
generation for specific declarations. For information on how to customize the Javadoc tem-
plates, please refer to Section 2.8.14.5, “Templates”.

Since 1.5

Example 2.840. Javadoc template

/**

* TODO DOCME!

*

* @aut hor $user. name$
*f

With the above shown template, upon reformatting Jalopy ensures that all existing class
level Javadoc comments contain the @ut hor tag. Thus, the following comment

Example 2.841. Javadoc comment

/**

* Encapsul ate an attribute declaration.
*/

class AttributebDecl ({

}

could become

Example 2.842. Javadoc comment after formatting

/**

* Encapsul ate an attribute declaration.
*

* @ut hor John Doo
*/
class AttributebDecl ({
}

Note how the $user . nane variable expression is interpolated during formatting! Environ-
ment variables are discussed in Section 2.4, “Environment”. Missing tags are added at the
end of the tag section in the order they are defined in the template. We recommend to
enable Tag sorting in order to ensure a specific ordering.

Add method type parameter tags

When enabled, Jalopy enforces/corrects @ar amtags for generic method and constructor
declarations.

Example 2.843. Generic method

/**

* bl ah.

*

* @aram string blah

*

* @eturn blah
*/
<T, V extends T> V convert(String string);

will have tags inserted for the type parameters.

260

261

Since 1.6

Example 2.844. Generic method

/**

* bl ah.

*

* @aram <T> blah

* @aram <V> blah

* @aram string bl ah
*

* @eturn blah
*/
<T, V extends T> V convert(String string);

Please note that existing @ar amtags documenting type parameters will be removed when
this option is disabled!

Remove misused tags

When enabled, the validity of block tags will be checked. Not all tags can be used in all
contexts. Tags that are invalid will be removed. If left disabled, Jalopy only prints warnings
about misused tags.

Since 1.0

Use description for @return

When enabled, the text for a missing @return tag description is not taken from the template,
but the first sentence of description section is taken (when present). The first letter of the
description will be lower-cased.

Since 1.5

Example 2.845. Javadoc with missing @return tag description

/**

* Returns the result of the calculation.
*/

public Object getResult() {

}

Example 2.846. Javadoc with @return tag description inserted from template
/ * %

* Returns the result of the calcul ation.

public Object getResult() {

}

/**

* Returns the result of the calculation.
*

* @eturn returns the result of the cal cul ation.
*/

public Object getResult() {

}

CHAPTER 2 CONFIGURATION

2.8.14.5

JAVADOC

Add missing description

When enabled, missing descriptions of certain Javadoc block tags will be tagged with a
marker. The tag marker is inserted for the following tags: @ut hor, @epr ecat ed, @Xx-
ception, @aram @eturn, @ee, @Gerial Data, @eri al Fi el d, @i nce, @ hr ows,
@er si on. The marker text is taken from the description section of corresponding tem-
plate. XDoclet or custom tags will remain untouched.

Since 1.5

Example 2.848. Tags with missing description

/*
* HTML is the top |l evel elenent
*

* @aram | exer
*

* @eturn
*/
public static Node parseDocunent (Lexer |exer) {}

When the option is left disabled, the above example would become

Example 2.849. Tags with missing description

*

* HTML is the top level elenent
*

* @aram | exer

*

* @eturn

*/

public static Node parseDocunent (Lexer |exer) {}

But when the option is enabled, the result would be

Example 2.850. Tagged missing descriptions

/**

* HTM. is the top | evel elenent

*

* @aram | exer DOCVE!

*

* @eturn DOCME!
*/
public static Node parseDocunent (Lexer |exer) {}

Templates

Lets you define templates to be inserted for the different declaration elements when Javadoc
Generation (see Section 2.8.14.3, “Generation”) has been enabled. Each element (Class,
Interface, Field, Constructor and Method) has its own template. Depending on the element
type, a template consists of up to five parts that together form a valid Javadoc comment.
When Javadoc formatting (see Section 2.8.14.1, “Format”) is enabled, the templates will
be reformatted before they are inserted.

You can use variable expressions throughout your templates to insert various data au-
tomagically. See Section 2.4.3, “Local variables” for more information about the available
variables.

262

263

IMPORTANT The templates also describe the formatting style for each element
and are used to determine the description texts that are to be in-
serted for the Javadoc auto-correction feature (described in Sec-
tion 2.8.14.4, “Correction”).

Class template
Lets you define the template for class and enum declarations (including inner classes).

Figure 2.73. Javadoc class template

Ermmia Celeck Bermpiabe: " Class 5

¥ Clohal
¥l * DOCLMENT ME!
-

Rraces

* Equtkar Marco Hunstckes
— b * Eyerzion SReviziond S0oted
Indentation Ly

‘White Space
Separation
Sarting
IMpATs
T Comements
¥ Javadoc
| Templates |
Tags
Header
Fosaper
Annotaliors
Search & Replace
Code Inspecior

e

@ lil 4

Enter a valid Javadoc comment. The Preview window will update in real-time to reflect

your changes.

Example 2.851. Class declaration with generated Javadoc

/**

* DOCME!

*

* @ut hor $aut hor$
* @ersion $Revision: #22 $, $Date: 2007/08/15 $
*/

public class ConpilationUnit {

}

Interface template
Lets you define the template for interface and annotation declarations.

CHAPTER 2 CONFIGURATION

Figure 2.74. Javadoc interface template

Suiecttemplate | iterfare 8] Symckeonien)
l.-'l-"

* DOCLSENT HWE! T

L

¥ Bk Marco Hunst ¢ kpe |

* Eyerzion SRevizion® $Doted
jlll'-'

Search & Replace
Code Inspecinr

Enter a valid Javadoc comment. The Preview window will update in real-time to reflect
your changes.

Example 2.852. Interface declaration with generated Javadoc

/**

* DOCME!

*

* @ut hor $aut hor$

* @ersion $Revision: #22 $, $Date: 2007/08/15 $
*/

public interface Saveable {

}

Enum template
Lets you define the template for enum declarations (includes inner enums).

Since 1.5

JAVADOC 264

Figure 2.75. Javadoc enum template

Smlect template | Friam -

l.-'l-"
* DOCLMENT MWE! ¥

¥ Bk Marco Hunst ¢ kpe |
* Eyerzion SRevizion® $Doted
jlll'-'

Search & Replace
Code Inspecinr

Enter a valid Javadoc comment. The Preview window will update in real-time to reflect

your changes.

Example 2.853. Enum declaration with generated Javadoc

/**

* DOCME!

*

* @ut hor $aut hor$

* @ersion $Revision: #22 $, $Date: 2007/08/15 $
*/

public enum Wek {

}

Field template

Lets you define the template for field declarations.

265 CHAPTER 2 CONFIGURATION

Figure 2.76. Javadoc field template

Select terrpiate: | Fiald)

o= DOCLMERT MEL =49

Search & Replace
Code Inspecinr

Enter a valid Javadoc comment. The Preview window will update in real-time to reflect
your changes.

Example 2.854. Field declaration with generated Javadoc
/** DOCME! */
public String nane;

Constructor template

Lets you define the template for constructor declarations.

JAVADOC 266

Figure 2.77. Javadoc constructor template

Select ternpate:

Top:
P |
* Crectes @ new Sclass. nomed obqject. ®

Par e
* Eporon Sporom.nared DOCLMENT ME! T

Exceptior:
* Ethrows fexception.typed DOCLMENT ME!]

Search & Replace
Code Inspecinr

Example 2.855. Constructor declaration with generated Javadoc

/**

* DOCME!

*

* @ar am source DOCME!

*/
public ConpilationUnit(String source) {
}
Method template

Lets you define the template for method declarations.

267 CHAPTER 2 CONFIGURATION

Figure 2.78. Javadoc method template

l.-'l-"
* DOCLMENT MWE! ¥

Pararneter:
* Bparcn Sparamn.nared DICUMENT ME! 1

Frceptinn
¥ Ethrows Sewcepbion, tyaes DOCIMENT ME! Y

Rewrn:
* Breturn DOCUMENT ME! Y

Search & Replace
Code Inspecinr

The Preview window will update in real-time to reflect your changes.

Example 2.856. Method declaration with generated Javadoc

/**

* DOCME!

*

* @ar am source DOCME!
*

* @hrows SyntaxExcepti on DOCME!

*/
public void conpile(File source) throws SyntaxException {
}
Setter template
Lets you define the template for Setter methods (following the JavaBeans naming conven-
tion).

JAVADOC 268

269

Figure 2.79. Javadoc Setter method template

rami Snlect template :_THHH ﬂ I i]rl-l:humn:l

¥ Clobal
¥ Jawa
Rraces * DOCLSENT HE!
Lire: Wrapping
Indentation
White Space
Szparation

.&Jl'ﬂl'g | Palr e bar

Imporms * Eporon Sporom.nared DOCUMENT ME!
T Comenems

v Javadoc

T

Ta
gt * Ethrows Sexception.typed DOCUMENT ME!
Header

Fslar
Annotaliors |
Search & Feplace
Code Inspecinr

@ i p

The JavaBeans specification defines a standard way in which the properties for a JavaBean
instance should be accessed. This same technique can also be applied to regular classes and
interfaces to access their attributes. The Setter template is used for all methods that look
like set Xxx() (also called mutator methods).

Since 1.1

Example 2.857. Setter method declaration with generated Javadoc

/**

* Sets the value of the Inportance Val ue property.
*

* @aram nanme | nportance Val ue property val ue.
*/
public void setlnportanceVal ue(String val ue) {

}

You can use the Synchronize button to synchronize the template with the method declaration
template.

Getter template
Lets you define the template for Getter methods (following the JavaBeans naming conven-
tion).

CHAPTER 2 CONFIGURATION

2.8.14.6

JAVADOC

Figure 2.80. Javadoc Getter method template

Smlect template: | Getter T""j {i-pmhumn"'l

R P
¥ Clobal
—— Top:
_."Jr
Rraces *® DUCLSENT HE!
Lire Wrapping
Indentation
White Space | Parzmetar:
Separation * Eporon Sparam.rared DOCUMENT ME!
sarming
IMpTs)
— e | Frewplinoe
¥ Etheows Sexceplian, type§ DOCIMENT ME!
v Javadoc
| Templies
Tags RETurn:
Header | * Ereturn DOCUMENT ME!
Filar
Annotations
Search & Replace | Boftomn
Code Inspecinr [=
o i 2

The JavaBeans specification defines a standard way in which the properties for a JavaBean
instance should be accessed. This same technique can also be applied to regular classes and
interfaces to access their attributes.

The Getter template is used for all methods that look like get Xxx() (also called accessor
methods) and all methods matching the specified Boolean Getter pattern (refer to “Boolean
Getter Regex” for further information).

Since 1.1

Example 2.858. Getter method declaration with generated Javadoc

/**

* Returns the value of the Inportance Val ue property.
*

* @eturn the | nportance Val ue property.
*/

public void getlnportanceVal ue() {

}

You can use the Synchronize button to synchronize the template with the method declaration
template. Please note that you need to apply any changes made to the method declaration
template first in order to see the changes propagated here.

Tags

Lets you define custom tags that should be recognized by the Javadoc parser.

270

271

Javadoc

Lets you define custom Javadoc tags. You need to specify all non-standard tags that you use,
i.e. all tags not defined in HTML 4.01, in order to see the Javadoc parser behave correctly.
Otherwise errors are generated for every tag that is unknown to the system.

Figure 2.81. Define Custom Javadoc Tags

LT Jirsadoc

¥ Clohal

¥ Jawa

Rraces
Lire Wrapping
Indentation
‘White Space
Separation
Sarting
IMpoems

¥ Comemems

Huck bags:

¥ Javadoc il wags:

Edir..

Remawve

Templams
Header
Fosaper

Annotaliors

Search & Replacs

Code Inspecinr

Harrmes

4

Refer to the tables below to learn about the tags that are supported by default.

Block tags

Lets you define custom Javadoc block tags. The table below shows the Javadoc block tags

that are supported by default.

Table 2.7. Build-in Javadoc block tags

Name Since
@author 1.0
@beaninfo 1.0
@deprecated 1.0
@exception 1.0
@jalopy.group 1.1
@jalopy.group-order 1.1
@jalopy.group_order 1.1
@param 1.0
@return 1.0
@see 1.0
@serial 1.0

CHAPTER 2 CONFIGURATION

JAVADOC

Name Since

@serialData 1.0
@serialField 1.0
@since 1.0
@throws 1.0
@todo 1.0
@version 1.0

Use the Add... and Remove buttons to add or remove items to and from the list.

Figure 2.82. Add new Block Tag
Bna Add new Block Tag

Enter a walid Javade: block tag and press the 'Add” butten to submit
your addition.

Tag: | Epre

|‘__i"___| [Cancel ._|E_ Fudd _;!

Valid block tags have the form @ a- zA- Z] +, e.g. @re.

In-line tags
Lets you define custom Javadoc in-line tags. The table below shows the Javadoc in-line tags
that are supported by default.

Table 2.8. Build-in Javadoc in-line tags

Name Since
@code 1.3
@docRoot 1.0
@inheritDoc 1.0
@link 1.0
@linkPlain 1.0
@literal 1.3
@value 1.0

Use the Add... and Remove buttons to add or remove items to and from the list.
Figure 2.83. Add new In-line Tag
[EaN s Add new Inline Tag

Enter a walid Javadec inling tag and press the 'Add" button to subimit
your addition.

Tag: | Texample

|‘__i"___| [Cancel ._|[Add]

272

273

Valid in-line tags have the form @ a- zA- Z] +, e.g. @ oot .

XDoclet

Lets you define custom XDoclet tags.

Figure 2.84. Define Custom XDoclet Tags

L7

L i Jasadoe | ¥Dockr HTHL

Kloclet tags

Ramaose

S parabion
snrting
IMpATs
T Comemerts
¥ Javadoc
Templates
Tags
Header
Fspar
Annotsliors
Search & Replace
Code Inspecior

1 p

Refer to Appendix B, Build-in XDoclet tags for the tags that are supported by default. Use
the Add... and Remove buttons to add or remove items to and from the list.

Figure 2.85. Add new XDoclet Tag

ans Add new XDecler Tag
Enter a valid XDoclet tag and press the 'Add' button to submit your
addition.
Tag: I

@

| Camcel | Hudd

Valid XDoclet tags have the form @a-zA-Z.: _-]+, e.g. @ onas. sessi on-ti meout .

Since 1.0

HTML
Lets you define custom HTML tags.

CHAPTER 2 CONFIGURATION

Figure 2.86. Define Custom HTML Tags

L i Jawadoe | ¥Dockn HTHL

HTRAL Eags

¥ { add.)

EdIr..

Indentation [——

v Javadoc
Templates
Header
Fslar
Annotaliors
Search & Feplace
Code Inspecinr

7] i p

The standard supported tags are those of the HTML 4.01 standard. Use the Add... and

Remove buttons to add or remove items to and from the list.

Figure 2.87. Add new HTML Tag

Bans Add new HTML Tag
Enter a valid HTML tag and press the "Add' bumton to submit your
addition.
Tag: |

i (Cancel) | Add

Since 1.0

2.8.15 Header

This section describes the available options to control the handling of headers. A header is
a uniform comment that appears at the very top of a source file and usually displays the
company’s copyright notice.

HEADER 274

Example 2.859. Typical header before package statement
/
Sun Public License Notice

The contents of this file are subject to the Sun Public License
Version 1.0 (the "License"). You may not use this file except in
conpliance with the License. A copy of the License is available at
http://ww. sun. conf

The Original Code is NetBeans. The Initial Devel oper of the Original
Code is Sun Mcrosystems, Inc. Portions Copyright 1997-2000 Sun
M crosystens, Inc. Al R ghts Reserved.

EE R I T R I . R N

~

package org. net beans. edi tor;

2.8.15.1 Options

Lets you control the different header options.

Figure 2.88. Header Options settings page

L aririns Dt Temalita
¥ Clooal
EUH Header

¥ lawa E Dverride

Braces B Heep tagn

Lirs2 Wrapping

Indentation -

i . % =

White Space — Smart Mode:

SepAration ldant iy Kays:

sarting TRIEHAX Add.. |

IMpETs Marco Hursicker

T — Jalopy lava Source Code Forraltes reit
Sy Fublic License Mokice
* Javadoc Camman Puble Licemae Ramoyi
m THE SOFTWARE IS PFROVIDED BY THE COPYRICHT HOLDERS ...
Foiter

AnneLIToes

Saarch & Replace

Code Inspecior
i 1} &

Use Header

Enables or disables the header feature. When enabled and no header could be detected, the
specified header template will be inserted. To avoid header duplication, you have to tell
Jalopy how to detect existing headers. See Section 2.8.15.1.1, “Detection” below.

275 CHAPTER 2 CONFIGURATION

HEADER

Override

If you enable this option, the header template will be re-inserted with every run. Any exist-
ing header(s) will be removed. Note that when you specify multiple keys to identify existing
headers (see below), a// recognized headers will be removed! This option is only available,
if you've enabled the header feature.

Since 1.0

Keep tags
When enabled, Jalopy keeps expanded RCS-style tags in existing header comments. An
expanded RCS tag looks like $keywor d: data $.

It is good advise to replace headers upon every formatting run in order to enforce the
company’s copyright statement under all circumstances. This might cause problems though
when the header contains RCS-style tags. Because the current keyword data is lost upon
formatting, the SCM thinks the files are different even if the file did not change otherwise.
So, after submitting the files show no differences (because the tags have been expanded
again by the SCM). For example, if you have a file with the CVS $I d$ tag, after checkout
the header might look like this

[* Copyright (c) 2001-2003, Foobar Systens Ltd.
*

* $1d: TestCheckin.java,v 1.2 2004/01/12 21:52:18 xf016997 Exp $
*/

But after formatting, the keyword data gets lost when the Keep rags option was disabled

[* Copyright (c) 2001-2003, Foobar Systens Ltd.
*

* $1d$
*/

Enabling this option will allow you to keep the existing data and the file will look exactly
like in Example 2.860, “Header before formatting (keyword data present)” after formatting.
Please note that this feature works for nested tags, too. If you define RCS tags in your
template that contain variable expressions, their values are still kept.

Since 1.0.3

I T T o o i o O T o T O S S A A S S A A
/| Fossi GrbH Source File: $file.nane$

/1 Copyright (c) 2003-$date.year$ by Fossi GrbH

I

/1 $Created: $date$ (Stine.long$) by Suser.nane$ $

/'l Last Change: $date$ (S$tine.long$) by $user.nane$

I e T T o o i T o O

After the first formatting run, the header could look like this

276

277

[| ++++++++++++++ R
/'l Fossi GibH Source File: Installer.java

/1 Copyright (c) 2003-2004 by Fossi GrbH

11

/'l $Created: 11. 05. 2004 (09:52:12) by eso $

/1 Last Change: 11.05.2004 (09:52:12) by eso

[| ++++++++++++++ R

After the next formatting run, it might look like this

[| ++++++++++++++++ bbb bbb R
/'l Fossi GnbH Source File: Installer.java

/] Copyright (c) 2003-2004 by Fossi GvbH

11

/1 $Created: 11.05.2004 (09:52:12) by eso $

/] Last Change: 28.05.2004 (13:04:39) by harold

[| ++++++++++++++++++++

This option is only available, when the header feature has been enabled.

Detection

To avoid header duplication, Jalopy needs to know how existing headers can be recognized.
Two methods are provided to allow great flexibility.

Smart Mode

Lets you specify the number of single-line comments at the top of a file (before the first
language keyword, being either package, i mport, cl ass, i nterface, @nterface or
enun) that should be recognized as a header.

Jalopy simply counts the number of single-line comments at the top of a source file
and if this number is greater or equal to the specified #Smart Mode# count, 2// consecutive
single-line comments at the top will be assumed to be part of a header.

I

Il file: Byte.java

[l project: bsjt-rt

I

/1 last change: date: $Dat e$

/1 by: $Aut hor $

/1 revision: $Revi si on$

R R LR R TR P R P
/1 copyright: BSJT Software License (see class docunentati on)
I

package com bsjt. foo;
i mport

In order to recognize the above single-line comments as a header, the #Smart Mode# count
must be no less than '1", but it would be best to set it to '10'.
A number equal to '0" disables #Smart Mode#.

CHAPTER 2 CONFIGURATION

HEADER

Identify Keys
The second approach is to specify one or several unique keys that are part of your header.
This technique only works with headers that are defined as multi-line comments. To add,
remove or change identify keys, use the corresponding button beneath the keys list.
Specifying several keys makes it easy to switch between headers. Define both a key for the
old header that is to be removed and for your new header that should be inserted. This way,
you are sure that even new additions that happen to contain the old header (maybe checked
out from some SCM) are treated correctly. A good key for the header in Example 2.859,
“Typical header before package statement” above would be #Sun Public License Notice#.

Add...

Lets you add new identify keys. Pressing the button will invoke a new dialog where you
can enter the identify key.

Figure 2.89. Add new Ildentify Key

00 Sk lemtif by

Enter a new identify key and press the '‘Sdd’ button to submit your

additiamn,

Iy Kiny

I'?," ¢ Cancel : Add
e

Enter the identify key in the text field and press the Add button to submit your addition.
Press the Cancel button if you want to dismiss the action. Please note that the Add button
is only available if the text field is not empty!

Change...

Lets you alter an already defined identify key. Pressing the button will invoke a new dialog
where you can change the currently selected identify key. The button is only available if an
item is currently selected in the keys list.

Figure 2.90. Change existing Identify Key

T e Identi

Change the identify key and press the 'Change’ button to submit your
changes

Idenrfy Koy | Sun Public Leense Batics

I'!l] ¢ Cancel : E—Ehn?—j

278

2.8.15.2

2.8.16

279

Change the identify key and press the Change button to submit your change. Press the
Cancel button if you want to dismiss the action. Please note that the Change button is only
available if the text field is not empty!

Remove
Lets you remove the currently selected key(s) from the list. The Remove button is only
available if an item is currently selected in the keys list.

Template

Lets you specify the header template. Enter the desired text into the text area. You should
use either one multi-line comment or several single-line comments. Any leading or trailing
white space will be removed upon saving. Note that if you leave the template text empty, no
header template will be inserted during printing, but existing headers may still be removed!

Figure 2.91. Header Template settings page

L i Optians Temalis

¥ Clohal
¥ java : Copyright (o) 2083-Sdate.veard TRIEMAX Softmerce Ltd. All rights res
Rraces * Thizs softmare is the confidential end proprietary informotion of
Lire Wrapping * TRIEMAX Softwerme Lid. (CCoafidesticl Informatlion™]. You ssall #ot
* disclose such Confidentiol Informotion ond sholl vse it anly in
Indentation * accordance with the terms of the license agreesent wou errtered
‘White Space Foanto with TRIEHAX Softwore Ltd
Separation i
sarting
IMpoems
T Comemems
& Javadoc
Foyar
ANNCLATIONS
Search & Replaoe
Code |nspector

Since Jalopy 1.7, it’s also possible to maintain multiple header comments in source files.
Please note that if you prefer to separate the different comments with blank lines and don’t
want to enable the override feature, you need to tell Jalopy to keep blank lines between
header comments with the Section 2.8.10.2, “Keep blank lines in headers up to” option.
You can use variable expressions throughout the template text. See Section 2.4.4, “Usage”
for more information about this feature.

Footer

Controls the printing of footers. A footer is a comment that appears at the very bottom of a
source file and usually displays the change history or similar information. As the handling of

CHAPTER 2 CONFIGURATION

2.8.17

footers is analogous to headers, please refer to Section 2.8.15, “Header” for an explanation

of the different options.

Figure 2.92. Footer settings page

L i Optisng | Temalace

L T idse Foater

¥ lawa :‘l Lluerrige
Rraces :‘l Keep bags
Liree Wrapping

Indentation -
White Spare | Smart Sogde; 5 07

SepAration ldant iy Kays:

Sarming
IMpTs
T Comemners
E Javadoc
Header
AnNNCLAToeS
Search & Replace
Code Inspecior

Note that Jalopy always prints one trailing empty line after the footer.

Annotations

Pk

" Remove

Lets you configure annotations that should be added to top-level class, interface, enum and

annotation type declarations.

ANNOTATIONS

280

2.8.17.1

281

Figure 2.93. Annotations settings page

! Insert annotations

Anncrarang
Rraces

Lire Wrapping
Inde Atalinn Edit.
White Space
Separation
sarting |
IMpTs
b Comemers
Search & Replace
Code Inspecior

Insert annotations

Enables or disables the automatic insertion of annotations. When enabled, all custom de-
fined annotations (see below) that are not already present for a top-level declaration, will
be inserted during formatting.

Since 1.8

Annotation patterns

Lets you define the annotation patterns that should be inserted. You can specify an arbitrary
amount of patterns. The patterns will be inserted during formatting in the given order.
The list component displays all patterns currently defined. Use the button bar on the right
to add, remove or change patterns and define the order in which the patterns should be
inserted.

Add...

Lets you add new annotation patterns. Pressing the button will invoke a new dialog where
you can enter the pattern. Please note that the annotation must be fully qualified. During
insertion, the package name will be stripped and the corresponding import declaration
inserted.

CHAPTER 2 CONFIGURATION

2.8.18

Edit...

Lets you alter an already defined annotation pattern. This button is only available if an item
is currently selected in the pattern list. Pressing the button will invoke a new dialog where
you can change the Annotation pattern for the currently selected item in the pattern list.

Remove
Lets you remove an already defined annotation pattern. This button is only available if an
item is currently selected in the pattern list.

Lets you change the position of an already defined annotation pattern in the pattern list.
This button is only available if an item is currently selected in the pattern list and this is
not the topmost item.

Down

Lets you change the position of an already defined annotation pattern in the pattern list.
This button is only available if an item is currently selected in the pattern list and this is
not the last item.

Search & Replace

Lets you perform string Search & Replace operations during formatting.

Figure 2.94. Search & Replace settings page

"%

Lrmimax
Engiobz Saarch & Reolace for: [l 5erimg Beerals

¥ Global i
_! Single-line corvenants

¥] Multi-1e commenis
Brices ! lavasio D COimimerits:
Line Wrapping

Indentation

‘White Space

Separation

sarting

Parmirris
[oagd. B

L

Edit.

ImpaTs HEmove
B Comsments
Annotalions

Search & Replace r——

Code Inspscine

SEARCH & REPLACE 282

2.8.18.1

2.8.18.2

283

Scope

Lets you configure the elements for which Search & Replace should be performed.

String Literals

Enables Search & Replace for string literals. Please note that you first need to define at least
one pattern in order to be able to enable Search & Replace! See Section 2.8.18.2, “Patterns”
for information on adding patterns.

Since 1.7

Example 2.866. String literal
String literal = "String literals are enclosed in double quotes";

Single-line comments

Enables Search & Replace for single-line comments. Please note that you first need to define
at least one pattern in order to be able to enable Search & Replace! See Section 2.8.18.2,
“Patterns” for information on adding patterns.

Since 1.7

Example 2.867. Single-line comment
/1 Single-line comments are simlar like in C++

Multi-line comments

Enables Search & Replace for multi-line comments. Please note that you first need to define
at least one pattern in order to be able to enable Search & Replace! See Section 2.8.18.2,
“Patterns” for information on adding patterns.

Since 1.7

Example 2.868. Multi-line comment
/* Multi-line comments are sinmlar like in G Ct+ */

Javadoc comments

Enables Search & Replace for Javadoc comments. Please note that you first need to define
at least one pattern in order to be able to enable Search & Replace! See Section 2.8.18.2,
“Patterns” for information on adding patterns.

Since 1.7
Example 2.869. Javadoc comment
/**
* Javadoc coments are basically nulti-line comments using
* a special notation
*/
Patterns

Lets you define regular expression patterns to use for Search & Replace. You can define
an arbitrary amount of Search & Replace patterns that are executed in the order defined
when formatting a file. The list component displays all patterns currently defined. Use the

CHAPTER 2 CONFIGURATION

button bar on the right to add, remove or change patterns and define the order in which
the patterns should be applied.

Jalopy uses Java’s build-in regular expression engine which is roughly equivalent with
Perl 5 regular expressions. The syntax is explained here: http://java.sun.com/javase/6/docs/
api/java/util/regex/Pattern.html. For a more precise description of the behavior of regular
expression constructs consult Mastering Regular Expressions [Friedl97].

Add...

Lets you add new Search & Replace patterns. Pressing the button will invoke a new dialog
where you can enter the Search & Replace patterns.
Figure 2.95. Add Search & Replace pattern
ans Adg Search & Replace Famern

Enter search and replace patterns and press the "Add' button to
submit the patterns.

Search far iE]

Riglace with

| oo |

. { Cancel | { Add)

Enter the search pattern in the Search for text field and the replace pattern in the Replace
with text field. The replace pattern may contain variable interpolations referring to the saved
parenthesized groups of the search pattern. A variable interpolation is denoted by $7, $2,
or $3, etc.

Suppose you have the search pattern 6\d+: and you want to substitute the &'s for 's and
the colon for a dash in parts of your input matching the pattern. You can do this by changing
the search pattern to &(\d+): and using the replace pattern a$7-. When a substitution is
made, the $7 means "Substitute whatever was matched by the first saved group of the
matching pattern.” An input of 4123: after substitution would yield a result of 2723-. For
the given patterns

Tank b123: 85 Tank b256: 32 Tank b78: 22

would become

Tank al23- 85 Tank a256- 32 Tank a78- 22

Edit...

Lets you alter an already defined Search & Replace pattern. This button is only available
if an item is currently selected in the pattern list. Pressing the button will invoke a new
dialog where you can change the Search & Replace patterns for the currently selected item
in the pattern list.

SEARCH & REPLACE 284

http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html
http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html

2.8.19

2.8.19.1

285

Figure 2.96. Change Search & Replace pattern
BB Change Search & Replace Pattern

Adjust search and for replace patterns and press the "Change” button
te submit the patterns.

Search far R

Rrmlace with: | Arull_Rlcspec % vor Kdate_modiicht vem Xdtrehed by

i | Camcel | -E Change]

Please refer to Section 2.8.18.2, “Add...” for an explanation of the available regular expres-
sion capabilities.

Remove

Lets you remove an already defined Search & Replace pattern. This button is only available
if an item is currently selected in the pattern list.

Up
Lets you change the position of an already defined Search & Replace pattern in the pattern

list. This button is only available if an item is currently selected in the pattern list and this
is not the topmost item.

Down

Lets you change the position of an already defined Search & Replace pattern in the pattern
list. This button is only available if an item is currently selected in the pattern list and this
is not the last item.

Code Inspector

Lets you configure the code inspector. The code inspector inspects source files for naming
convention violations and possible code weaknesses.

Checking

Lets you control the general code inspector settings.

CHAPTER 2 CONFIGURATION

Figure 2.97. Code Inspector settings page

Lr v Chicking Making

¥ Clobal
E Enahle Code inspacioe
¥ Jawa
Rraces
Checks:
Lirse Wrapping B
(ARG F Cioey the geseral coptract when averriding "egualsl)” L
_! Don't substibate ancther type for “0bject”™ in “equaki® i
White Space
M Alays overrice FasaCode]]l” wihen you override “equalksn”
e pAration : Aksays puerride Baliringi®
sarfing] Usa Inberfaces onky to def re types
IMpTs A Replace strutrunes wih dlasscs
B Comemes _! Rmturm zera-lengtn arrays, sotnudls
it B adhere to custom naming convertions

Sparch & Replace : R firr 1 g s by tharir orvtees Ticany

! Mever declare that a method throwss Exception”
B Mever declare that a retrod "troms Theowable™
_! Don'tigrore excepbony
1 Mewer Invoke “walhi)™ cunside a loos
E A thread graaps 14

W Avoid emphy firally blocks
C] Add NOILEN commest Tor string Inerals

1

4l

Ardd infmrmabas moeeant B sellse ke felds

Enable

Lets you enable or disable the code inspector. You still need to enable at least one of the

provided checks.

Checks

Lets you selectively choose what actions should be performed during inspection.

Obey the general contract when overriding equals

Checks whether the body of a equal s method contains a t hr ow statement that would
violate the equals contract. Only applies if the method body does contain more than one
statement; thus, if the method body consists of a single t hr ow statement, we assume you
know what you do and leave it alone. For more information see Effective Java [Bloch01],
Item 7, pp. 32.

Don’t substitute another type for Object
Don't substitute another type for Obj ect in the equals declaration The equal s method
should not be overloaded.

Example 2.870. Overloaded equals - DO NOT USE!

publ i c bool ean equal s(Myd ass 0) {

}

For a detailed discussion see Effective Java [Bloch01], Item 7, pp. 35.

CODE INSPECTOR 286

287

Always override hashCode when you override equals

Failure to do so will result in a violation of the general contract for Obj ect #hashCode,
which will prevent the class from functioning properly in conjunction with all hash-based
collections, including HashMap and HashSet . For a detailed discussion see Effective Java
[Bloch01], Item 8, pp. 36.

Always override toString

It might be quite useful for diagnostic purposes to have objects generating interesting infor-
mation with t oSt ri ng. This way you can easily use logging techniques to track programs
execution.

Systemout.println("Failed to connect: " + phoneNunber);

For a detailed discussion see Effective Java [Bloch01], Item 9, pp. 42.

Use interfaces only to define types

Interfaces should say something about what a client can do with instances of the class. It
is inappropriate to define an interface for any other purpose. When enabled, Jalopy warns
about uses of the so-called constant interfaces pattern, i.e. an interface that only consists of
constants.

public interface Pysical Constants {

[** Bol tzmann constant (J/K) */
doubl e BOLTZMANN_CONSTANT = 1. 3806503e- 23;

[** Mass of the electron (kg) */
doubl e ELECTRON_MASS = 9.10938188e- 31;

}

For a detailed discussion see Effective Java [Bloch01], Item 89, pp. 89.

Replace structures with classes

Degenerated classes consisting solely of data fields are loosely equivalent to C structures,
but should not be used as they do not offer the benefits of encapsulation.

public class Point {
public float x;
public float vy;

}

For a detailed discussion see Effective Java [Bloch01], Item 19, pp. 97.

Return zero-length arrays, not nulls

There is really no reason to ever return nul | from an array-valued method instead of re-
turning a zero-length array. For a detailed discussion see Effective Java [Bloch01], Item 27,
pp. 134.

CHAPTER 2 CONFIGURATION

Adhere to custom naming conventions

Following a naming convention aids readability and maintenance as confusion and irrita-
tion is avoided. For a detailed discussion see Effective Java [Bloch01], Item 38, pp. 165.

Refer to objects by their interfaces

When possible, always use the interface type for parameters, return values, variables and
fields as your program will be much more flexible. When enabled, Jalopy will print warnings
when the different Java collection implementations are used directly.

Li st subscribers = new ArraylList();

Arrayli st subscribers = new ArraylList();
For a detailed discussion see Effective Java [Bloch01], Item 34, pp. 156.

Never declare that a method “throws Exception”

It is usually bad practise to declare that a method throws Except i on because it obscures
any other exception that may be thrown in the same context and denies any guidance to
the programmer conceding the exceptions that the method is capable of throwing. For a
detailed discussion see Effective Java [Bloch01], Item 44, pp. 181.

Never declare that a method “throws Throwable”

It is usually bad practise to declare that a method throws Thr owabl e because it obscures
any other exception that may be thrown in the same context and denies any guidance to
the programmer conceding the exceptions that the method is capable of throwing. For a
detailed discussion see Effective Java [BlochO1], Item 44, pp. 181.

Don’t ignore exceptions

An empty catch block defeats the purpose of exceptions. At the very least, the catch block
should contain a comment explaining why it is appropriate to ignore the exception.

try {

} catch (SoneException ex) {

}

For a detailed discussion see Effective Java [Bloch01], Item 47, pp. 187.

Never invoke wait outside a loop

Always use the wai t loop idiom to invoke the wai t method. Never invoke it outside of a
loop as the loop serves to test the condition before and after waiting ensuring /fveness and

safety For a detailed discussion see Effective Java [Bloch01], Item 50, pp. 201.

Avoid thread groups

As thread groups are largely obsolete, don’t use them. They don’t provide much in the way of
useful functionality, and much of the functionality they do provide is flawed. For a detailed
discussion see Effective Java [Bloch01], Item 53, pp. 211.

CODE INSPECTOR 288

289

Avoid empty finally blocks

Empty final | y blocks are of no use and may indicate programmer errors.

Example 2.877. Empty f i nal | y block

Witer witer = new BufferedWiter(new FileWiter(file));

try {

wite.wite(data);
} catch (1 CException ex) {

Systemerr.printin("file could not be witten: " + file);
} finally {

—

The programmer certainly wanted to close the Wi t er in the fi nal I y block to ensure that
allocated system resources will be freed.

Add NOI18N comment for string literals

Enabling this check will cause warnings for all string literals without associated / * NO 18N
*/ comment. Internationalizing Java applications is often done with nifty tools that use
marker comments to indicate that a given string literal should not be considered for local-
ization. Most tools (at least the ones I know of) use trailing single-line comments which
may not be very robust for processing with a formatting tool such as Jalopy. In contrast the
author uses a multi-line comment of the form /* NO 18N */ that gets directly placed after
a string literal and will therefore always stuck with it.

Example 2.878. SNON-NLS-1$ comment

FileDi al og dialog = new FileDialog(this,
Resour ceBundl e. get Bundl e(BUNDLE_NANME)
.getString("BTN_SAVE_AS', FileDial og. SAVE); //$NON-NLS-1$

This trailing comment could be easily moved away from its string literal during formatting
which would result in an unwanted notice on successive internationalization runs.

Example 2.879. SNON-NLS-1$ comment (moved)

FileDi al og dialog =
new Fi | eDi al og(this,
Resour ceBundl e. get Bundl e(BUNDLE_NAME) .
get String("BTN_SAVE_AS",
Fil eDi al og. SAVE); //$SNON- NLS-1$

Example 2.880. NOI18N comment

Fil eDi al og dialog =
new Fi |l eDi al og(this,
Resour ceBundl e. get Bundl e(BUNDLE_NANE) .
get String("BTN_SAVE_AS' /* NO 18N */),
Fi | eDi al og. SAVE) ;

Add informative comment for collection fields

When not using strong-typed collections (a.k.a. Java Generics), it is best to document the
object type of the items hold by a collection. When enabled, Jalopy checks for the existence
of such comments and warns when they are missing.

Example 2.881. Collection comment

private List _favorabl eTypes = new ArraylList(20); // List of <String>

CHAPTER 2 CONFIGURATION

2.8.19.2

Warn about lines that exceed the maximal line length
When enabled, prints a warning for every line that was not printed in between the maximal
line length.

Example 2.882. Line length limit

throw new ||| egal Argunment Excepti on([
"condition nust be one of WHEN_|I N _FOCUSED W NDOW or WHEN_FOCUSED') ;

Suppress within //J- //J+ pragma comments
When enabled, no warnings are printed for code sections enclosed with pragma comments.

Since 1.8

Example 2.883. Line length limit

/13-

throw new || | egal Argunment Excepti on([
"condition nust be one of WHEN_|I N _FOCUSED W NDOW or WHEN_FOCUSED') ;

13+ |

Naming

Lets you specify the naming constraints for different Java source file elements. These con-
straints are naturally expressed with regular expressions. Note that you have to enable both
the Code Inspector and the naming convention check in order to see naming checks per-
formed. See Section 2.8.19.1.1, “Adhere to custom naming conventions” for more infor-
mation.

Figure 2.98. Code Inspector Naming settings page

Lr s Chicking Maming

¥ Clobal Edit..
¥ Java)
Packages la=2)+ %5 La=2]+)" &
Braces Llaszes |A=E| [a-zh=E0=H] +
Lire2 Wrapping Clasaes <absiracs |&-2][1-=2h-20-0] +
Indencation miner classas |&-Z]|[1-=z#~-Z0-9] +
rterfaces |8 =7 [a-mé-F -0 +
White Space Fields «woublics alA-T][]+
Separation Fieldy <protected> Al =] vl +
sarting Fickds <defads HEA-Hl'I;nH-
Fiekds <mrhates aa-T]|vel+
ImpoeTs Fields <public firal= al A=]+
B Cofremneris Fields =prooecned fingl= e | KES B
Fieldy <clefalt final> Al =]]+
Annotstiors Fields <pariane fings A T[] 4
Search & Replace |Fields <public statics oA -z vel+
FwH-h wparaled b slalic > e | R B
Flelds =defaude stadcw a8 -1 vw] -+
Fieldy <prevate stabe Al =] vl +
Fiekds «mublic stac fisals |&-Z0-0_]4
Fiekds <protected static fina |A-E0-3_]+
Fiekds <difivdt state lnals |&-Z0-0_]+
Flelds =privane stadc Hnabe |&-Z0-8_]+
Wetheady <public= B I ES
Metheds «protectods [a=2]0td [r
7] I {Methiods <defauit: |a=zjliwll = '_é

CODE INSPECTOR 290

The list component displays all provided naming checks along with their current regular
expression.

Selecting an item in the list and either pressing the Ediz... button or double-clicking the
item will open a dialog that lets you change the regular expression.

Change Naming Pattern

The Change Naming Pattern dialog lets you interactively craft a valid regular expression
for a naming check.

Figure 2.99. Change Naming Pattern

s RN Change Naming Pattern

Enterfadjust the regex pattern. Type in a test string and press the
Test' button, if you would like to validate your reges.

Regex 1 A-Z] v+

SErireg

| o |

| [Test §{ Camcel | f El‘l.lrlg!]

Regex
The Regex text field is where you have to insert the regular expression. This text field initially
contains the current pattern for the list item that is under construction.

Jalopy uses Java’s build-in regular expression engine which is roughly equivalent with
Perl 5 regular expressions. The syntax is explained here: http://java.sun.com/javase/6/docs/
api/java/util/regex/Pattern.html. For a more precise description of the behavior of regular
expression constructs consult Mastering Regular Expressions [Friedl97]. The defined pattern
must match exactly.

String
The String text field is where you have to enter a string that should be matched by the
specified regular expression. This text field is initially empty.

Test

Once you have edited the two text fields you may want to use the 7Zesz button to perform
a pattern matching test in order to make sure that the specified regex matches as desired.
You will be informed about the match status and can decide whether you want to alter your
pattern and/or test string and restart the procedure.

291 CHAPTER 2 CONFIGURATION

http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html
http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html

Figure 2.100. Successful regex test
ans Change Naming Pattem

Enterfadjust the regex pattern. Typa in a test string and press the
Test' button, if you would like to validate your regeEx.

Resgex ala-Zi]vwl+

String. aFizld

i Paern machis!

(7 [Test) { Cancel | {FChange")

Figure 2.101. Failed regex test
ans Change Naming Patter

Enterfadjust the regex pattern. Type in a test string and press the
Test' button, if you would like to validate your regeN.

Regex ala-Z)] v+

Sy _Fid

0 Paarern does sor march!

(7 (" Test) { Cancel | { Change)

Change
If you are finished editing the regular expression, you can press the Change button to take
over.

Cancel
You can always use the Cancel button to cancel editing at any time. The dialog will be closed
and no changes applied to the list.

CODE INSPECTOR 292

Chapter 3. Usage

Usage depends on the distribution you received. Please refer to the individual Plug-in chap-
ters in Part II, “Plug-ins” for details.

293

Part ll. Plug-ins

This part of the manual covers the Plug-ins that ship with Jalopy. Plug-ins seamlessly integrate the
extensive formatting capabilities of the Jalopy formatting engine into your favorite application. There
is a wide range of Plug-ins available for IDEs, build tools and command line usage or scripting.

* Chapter 4, Ant Task

 Chapter 5, Console Application
* Chapter 6, Eclipse Plug-in

* Chapter 7, IDEA Plug-in
 Chapter 8, /Developer Extension
 Chapter 9, jEdit Plug-in

* Chapter 10, Maven 1 Plug-in

* Chapter 11, Maven 2 Plug-in

* Chapter 12, NetBeans Module

295

Chapter 4. Ant Task

4.1

4.1.1

4.1.2

Describes the installation and usage of the Jalopy Ant task. Its authors describe Ant [Link]
as a “Java-based build tool. In theory, it is kind of like Make, but without Make’s wrinkles.

Why another build tool when there is already make, gnumake, nmake, jam, and others?
Because all those tools have limitations that Ant’s original author couldn’t live with when
developing software across multiple platforms. Make-like tools are inherently shell-based
—they evaluate a set of dependencies, then execute commands not unlike what you would
issue in a shell. This means that you can easily extend these tools by using or writing any
program for the OS that you are working on. However, this also means that you limit
yourself to the OS, or at least the OS type such as Unix, that you are working on. Makefiles
are inherently evil as well. Anybody who has worked on them for any time has run into the
dreaded tab problem. "Is my command not executing because I have a space in front of my
tab???" asked the original author of Ant way too many times. Tools like Jam took care of
this to a great degree, but still have yet another format to use and remember.

Ant is different. Instead of a model where it is extended with shell-based commands, Ant
is extended using Java classes. Instead of writing shell commands, the configuration files are
XML-based, calling out a target tree where various tasks get executed. Each task is run by
an object that implements a particular Task interface. Granted, this removes some of the
expressive power that is inherent by being able to construct a shell command such as 'find .
-name foo -exec rm {}', but it gives you the ability to be cross platform—to work anywhere
and everywhere. And hey, if you really need to execute a shell command, Ant has an <exec>
task that allows different commands to be executed based on the OS that it is executing on.”

Installation

Explains the steps involved in getting the Ant task up and running.

System requirements

The Plug-in requires Ant 1.5 or later. See Section 1.1, “System requirements” for the basic
requirements to run Jalopy.

Installation

The Plug-in comes as an executable Jar Archive (JAR) that contains a graphical setup wizard
to let you easily install the software. Wizard installation is recommended and explained in
detail in Section 1.3, “Wizard Installation”.

If you would rather install the Plug-in manually, you have to decompress and copy the
appropriate files into the different application and/or settings folders. To decompress the
contents of the installer JAR, you can often use the build-in support of your file manager
(e.g. Nautilus) or any other software that can handle the ZIP compression format (e.g. 7Zip,
WinZip or Stuffit Expander). If you don’t have access to one of the convenience tools, you
might resort to the jar command-line application that ships with your Java distribution.

297

http://projects.gnome.org/nautilus/
http://www.7-zip.org/
http://www.winzip.com/
http://my.smithmicro.com/mac/stuffit/expander.html
http://java.sun.com/docs/books/tutorial/deployment/jar/unpack.html

4.2

If you're upgrading from a prior version and want to keep your settings, first copy or
rename the current Jalopy settings directory to match the version number of the new release.
For instance, if your current settings directory is C: \ Docunent s and Set t i ngs\ John Doo
\ . j al opy\ 1. 9 and you're about to install Jalopy 1.9.3, either copy the directory contents
or rename it to C:\ Docunents and Settings\.jal opy\John Doo\1.9.3. Wizard
installation can perform this step automatically.

The Jalopy Ant task requires two JAR files, the Ant library j al opy-ant-1.9.3.j ar
and the core engine j al opy- 1. 9. 3. j ar. These must be added to the class path. You can
do this in a number of ways:

* Add the two JAR files to the SCM repository and explicitly load the tasks using a class
path you set up in the build file. This is often the best approach as there’s no need for
any work by the individual developers.

* Copy the two JAR files from the temporary directory into a private directory and add
the directory contents to the path via Ant’s -1i b option. You can include this directory
in the ANT_ARGS environment variable for automatic inclusion.

* Copy the two JAR files from the temporary directory into the $HOVE/ . ant /| i b folder
below your home directory. The library will be available on all projects which may lead
to library version conflicts.

* Copy the two JAR files from the temporary directory into the SANT_HOVE/ | i b directory
of your Ant installation. The library will be available to all users of a machine on all
projects which may lead to library version conflicts.

Please note that you should make sure that no other Jalopy binaries are in the class path.
Again you might need to check the global $ANT_HOVE/ | i b directory of your Ant installa-
tion, the user specific $HOME/ . ant /| i b folder and any directories you include with the -
lib option when running Ant, and remove any older j al opy-*. j ar entries.

Configuration

Although Jalopy ships with sensible default settings (mimicking the Sun Java coding con-
vention), you most likely want to configure the formatter to match your needs (adding
copyright headers, tune Javadoc handling and the like). For such, Jalopy comes with a
graphical configuration tool that lets you interactively customize the settings. See Chap-
ter 2, Configuration for an in-depth discussion of the available options.

To display the configuration tool, you should use the matching wrapper script for your
platform. The wrapper scripts are called j al opy. xxx. Open a shell and invoke the script
with the - - conf i gur e option:

% j al opy --configure
Or you can execute the JAR directly with
% java -jar jalopy-1.9.3.jar --configure

When you're done configuring the settings, you should export the code convention as de-
scribed in Section 2.1.1.8, “Export code convention”. The exported settings file is typically
used as part of the Jalopy task configuration in the build script.

CONFIGURATION 298

http://ant.apache.org/manual/running.html#options
http://ant.apache.org/manual/running.html#files

4.3

299

Usage

Before you can use the Jalopy Ant task in your build scripts, you have to define the task.
This can be done in several ways, depending on the Ant and Jalopy versions you use.

The most conservative way to define the task that works with all versions, is to utilize
the <taskdef> element in your build script and specify the class name of the Jalopy task. In
order to achieve a self-contained build, you should not place the Jalopy libraries into your
Ant/1i b folder, but use the classpath attribute to point to the binaries:

Example 4.1. Task definition with specific class path

<t askdef nanme="j al opy"
cl assnanme="com tri emax. Jal opyTask"
cl asspat h="%{deps}/jal opy-ant-1.9.3.jar" />

Please note that it’s sufficient to reference the Jalopy Ant task library, if the core engine file
sits in the same directory (which should be the norm).

If the Jalopy libraries have been added to the Ant class path (by placing them in the
Ant/ | i b folder), you can simply bind the task as follows:

Example 4.2. Task definition with global search path
<t askdef nanme="j al opy" cl assnane="comtriemax.Jal opyTask" />

After the task has been defined, you can use it in the same manner like any other task:

Example 4.3. Task usage without namespace

<target name="format">
<jalopy ...>

</j al opy>
</target>

Since Jalopy 1.9.3, you can utilize the library feature available with Ant 1.6 or later. When
the library has been added to the Ant class path, you can either bind the task globally for
the whole script:

Example 4.4. Task definition via project namespace declaration
<proj ect name="foo" xmns:triemax="antlib:comtriemax" ...>

</ proj ect>

Or limited to a specific target:

Example 4.5. Task definition via target namespace declaration
<target name="jal opy" xm ns:triemax="antlib:comtrienmax" />

<target/>

Declaring the namespace will automatically load the task and you can access it using the
prefixed name defined in the declaration:

Example 4.6. Task usage with namespace

<target name="format">
<trienmax:jalopy ...>

</triemax:jal opy>
</target>

CHAPTER 4 ANT TASK

http://ant.apache.org/manual/CoreTasks/taskdef.html

4.3.1

But it is usually more sensible to leave the Ant class path alone and instead explicitly handle
the class path in the build script to achieve a self-contained build process:

<target name="format">
<typedef resource="conitriemax/antlib.xm" classpath="${deps}" />
<jalopy ...>

</j al opy>
</target>

Nested <fileset> elements can and should be used to specify the source files and/or direc-
tories:

<target name="format">
<jalopy ...>
<fileset dir="${dir.src.java}l">
<i ncl ude name="**/*_java" />
</fil eset>
</j al opy>
</target>

You can also set user environment variables for a run by using nested <variable> elements.

Parameters

The task itself can take several parameters to control the runtime behavior of Jalopy. The
parameters are optional. When omitted, your current profile settings will be used. But it
is recommended that at least a settings file is specified. The valid parameters are listed in
the table below.

Table 4.1. Jalopy Ant task parameters

Attribute Type Description Since Required

backup Boolean Sets whether backup copies of all processed source files 1.0 No
should be kept. When omitted, the corresponding code
convention setting will be used (see Section 2.2.2.2,
“Backup”)

classpath Path The class path to setup the type repository with. If you 1.9.3 No
want the import optimization or Insert Serial Version UID
features to work, you have to specify the class path you
use to compile your sources here.

The referenced path must contain all types that are need-
ed by your project. Specifying the Java runtime classes is
optional; if they are omitted, the runtime classes used by
Ant will be automatically added

classpathref String The class path to setup the type repository with, given as 1.0 No
a reference to a path defined elsewhere. If you want the
import optimization or Insert Serial Version UID features
to work, you have to specify the class path reference you
use to compile your sources here.

The referenced path must contain all types that are need-
ed by your project. Specifying the Java runtime classes is
optional; if they are omitted, the runtime classes used by
Ant will be automatically added

convention String Sets the location to the code convention settings file to 1.0 No
use—given either relative to the project’s base directory
or as an absolute local path or internet address (refer to

PARAMETERS 300

http://ant.apache.org/manual/CoreTypes/fileset.html
http://ant.apache.org/manual/using.html#references

Attribute Type Description Since Required

Section 2.1.1.8, "Export code convention” for information
how to export your settings). WWhen omitted, and no profile
is specified, the settings of the currently active profile will
be used

—

destdir String Sets the destination directory to create/copy all formatting 1.0 No
output into. If the given directory does not exist, it will
be created. When omitted, all input files will simply be

overridden

encoding String Sets the encoding that controls how Jalopy interprets text 1.0 No
files containing characters beyond the ASCII character set.
Defaults to the platform default encoding

failonerror Boolean Sets whether a run should be held if errors occurred. De- 1.0 No
faults to “true”

file String Specifies a single source file to format. 1.0 Yes, if no
fileset s
specified

fileformat String Sets the file format of the output files. The file format 1.0 No
controls what end of line character is used. Either one of
“UNIX” “"DOS” “DEFAULT" or "AUTO" can be used (case
insensitive). Defaults to "AUTO"

force Boolean Sets whether the formatting of files should be forced, 1.0 No
even if a file is up-to-date. Defaults to “false”

fork Boolean Sets whether the processing should be performed in a 1.0 No
separate VM. Defaults to “false”

history String Sets the history policy to use. Either one of “ADLER32"7 1.0.3 No
“CRC32" or "NONE" can be used (case insensitive).
When omitted, the corresponding code convention set-
ting will used (see Section 2.2.2.1, "History”)

inputEncoding String Sets the character encoding that controls how Jalopy in- 1.6 No
terprets input text files containing characters beyond the
ASCII character set. Defaults to the platform default en-
coding. Please note that this setting always overrides en-
coding

javadoc String Indicates whether Javadoc related messages should be 1.0 No
printed. Defaults to “true”

loglevel String Specifies the logging level for message output. Either one 1.0 No
of "ERROR” "WARN"” “INFO" or "DEBUG" can be used
(case insensitive). WWhen omitted, the current code con-
vention settings will be used (see Section 2.6.1, “Cate-
gories”)

log String Specifies the log file to use for logging output. The format 1.0.3 No
of the logging output is determined by the extension of
the given file. Valid extensions are “log” for a custom plain
text format, “xml” for a plain XML format and “html” for
an hierarchical HTML report. When omitted, the current
code convention setting will be used (see Section 2.6.2,
“Logging”)

outputEncoding String Sets the character encoding Jalopy uses to write files. De- 1.6 No
faults to the platform default encoding. Please note that
this setting always overrides encoding

profile String Sets the Jalopy profile that should be activated during the 1.5 No
formatting run (refer to Section 2.1.1.1, "Main window"”
for more information about profiles). The currently active
profile will be restored after formatting. Please note that
the profile must exist!

repository Boolean Indicates whether the type repository should be used for 1.6 No
type lookup. When disabled, this currently means that all
dependent features despite the import optimization will

301 CHAPTER 4 ANT TASK

4.3.2

Attribute Type Description Since Required

be disabled! Only meaningful if classpathrefhas been set.
You may want to use this option if you commonly format
a single file or only a sets of files in order to avoid the
maintenance overhead of the type repository. Defaults to
“true”

test Boolean Sets whether formatting output should actually be written 1.0 No
to disk. If set to “true” no output will be written to disk.
The default is “false”

threads Integer Specifies the number of processing threads to use. Inte- 1.0 No
ger between 1 - 8. When omitted, the current code con-
vention setting will be used

Parameters specified as nested elements

Some parameters may be specified as nested elements.

<classpath>

The class path might be alternatively specified using the nested <classpath> element. It is
recommended to use the same class path as with your compile target, to ensure that all
project types are accessible.

Since 1.9.3

<jalopy ...>
<cl asspat h>
<pat hel ement nanme="${cl asspath}" />
</ cl asspat h>

</j al opy>

<variable>

Used to specify a user environment variable that shall be available during a run. If a variable
with the given name already exists, its value will be overridden during the run and restored
afterwards.

Since 1.0

Table 4.2. Nested variable parameter

Attribute Type Description Required
name String Specifies the name of the variable. Yes

value String Specifies the value that should be assigned to the variable. Yes
<jalopy ...>

<vari abl e nane="aut hor" val ue="John Doo" />

</j al opy>

PARAMETERS SPECIFIED AS NESTED ELEMENTS 302

http://ant.apache.org/manual/using.html#path

4.4

303

Example

The following example demonstrates how you can make use of the Jalopy Ant task. Note
that the f or mat target depends on the conpi | e target. This way we can make sure that
the provided class path covers the complete type information.

<?xm version="1.0" ?>
<proj ect name="nyProject" default="format" basedir=".">

<property nane="dir.conpile" val ue="${basedir}/build/cl asses" />
<property name="dir.lib" val ue="${basedir}/lib" />
<property nane="dir.src.java" val ue="${basedir}/src/ min/java" />

<l-- -->
<!-- Defines the project class path -->
<l-- -->
<path id="project.classpath" >

<l-- our conpilation directory -->

<pat hel enment | ocation="${dir.conpile}" />

<l-- needed 3rd party libraries -->

<fileset dir="${dir.lib}" >
<i nclude nanme="**/*_jar" />
</fileset>

</ pat h>

<l-- -->
<l-- Conpiles the project sources -->

<l-- -->

<target name="conpile">
<javac destdir="${dir.conpile}" classpathref="project.classpath">
<src path="${dir.src.java}" />

</javac>
</target>
<l-- Tz
<!-- Formats the project source -->
<l-- Tz

<target name="format" depends="conpile">
<l--
Load the task using explicit class path. Please note that it's sufficient
to reference the Jalopy Ant library JARif the core engine JAR sits in
the sanme directory (which should be the norm
-->
<t ypedef resource="conftrienax/antlib.xm"
cl asspat h="${basedir}/../deps/jal opy-ant-1.9.3.jar" />

<l--
I nvokes Jal opy as foll ows:

| oad the code convention fromthe given ur

- the inport optimzation feature will work (if enabled in the code
convention), because a class path reference is given

- all formatted files will have unix file format (\n)

- override the convention to use al der32 checksuns of files as history
policy

- override the convention to use |loglevel "info

- the task will use 4 worker threads

- the user environnent variable 'author' is set and the val ue

" John Doo' assigned

Since Jalopy 1.3 an include pattern is no | onger necessary if you want

to format all supported source files of a directory structure
-->

CHAPTER 4 ANT TASK

<j al opy convention="http://shared-server/cisco-ong. xm"
cl asspat href =" proj ect . cl asspat h"
fileformat="unix"
hi st ory="adl er 32"
| ogl evel ="i nf 0"

t hreads="4">
<vari abl e nane="aut hor" val ue="John Doo" />
<fileset dir="${dir.src.java}">
<i nclude name="**/* java" />
</fileset>
</j al opy>
</target>
</ pr oj ect >

EXAMPLE 304

Chapter 5. Console Application

5.1

5.1.1

5.1.2

Describes the installation and usage of the Console Plug-in. The Console Plug-in provides
a powerful command-line interface for Jalopy.

Installation

Explains the steps involved to install the Console Plug-in.

System requirements

See Section 1.1, “System requirements” for the basic requirements to run Jalopy.

Installation

The Plug-in comes as an executable Jar Archive (JAR) that contains a graphical setup wizard
to let you easily install the software. Wizard installation is recommended and explained in
detail in Section 1.3, “Wizard Installation”.

If you would rather install the Plug-in manually, you have to decompress and copy the
appropriate files into the different application and/or settings folders. To decompress the
contents of the installer JAR, you can often use the build-in support of your file manager
(e.g. Nautilus) or any other software that can handle the ZIP compression format (e.g. 7Zip,
WinZip or Stuffit Expander). If you don’t have access to one of the convenience tools, you
might resort to the jar command-line application that ships with your Java distribution.

If you're upgrading from a prior version and want to keep your settings, first copy or
rename the current Jalopy settings directory to match the version number of the new release.
For instance, if your current settings directory is C: \ Docunent s and Set t i ngs\ John Doo
\ . j al opy\ 1. 9 and you're about to install Jalopy 1.9.3, either copy the directory contents
or rename it to C:\ Docunents and Settings\.jal opy\John Doo\1.9.3. Wizard
installation can perform this step automatically.

Decompress the contents of the JAR file into a temporary directory. Afterwards create
the actual installation directory, e.g. C:\ Program Fi | es\ Jal opy or /usr/local /| a-
va/ j al opy whatever. Create a new subfolder /I i b and copy the file j al opy-1.9.3.j ar
from the temporary directory into the /I i b folder. Copy the / bi n folder from the tempo-
rary directory into the installation directory.

To invoke Jalopy, you can find wrapper scripts for the common platforms in the / bi n
folder. You may want to add this folder to your path. If your platform is not covered, you
should make use of the -j ar or - cp options of the Java application launcher (the java
command), since this requires no class path manipulation (see Section 5.3.1, “Synopsis”
below).

But if you dont want to use any of these options, you can add j al opy-1.9. 3. j ar to
your class path as usual. For the Unix Bash shell, this means can be achieved using

% export CLASSPATH=${ CLASSPATH}: <JALOPY_HOVE>/1ib/jal opy-1.9.3.jar

For Windows, use something like

305

http://projects.gnome.org/nautilus/
http://www.7-zip.org/
http://www.winzip.com/
http://my.smithmicro.com/mac/stuffit/expander.html
http://java.sun.com/docs/books/tutorial/deployment/jar/unpack.html

% set CLASSPATHEUCLASSPATHY <JALOPY _HOVE>\ | i b\j al opy-1.9. 3.j ar

Refer to your system documentation on how to apply these changes more permanently.

5.2 Configuration

Although Jalopy ships with sensible default settings (mimicking the Sun Java coding con-
vention), you most likely want to configure the formatter to match your needs (adding
copyright headers, tune Javadoc handling and the like). For such, Jalopy comes with a
graphical configuration tool that lets you interactively customize the settings. See Chap-
ter 2, Configuration for an in-depth discussion of the available options.

To display the settings dialog you should use the provided wrapper script for your plat-
form, called j al opy. xxx (available in the / bi n folder of the distribution).

% j al opy --configure

Jalopy comes as an executable JAR file, you therefore can make use of the -jar option of
the Java launcher:

% java -jar jalopy-1.9.3.jar --configure

Or you give the class path directly to the launcher

% java -cp jalopy-1.9.3.jar Jalopy --configure

Of course, you can externally configure the class path yourself by adding all . j ar files as

usual and then type

% java Jal opy --configure

on the console.

5.3 Usage

Presents the available command-line options along with some usage examples.

5.3.1 Synopsis

To start Jalopy from the command-line you may either use the provided launch script

% jalopy [-options] filespec...

Or use the Java launcher to execute the Jalopy binary directly

%java -jar jalopy-1.9.3.jar [-options] filespec...

Or use the Java launcher to call the main class

%java -cp jalopy-1.9.3.jar Jalopy [-options] filespec...

Or manually configure the class path and use the Java launcher to invoke the main class

% java Jalopy [-options] fil espec...

CONFIGURATION 306

Options

The command-line interface provides many options to control runtime behavior.

Table 5.1. Jalopy Console Plug-in command-line options

Option Long Option Arguments Description Since

—classpath <filepath> Specifies the class path to use for type lookup. Entries 1.1
are separated by semi colons. If you want to have either
one of the Optimize imports, Insert Serial Version UID or
Ignore runtime exceptions features working, you need
to specify the class path used to compile your project
here.

The class path must contain all types that are needed
by your project. Specifying the Java runtime classes is
optional - if they are omitted, the runtime classes of the
running VM will be automatically added.

As a special convenience, specifying a directory is
considered equivalent to specifying a list of all the files
in the directory with the extension .jar or .JAR

--configure Invokes the graphical configuration dialog 1.0

-C --convention <filepath> Specifies the absolute path to the exported code con- 1.0
vention whose settings should be used for formatting,
e.g. “/work/quality/otng-jalopy. xm".

Please note that specifying an exported code conven-
tion impacts your local profiles as Jalopy will import the
code convention into the corresponding profile. If no
profile with the name stored in the exported code con-
tention exists, it will be created. Specifying a distinct
profile to use via the -p,—profile option is therefore use-
less in this case. When omitted, the settings of the ac-
tive profile will be used

-d —-dest <filepath> Sets the destination directory to create/copy all format- 1.0
ting output into. Expects a valid directory name. If the
specified directory does not exist, it will be created.
When omitted, all input files will be overridden

-e —-encoding <string> Specifies the encoding that controls how Jalopy in- 1.0

terprets text files containing characters beyond the
ASCII character set. Expects a Java supported charac-
ter encoding name (like “US-ASCII} “ISO-8859-1" or
“UTF-8"). Consult the release documentation for your
Java implementation to see what encodings are sup-
ported. Please note that currently Jalopy does not sup-
port any “UTF-16" encoding. When omitted, the plat-
form default encoding will be used

—filespec <filepath> Specifies the absolute path to a file that defines the file- 1.7
specs to use for formatting (see below). The filespec
strings must be separated by line delimiters. Empty
lines are ignored. Please note that you can still define
filespecs directly on the command-line. When omitted,
the file specs defined on the command-line will be used

-f —-format <string> Sets the file format of the output files. The file format 1.0
controls what end-of-line character is used. Expects ei-
ther one of “UNIX" “DOS" “MAC" “DEFAULT" or "AU-
TO” (case insensitive). When omitted, the correspond-
ing code convention setting will be used

-force Sets whether the formatting of files should be forced, 1.0
even if a file is up-to-date. When omitted, the corre-
sponding code convention setting will be used

-h ~help Displays a short help 1.0

307 CHAPTER 5 CONSOLE APPLICATION

Option Long Option

Arguments

Description

Since

—history

<string>

Sets the history policy to use. Either one of "ADLER32"
“CRC32" or "NONE" can be used (case insensitive).
When omitted, the corresponding code convention set-
ting will used

1.0

—-input

<string>

Specifies the encoding that controls how Jalopy inter-
prets input text files containing characters beyond the
ASCII character set. Expects a Java supported charac-
ter encoding name (like “US-ASCII7 "ISO-8859-1" or
“UTF-8"). Consult the release documentation for your
Java implementation to see what encodings are sup-
ported. Please note that Jalopy does not yet support any
“UTF-16" encoding. When omitted, the platform default
encoding will be used

= —loglevel

<string>

Specifies the logging level for message output. Ex-
pects either one of “ERROR’ “WARN! “INFO" or
"DEBUG" (case insensitive). When omitted, the corre-
sponding code convention settings will be used

—-look

<string>

Defines the Swing Look & Feel that should be used. Ex-
pects either the fully qualified name of a Swing Look &
Feel that can be found on the class path. Or the abbre-
viation for some well known Look & Feels: Alloy, Black-
Star, GreenDream, Liquid, Metal, Motif, Nimbus, PGS,
Plastic, Plastic3d, PlasticXP, Synthetica, Windows (case-
insensitive).

Only meaningful in combination with the —-configure op-
tion. When omitted, the default Look & Feel will be used
(varies from platform to platform, but can be configured
via the “swing.properties” preferences file)

—nobackup

Indicates that no backup copies should be kept. When
omitted, the corresponding code convention setting will
be used

—nofail

Indicates that processing should not stop when an error
occurred. When omitted, processing terminates when
an error occurs

--norepository

Indicates that the type repository should not be used for
type lookup. Please note that this currently means that
all dependent features despite the import optimization
will be disabled! Only meaningful when —-classpath has
been set.

You may want to use this option if you commonly format
a single file or only a small portion of files in order to
avoid the maintenance overhead of the type repository.
When omitted, the disk based type repository will be
used

-—output

-0 —-override

<string>

<filepath> or
<string>

Specifies the character encoding that Jalopy uses to
write text files. Expects a Java supported charac-
ter encoding name (like “US-ASCII7 "ISO-8859-1" or
“UTF-8"). Consult the release documentation for your
Java implementation to see what encodings are sup-
ported. Please note that currently Jalopy does not sup-
port any “UTF-16" encoding. When omitted, the plat-
form default encoding will be used

Specifies local environment variable overrides. The val-
ue might either be a file path pointing to a properties
file with key/value pairs. Or you may specify the key/
value pair(s) directly using a key=val ue notation where
the different pairs are separated by semicolons, e.g. - o
"; aut hor =John Doo; pr oj ect =FQZZY"

SYNOPSIS

308

309

Option Long Option Arguments Description Since

Please note that when you want to specify several vari-
ables, the value string must be enclosed with quotes!
Please refer to Section 2.4, “Environment” for more in-
formation about environment variables. When omitted,
only the environment variables defined in the code con-
vention will be used

—priority <integer> Sets the priority to use for worker threads. Expects an 1.9.2
integer between 1-10 (inclusive). Bigger number means
higher priority. Defaults to 5

-p —profile <string> Sets the Jalopy profile that should be activated during 1.2.1
the formatting run. Expects the name of an existing pro-
file, e.g. “default” for the default profile. The current-
ly active profile will be restored after formatting. When
omitted, the currently active profile will be used if no
code convention is specified

—-progress <string> Displays a progress bar during formatting. Runtime 1.9.2
messages will be stored in the file “jalopy.log” in the
current working directory

-q —quiet Suppresses noncritical messages. When omitted, the 1.0
message settings of the code convention will be used

-r —-recursive Recursively formats all files in the specified directories. 1.0
When omitted, only the files in the specified directories
will be formatted

—~test <boolean> Sets whether formatting output should actually be writ- 1.0
ten to disk. If set to “true” no output will be written to
disk. When omitted, all output will be written to disk

-t —thread <integer> Specifies the number of processing threads to use. 1.0
Expects an integer argument between 1-8 (inclusive).
When omitted, the corresponding code convention set-
ting will be used

—track <filepath> Specifies the absolute path to a file where Jalopy will 1.4
keep track of those files that would be actually format-
ted during a run. The file path strings will be separated
by the platform line delimiter. Implies —test. WWhen omit-
ted, no track file will be written

Filespec

Filespecs define the source files and/or directories that should be formatted. You can specify
as many filespecs as you want, where filespec describes either file paths, directories or filter
expressions. If no filespec is given and no --fil espec option specified, Jalopy starts
listening on STDIN.

You can use any valid regular expression as a filter expression. Jalopy uses Java’s build-
in regular expression engine which is roughly equivalent with Perl 5 regular expres-
sions. The syntax is explained here: http://java.sun.com/javase/6/docs/api/java/util/regex/
Pattern.html. For a more precise description of the behavior of regular expression constructs
consult Mastering Regular Expressions [Fried197].

Examples

% jalopy -r /dev/foolsrc/java

CHAPTER 5 CONSOLE APPLICATION

http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html
http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html

EXAMPLES

Formats all source files found in directory / dev/ f oo/ sr ¢/ j ava and all subdirectories. The
settings from the active profile are used.

Example 5.2. Sample command-line usage

%jalopy -d /test/foo -f DOS Filel.java Filel.java

Formats the two files Fi | el. j ava and Fi | 2. j ava and writes the new files into directory
I test/foo. Uses the settings from the active profile, but sets DOS as the file format used
to write the files.

Example 5.3. Sample command-line usage

%jalopy -c /quality/foo.xml -r -d /test/foo ™A *java

Formats all Java source files found in the current directory and all subfolders whose name
start with a capital 'A" and writes the new files into directory / t est / f oo. The settings of
the code convention / qual i ty/ f 0o. xml are used.

Example 5.4. Sample command-line usage

% type C:\Sources\Foo.java | jalopy > Foo.java

Formats the file C: \ Sour ces\ Foo. j ava read from STDIN and outputs its formatted con-
tents to the file Foo. j ava in the current directory using the active profile.

Example 5.5. Sample command-line usage

% java -cp /usr/local/jal opy/jal opy-1.9.3.jar Jal opy
--convention=/usr/ | ocal /jal opy/jal opy. xm --norepository \
--filespec=/tnp/ 3bDOVB. | st --track=/tnp/t XOrtE. | st

Formats all files specified in / t mp/ 3bDOW8. | st according to the given code convention,
uses in-memory type lookup, and writes the paths of all files that were actually modified
to the track file / t np/ t XO7t E. | st . | st . This is the typical invocation pattern when using
Jalopy in a SCM pre-commit trigger to verify that all files have been formatted prior to
check-in.

310

Chapter 6. Eclipse Plug-in

6.1

6.1.1

6.1.2

Describes the installation and usage of the Jalopy Eclipse Plug-in. Eclipse [Link] is an open
platform for tool integration built by an open community of tool providers. Operating
under an open source paradigm, with a common public license that provides royalty free
source code and world wide redistribution rights, the Eclipse platform provides tool devel-
opers with ultimate flexibility and control over their software technology. Please note that
the Plug-in also supports other Eclipse based products, like IBM Websphere Application
Developer (WSAD), IBM Rational Application Developer (RAD), JBoss Developer Stu-
dio, CodeGear JBuilder, Genuitec MyEclipse etc.

Installation
Explains the steps involved to install the Eclipse Plug-in.

System requirements

The Plug-in requires Eclipse 3.0 or later. See Section 1.1, “System requirements” for the
basic requirements to run Jalopy.

Setup

The Plug-in comes as an executable Jar Archive (JAR) that contains a graphical setup wizard
to let you easily install the software. Wizard installation is recommended and explained in
detail in Section 1.3, “Wizard Installation”.

If you would rather install the Plug-in manually, you have to decompress and copy the
appropriate files into the different application and/or settings folders. To decompress the
contents of the installer JAR, you can often use the build-in support of your file manager
(e.g. Nautilus) or any other software that can handle the ZIP compression format (e.g. 7Zip,
WinZip or Stuffit Expander). If you don’t have access to one of the convenience tools, you
might resort to the jar command-line application that ships with your Java distribution.

If youre upgrading from a prior version and want to keep your settings, first copy or
rename the current Jalopy settings directory to match the version number of the new release.
For instance, if your current settings directory is C: \ Docunent s and Set t i ngs\ John Doo
\ . j al opy\ 1. 9 and you're about to install Jalopy 1.9.3, either copy the directory contents
or rename it to C:\ Docunents and Settings\.jal opy\John Doo\1.9.3. Wizard
installation can perform this step automatically.

Make sure Eclipse is not running and remove any present com trienax.
j al opy_1. 9. 3 directory in your Eclipse plugin folder. This folder is usually located in the
root directory of your Eclipse installation, e.g. C:\ Program Fi | es\ Ecl i pse\ pl ugi ns\ .

Copy the Jalopy Plug-in folder com tri enax. j al opy_1. 9. 3 from the temporary di-
rectory into the Eclipse plugin folder. Then place the two JAR files j al opy-1.9. 3. j ar

and j al opy-eclipse-1.9.3.jar from the temporary directory into the Jalopy Plug-in
folder.

311

http://projects.gnome.org/nautilus/
http://www.7-zip.org/
http://www.winzip.com/
http://my.smithmicro.com/mac/stuffit/expander.html
http://java.sun.com/docs/books/tutorial/deployment/jar/unpack.html

6.2

6.2.1

If you are running Eclipse 2.1, as a final step delete the file pl ugi n. xm from the Jalopy
Plug-in folder and rename the file pl ugi n. xm - 2. x. xm to pl ugi n. xni .

Integration
Describes how the Plug-in integrates into the Eclipse IDE.

Preferences

The Jalopy preferences are available through the Eclipse preferences dialog. In order to access
the preferences, on Mac OS X you use Eclipse > Preferences... and select the Jalopy item on
the left pane. On other platforms the dialog is available through Window > Preferences....
In order to quickly locate the item, you might want to type “Jalopy” in the filter field at
the top of the left pane.

Figure 6.1. Main Jalopy Preferences page

&
- Prefeences %
: Irl,l:i:h filbar toxt Jalopy
®P [
Ir Ceneral avallahle Profiles- -
Boant = default | Ldin..., i
9 E :mnuu d —
- nstall/Update T ericsson | fdd...
Tl sbb
FooJava 1 techmikar
I Plug-in Develapment B triemasx
- [+ Runi/Dehug =1 unlttest
[Team
Import...
R l—
::: a | sxpork..
b
I?-:. | Ok | Cancel :""
. T |
0 *oQ Wiritable L |

The main preferences page lets you manage your Jalopy profiles. A profile stores the actu-
al code convention that defines the formatting style, as well as user-specific data like file
and dialog histories. You can add, remove, configure, activate and associate any number of
profiles. For a detailed explanation of the available options, please refer to Section 2.1.1.1,
“Main window”.

INTEGRATION 312

NOTE Due to technical reasons it is currently not possible to configure profiles
from within Eclipse when running on Mac OS X. When using Mac OS
X, you need to invoke the Jalopy preferences dialog from outside Eclipse.
Simply install the Console Plug-in and invoke the dialog as described
in Section 5.2, “Configuration”. Configure your code convention and
afterwards export it to a file. From within Eclipse you can then import
this configuration

6.2.2 Java Editor pop-up menu

The software adds a new menu item to the pop-up menu of Java editors.

Format with Jalopy

Formats the contents of the editor. When currently some text is selected in the editor,
only the selected text will be formatted (selective formatting). This can be especially helpful
when editing portions of very large files, as selective formatting can speed up processing
considerably. But comes especially when you want to limit formatting to a specific file
portion in order to avoid unnecessary differences when editing a file that has not (yet) been
formatted according to the active code convention.

313 CHAPTER 6 ECLIPSE PLUG-IN

Figure 6.2. Editor pop-up menu

lava - gogale-collectionsf src/ com/{ geogle fcomman |/ base fFimalizableReference Queus
Fil= Edit Source HRefacbor MNawvsgat= Search Progct Bun Windew Help

Fow [#v ﬂu N | .jl v 1:r|"" "y hw - H |ﬁ||
A Package Fxplorer & 5 ﬂ| T FinalizabkerhantomRef... =0
— .:,, IOelags Fl._...l.l.-.-hl..l.l-'l.-.ﬂa.- m il aa Pt w rafe a0
B &| |- | & Unda Typing cirl+7 Quiz
i |
E = - = E -
w 3 pogule-collections b+ py Rewert gaer . got
- M :E f | Sawe .gethame
= i com.goagle.comm i[5, = o0 Dpen Declaration F3
E FimalizahleP ha L L Dpen Type Hisrarchy F4 fewe obje
[Finalizablepefe | | B ¥ open call Hierarchy Ctrla Ak H
r
0 rinalizab=fet 5 e Counic b Coutlirse Cirl+0
1 FinalizableSelt @ + Culck Type Hierarchy cCrrl=T
[T Ermahizableéea s Show In Shitt=Al+W ¥

Format with Jalapy

& I-'l.l.l.l.l‘11111+++++++++++++++ll

com.googkecomman.t ol | 3 3 Source Shift+al+5 »
b= import declarations 0 Refacior Shitt+All+T *
‘-i: lngger © Logger ':E :: v Beferences Y
= 5 rlﬁﬂ“!ih'ﬂ‘“ﬁfemnf E: 4 m:_hm‘nnn; }mcc:l) f;.r'a
@ " gerinstancel] :++ 5 Bun &s N F
Debug A * il
Team *
Compare With y
Beplace With »
Preferences...
Inpus Methads »

The default keyboard shortcut for this action is Ctrl-Shift-F10. To configure the shortcut,
open the Eclipse Keys preference page via Window > Preferences > Workbench > Keys.
Open the Source category and select the Format with Jalopy item.

JAVA EDITOR POP-UP MENU 314

Figure 6.3. Keyboard shortcut

[nrl:ve filter text | Kays (o
~ General
[Appearance Scherme. | Default &
Capabalities

Compare | Patck Jalopy

Conmnt Types
[Fdrars

Farmat with |alopy Shift+Ctrl+ Fl1m Editing Java Sou
m Prafarenas (Freference Page: Jalopy)

[Mewark Conme Show View [View: Jakapy)

Command Binding Whan

Pers pecinees
Search
Startup and Sh
e N
Welcome
B Workspace M Inchude unbound commands Copy Command |ﬂemm Rindii
FooAnt
P Help Hams: Format with lalopy DsCription:
b IinstallyU pdacs Einding: |shifts CirleFin J P | Formal the current edita
Jalopy
When: | Editing java Source % |
b Jawa
b Phig-in Develapn * in the hinding calumn danntes & kay conflict
P Runy De g
b Team
|Rnt~nnp]
T[> T — [+)

6.2.3 Project, Folder, File pop-up menus

The software adds a new menu item to the pop-up menu of projects, folders, packages and
Java source files in the Navigator and Package Explorer view of the Java perspective.

Format with Jalopy

Formats the selected item(s). Depending on the object type (working set, project, folder,
file) formats either all Java source files of the project, the contents of the selected folder(s),
including subfolders, or the currently selected source file(s).

315 CHAPTER 6 ECLIPSE PLUG-IN

Figure 6.4. Project pop-up menu

® Java - geggle-collections ! srefcom | geogle f comman f base/FinalizablePhantomReferan

Fil= Edit Source HRefacbor

::'u #.v ﬂ"‘ _"- 4

/e

2 v

= B 7] FinalizahkFhantomR,., B

Mawsgate Segrch Propct Bun Windew Help

= (&

[T} Finalizable Referanc... =0

|

e -
"C 7 = Copyright (C) 2007 Google Inc.

.. l
tl
b

b n o el LT 1 3
[Finalizah “ﬂ!. _|_1 icense, Vers on 2
B Fialiral Lo Into le except in complian
| imaliza a : I
I Finalizah Qpen in Mew Window F the Licenze at
|
[Finalizabl ©Pe0 Type Hierarchy F4 Qrenses /LTCENSE-2.8
i Sho In Shift+AI=W »)
- Finalizal ficable Law or agrecd
[¥1 Function,| {5 Cepy Crl+C §ronse is cistributes
[T Functions == Copy Qualified Names NODITIONS OF ANY KIKLC
[T pain, Java B Paste Cirlew | SPECLTLC larguage go
lcense,
[hullable)| B Delete Delebe
EToRINE Forar with Jakopy Daze;
|1 packag=-
- Build Path " pmReference:
W Precondi source Shift+AlL+5 »
[Predicate] Refactar shiftsalt+T 2
[Predicames . , .
m ﬂeh&renceu!mmrtm B {@code finalizeRefe
= g EXpart.. pe collectar reclains
11 Supplier_§ f&link jave.lang.ref.
[8 comogoagle. References !
Dher Jarations ¥ [~
4 Refresh (3 2]
Assign Working Sets...
Run as 3
Debug As]
Taam §
Compare ‘With]
Raestore from Lecal Histary.-.
Froperiies Alt+FEnter

6.3 Configuration

Although Jalopy ships with sensible default settings (mimicking the Sun Java coding con-
vention), you most likely want to configure the formatter to match your needs (adding
copyright headers, tune Javadoc handling and the like). For such, Jalopy comes with a
graphical configuration tool that lets you interactively customize the settings. See Chap-
ter 2, Configuration for an in-depth discussion of the available options. Please refer to Sec-
tion 6.2.1, “Preferences” for information on how to display the configuration tool from

within Eclipse.

CONFIGURATION

316

Chapter 7. IDEA Plug-in

7.1

711

7.1.2

7.2

Describes the installation and usage of the Jalopy Intellij IDEA Plug-in. Intelli] IDEA
[Link] is an intelligent Java IDE intensely focused on developer productivity. It provides a
robust combination of enhanced development tools, including: refactoring, J2EE support,
Ant, JUnit, and CVS integration. Packaged with an intelligent Java editor, coding assistance
and advanced code automation tools, IDEA enables Java programmers to boost their pro-
ductivity while reducing routine time consuming tasks.

Installation
Explains the steps involved to install the IDEA Plug-in.

System requirements

This Plug-in requires IDEA 5.0 or higher. See Section 1.1, “System requirements” for the
basic requirements to run Jalopy.

Setup

The Plug-in comes as an executable Jar Archive (JAR) that contains a graphical setup wizard
to let you easily install the software. Wizard installation is recommended and explained in
detail in Section 1.3, “Wizard Installation”.

If you would rather install the Plug-in manually, you have to decompress and copy the
appropriate files into the different application and/or settings folders. To decompress the
contents of the installer JAR, you can often use the build-in support of your file manager
(e.g. Nautilus) or any other software that can handle the ZIP compression format (e.g. 7Zip,
WinZip or Stuffit Expander). If you don’t have access to one of the convenience tools, you
might resort to the jar command-line application that ships with your Java distribution.

If you're upgrading from a prior version and want to keep your settings, first copy or
rename the current Jalopy settings directory to match the version number of the new release.
For instance, if your current settings directory is C: \ Docunent s and Set t i ngs\ John Doo
\ . j al opy\ 1. 9 and you're about to install Jalopy 1.9.3, either copy the directory contents
or rename it to C:\ Docunents and Settings\.jal opy\John Doo\1.9.3. Wizard
installation can perform this step automatically.

Make sure IDEA is not running and remove any present Jalopy files in your IDEA Plu-
gin folder. The IDEA Plugin folder is located in the root directory of your IDEA installa-
tion, e.g. C: \ Program Fi | es\ | DEA\ pl ugi ns. Check for a j al opy/ | i b subdirectory. If
it exists, delete its contents. Otherwise create it.

Then copy the two JAR files j al opy-1. 9. 3. jar andj al opy-idea-1.9. 3.j ar into
this pl ugi ns/j al opy/ | i b folder.

Integration
Describes how the Plug-in is integrated with the Intelli] IDEA IDE.

317

http://projects.gnome.org/nautilus/
http://www.7-zip.org/
http://www.winzip.com/
http://my.smithmicro.com/mac/stuffit/expander.html
http://java.sun.com/docs/books/tutorial/deployment/jar/unpack.html

7.2.1

7.2.2

SETTINGS

Settings

The Jalopy preferences are available through the IDEA preferences dialog. In order to access
the preferences, on Mac OS X you use Intelli] IDEA > Preferences... and select the Jalopy
item in the window. On other platforms the dialog is available through File > Settings....

Code Editor Pop-up Menu

The software adds a new menu item to the pop-up menu of Java code editors.

Format with Jalopy

Formats the contents of the editor. When currently some text is selected in the editor,
only the selected text will be formatted (selective formatting). This can be especially helpful
when editing portions of very large files, as selective formatting can speed up processing
considerably. But comes especially when you want to limit formatting to a specific file
portion in order to avoid unnecessary differences when editing a file that has not (yet) been
formatted according to the active code convention.

Figure 7.1. Code editor pop-up menu item

D eeset - (O Usershser IbeaPregocteitest] - [fest] - . heceoemloo) Ted java - Intelk] MEA T 002 = e
Eil: Edt Sewch Wiew GoTo Code Aeplyge Befector Build B Toolz Wersion Dontrol Windaws Help
EEl®2 SG|IREapnan(E=]re s
_E —'l || -"l —-| * (gh Test.java ;
ih E E El B' .- m por ke Sote foot =] L
; B s Tet A e SIS g
N L @ mainhuaid B4 1 Copy Sing+ 2 %
3 Cop Path Hrg+Lenschalb+2 3
3] oy Reference o T o chalb=o
E j Yiste gy f
= Taits.. Zrg +Umsrbalt ey :
T L Paile Srnple Alrg+ 0l Ll Fall i
o Colurnin Bode At +lmischal+Erfg :
& Jpen B '::
Fing Uszges. Sh+F7 ;
& brahge =
Befacto ¥ i
F
k] T Faworibes ¥ i
IR |
Fuliding ¥ E
Clase Ty +Fe
50 T [
It +F
Compile Testjaa FErg+Umschakt+F3
Laca [istony ¥
Cormpane with Cliphoans
@ Cornpare with Clink
—.':H—ml Tend Code Poink: ¥l
Farma: the selected fle with Jiopy 113 how DiFFWith Lier I :

318

7.2.3

71.2.4

319

Tool Windows Popup Menu

The software adds a new menu item to the pop-up menu of certain Tool Windows. Cur-
rently it adds an item to the Project, Structure, Commander and Hierarchy Tool Window.

Format with Jalopy

Formats the selected files. Depending on the state either all Java source files of the project,
the contents of the selected folder(s) (including subfolders) or the currently selected Java
source file(s).

Figure 7.2. Tool window pop-up menu item

I vieer - (O rer Ebea Pregacteytest] - [test] - . eecysoemyloo) Ted java - Intalk] EA T OMZ [e =
Fil Edt Sesech Wiew GoTo Code Seplyge Befoctor Build Run Tools Wersion Dontrol Windaess Help
Bl s G| - -)
; Hew k —
. W W
= - PR Skog +¢ =2
W Lo firges ?
wewaz: [Froject; Ciapre Pati Theg o Lenscnalb o]
- I-I-|-|.:|.'|| Copy Reference S whE+linschalk= ot 1IN :::
5 L i :]:I| Pente TR f—
n !Il‘\lil‘l Igrip =gy +Lr ity E
o - =
-51.. !Ih'\.liFr :l...'._. - Srg =t +Umisckshe sy - g i F F o i
i | YT urnn o Cource [>
-+]Ilh I Fararie Open in [rovsse e
+ ¥ ¢ 1w ;) 2
L ch find Lsages.. L L T R ﬁ
| Fingin Bath.. sy +Unnrchak=f o
++ |4 [T | O
Repalace in Path... Bg+Llrncball+R
I'I' (53 e
I-I- [jows Anbye r ;
i+ & jia, LE ST ¥ E
N . =
I-I- L83 juse Aedd To Fauonbes k 3
5 I Feovw ThumnbiFails SergeUmschalte | _3
A+ [jilis -
i e Ftrg+LUmachelb=F11
4 4] e
o Befarnat Code.. e vk L
A (81 i i R
’ Optimize [mparts, g +2k+0
=+ 14 sur
_ Dialit... Erdl
=+ B sur =
'+ s tiaks blodule "he st
|+ [Campale Corifog’ g +Llmsckhalt+FR
Lo o] TR Creats Tesss i com foa'™.. I _|_|
4 I I | | L3
L | Aun "Tash in 'comn.foo Strg+LUrmachelb+«F11
o .
R0 | B Dbug Tests im comfon'® l
-
arma; the selecied fils ar Local Histany L b mﬁl ¥
Fynchiorea Mo

Tool window

Jalopy displays all runtime messages in its own tool window. Messages are shown in a tree
control, with each branch containing the messages for a specific file, and individual messages
displayed as leafs. File messages show the number of leaves and the warning and error count.

The message types are differentiated with icons and by color: Errors are red with an error
icon, warnings are shown in blue and display a warning sign, informational messages are
black and carry a file icon and debugging messages are black and prepended by a bug icon.

CHAPTER 7 IDEA PLUG-IN

Figure 7.3. Jalopy Tool Window

Eile Edt Seaech Wiew GoTo Code Aenlyge Befoctor Build Bua Toolz Wersion Dontrol Windaw Hedp
CEH2 BG(IR [E aftnwBl=re s

g Testava |

Liu-E_:chmu:_nr-; IR

Gl &

o= 'il_ '-.'-:'-.Ll:uer:l"ul.l:ler'dl:lﬂprl:l'lle-:I::-".l:le R\Jr:‘ut-:lm'l.Fuu'-.TEJt-'lm il rme :-Hiii 1 ﬂmil 1] lerrl:lrsi

l..' En-ﬁi |i"| 'i"g'"ﬁ ! % Dara: 2£.08.2867 |§
* Tima: 23158154

wewasi T Project =l E # '.'ia-:h..fx_,-.sf'n;-. banplata vaa Fila | Sat g

=+ 5 bast e I E

g |I_|. = task (O s s use e rojects : public class Tesk | ;
@ C tib [e yaserddealrop | | N

i B re (e dinnrchusadduafre)s : i} public rinal static imt dpnstant - L3 :

IL" 55 comrfon J;- pablae swlhalic void ooy | ;

L@ Tex : —

A tastiml H b E

A bestipe [' b

A tastiaes : E

1= ilh Lismes | lﬁ,

ILI-E&-:!.E:H ':.-.-'-Jcl.lt-:l :

| i

! =

i

| £t 12220 | meet | ocfos | Sk (F

Clicking on a file name will open that file, clicking on a message that contains location
information will open the file containing the message and move the caret to the nominated
location.

TOOL WINDOW 320

7.3

321

Figure 7.4. Jalopy Tool Window Context Menu

TN mesez - [CUsershser Ebea Pregactsvtest] - [test] - . eecvsoeylom Tes java - Intelk] IEA T OMZ = e
Eile Edt Seaech Wiew GoTo Code Aenlyge Befoctor Build Bua Toolz Wersion Dontrol Windaw Hedp
EER 9G|ERE an e (ESEre|s
'—rl'—l .’Jl _.| = | E-IT-I.\T-;'HJ“- | E
- R e = Datm: 1% 07, 2007 Tl e
- : & Trma: 2N;53001
g rﬁ' Froject | | # To chapps tpiz tepplate pse Filse | Gat g
1| = ESibast, = i I.l. T Te 3
- : ar { | J
. S B fagh 0 e s erdes R S
ﬂ L i b ETEl i pabklic Fanal static imt coostant = L | — %
+:§IE H isertldieallvo) : =
e com oo T publdc stakic vold meim|l | — ;
L @ res : —
ﬂl bzsbim T Uy ﬂ
a1 txskipe . ;
Al best e ! i
-+ [l Lisranies | N
I;l|$--.:I.I:-J-l'.'.'.--.'..i.':l:- [':'
.i-.l L= charsers,pr (L ey ok | il =
| ——— sl ' i | ol /¢
|G & 12
b4 (=]
i@ OyUkercluser Lercicom) Foo’ | st javaldoh: expecting SEML tound)
O stcomtmiemal e L9k :
i@ al eom.rEema Clas 1 wr)
il st com.briema =0 il
@ al comLisEEma Smlsct &1 Tl
@ at com trbema pd elpd fawar IS4
i st eom rE=maxelsleljies: 106 3
i | | 1|
I E-:l TN ||_ Fllﬂ-:hp-.'J
[14:29 Trescit ook | “EHefra (F
The window provides a context menu with some useful actions.
Copy Copies the textual contents of the selected messages into the System clipboard. If a
message contains children, the contents of all children are copied as well
Clear Removes all selected messages
Clear All Removes all messages currently being displayed in the window
Select All Selects all messages currently being displayed in the window
Configuration

Although Jalopy ships with sensible default settings (mimicking the Sun Java coding con-
vention), you most likely want to configure the formatter to match your needs (adding
copyright headers, tune Javadoc handling and the like). For such, Jalopy comes with a
graphical configuration tool that lets you interactively customize the settings. See Chap-
ter 2, Configuration for an in-depth discussion of the available options.

Please refer to Section 7.2, “Integration” for information on how to display the config-
uration tool from within IDEA.

CHAPTER 7 IDEA PLUG-IN

Chapter 8. JDeveloper Extension

8.1

8.1.1

8.1.2

8.2

Describes the installation and usage of the Jalopy JDeveloper Plug-in Extension. Oracle
JDeveloper [Link] is an award-winning, comprehensive Java and Web services IDE. Opti-
mized to run with Oracle Application Server and Oracle Database, JDeveloper is commit-
ted to open standards and platforms, supporting all major J2EE application servers and
databases, and providing pure implementations for Struts, CVS, Ant and JUnit.

Installation
Explains the steps involved to install the JDeveloper Plug-in.

System requirements

The JDeveloper Plug-in requires JDeveloper 10g (9.0.5.1 - 10.1.2). See Section 1.1, “Sys-
tem requirements” for the basic requirements to run Jalopy.

Setup

The Plug-in comes as an executable Jar Archive (JAR) that contains a graphical setup wizard
to let you easily install the software. Wizard installation is recommended and explained in
detail in Section 1.3, “Wizard Installation”.

If you would rather install the Plug-in manually, you have to decompress and copy the
appropriate files into the different application and/or settings folders. To decompress the
contents of the installer JAR, you can often use the build-in support of your file manager
(e.g. Nautilus) or any other software that can handle the ZIP compression format (e.g. 7Zip,
WinZip or Stuffit Expander). If you don’t have access to one of the convenience tools, you
might resort to the jar command-line application that ships with your Java distribution.

If you're upgrading from a prior version and want to keep your settings, first copy or
rename the current Jalopy settings directory to match the version number of the new release.
For instance, if your current settings directory is C: \ Docunent s and Set t i ngs\ John Doo
\ . j al opy\ 1. 9 and you're about to install Jalopy 1.9.3, either copy the directory contents
or rename it to C:\ Docunents and Settings\.jal opy\John Doo\1.9.3. Wizard
installation can perform this step automatically.

Make sure JDeveloper is not running and remove any prior Jalopy JAR files from your
JDeveloper extension folder. The JDeveloper extension folder is located under the root di-
rectory of your JDeveloper installation, e.g. C: \ Progr am Fi | es\ JDevel oper\jdev\lib
\ ext . Remove all JAR files starting with j al opy- . Now decompress the contents of the in-
staller JAR file into a temporary directory and copy the two JAR files j al opy-1.9. 3. j ar
and j al opy-jdev-1.9.3.jar from the temporary directory into the JDeveloper exten-
sion folder.

Integration

Describes how the Plug-in integrates into JDeveloper.

323

http://projects.gnome.org/nautilus/
http://www.7-zip.org/
http://www.winzip.com/
http://my.smithmicro.com/mac/stuffit/expander.html
http://java.sun.com/docs/books/tutorial/deployment/jar/unpack.html

8.2.1 Preferences dialog
The Jalopy preferences are available through the JDeveloper preferences dialog. In order
to access the preferences, on Mac OS X you use JDeveloper > Preferences... and select the
Jalopy item on the left pane. On other platforms the dialog is available through Tools >
Preferences....

Figure 8.1. Main Jalopy Preferences page

- - fslaratons
- =&k
- Adit
[Code Edtor
-~ eake Sdn
- = Compane
k- Debugper
- - De=plopreert
Decimencation
Eal i
-~ File Types
-~ dohal 1grore List
Jrinn WVisual Bdbor
Prialier
el = T
B -Yersonrg
- ~‘'ab Bramser and Proxy
- = ¥ML Schemas

i Appsi i meoper-L0, LA, Jdevimywo ko emaOertsrdidentilon Java | Lns | Cokend | st | | windews: C Ldeng

The main preferences page lets you manage your Jalopy profiles. A profile stores the actu-
al code convention to define formatting output, as well as user-specific data like file and
dialog histories. You can add, remove, activate, map and configure any number of profiles.
For a detailed explanation of the available options, please refer to Section 2.1.1.1, “Main
window”.

Please note that Jalopy does not store its preferences within the IDE configuration files,
but uses its own provisions to store preferences in order to allow the resuse of Jalopy pref-
erences between different IDEs.

8.2.2 Navigator context menu
The software adds a new menu item into the context pop-up menu of the Navigator:

PREFERENCES DIALOG 324

8.2.3

325

Format with Jalopy

By selecting the “Format with Jalopy” menu item, all Java sources of the selected node are
formatted according to the current Jalopy preferences. The item appears in the pop-up
menu when the right mouse button is clicked on a Java source node or any other parent
node that may contain Java sources (such as Workspace, Project, Directory, EJB or BC4]
nodes).

Figure 8.2. JDeveloper Navigator context menu

Fie Edt Vies ZSearch Haagate Bun Debug Refgrber Venigramg Tools Windew Help
FeE9 90-90- 90 LAK J4& LB Mn- - S-bEA9A

e

GRAWG RAD: 34

dpublic class Foo !
= pwublic Fool) i

L
= .-;11-2 f=ar,, Sirg-H
it BH Fhatic wold wainStcing[] azgs) [
Lo0 = mewr Fao |l

Fead Lrsges
Islzke Riyy+Umechaik-FA
Febuild AR Mt Al
Batoerrat Elup+nbL
Crganize livgomts Fig+hb 0
Betactor

Forrnatwith Jalapy Bl lmschalbF0

Bestore Frarn Local Hetaig..
i

Mo Sinlurz

Editor context menu

The software adds a new menu item into the pop-up menu of Java code editors:

Format with Jalopy

Formats the contents of the editor. When currently some text is selected in the editor,
only the selected text will be formatted (selective formatting). This can be especially helpful
when editing portions of very large files, as selective formatting can speed up processing
considerably. But comes especially when you want to limit formatting to a specific file
portion in order to avoid unnecessary differences when editing a file that has not (yet) been
formatted according to the active code convention.

CHAPTER 8 JDEVELOPER EXTENSION

Figure 8.3. JDeveloper Editor context menu

Eie Edit View Zearch HWaagate FBun Oebug Source Fsfactor Vessioning Lools Wedow Help
FEeE9 0-@- 90 YEEH sS4 A e - -bAWN

Duick Javados
Snrrgurd Wik,
[efomrnat
Orzanige Imparts
Fefector
Farmateath Jalapy

' :;,."'. Lzzist ZirgrE=Lingaks

e g

B ooy B
,i' E‘ ﬂ"' =] | (] n’h nEIJtI

o~ i dient Sl il g
B8 EF'“' ind Lszges.., e A

i Focl) Make Stg=Unsahall 50

et - voed Hekaiild AbellmzchakF
B Fun
W Ucbug

Cornpane Wilk

Rapdaca Wikh

Zelact in Mavpator
Sounce E Prefereqoe:.,

| GreTcchmns | reet

8.24 Log window

Jalopy displays all runtime messages in its own log window. Messages are shown in a tree
control, with each branch containing the messages for a specific file, and individual messages
displayed as leafs. File messages displays the number of leaves and the warning and error
count.

The message types are differentiated with icons and by color: Errors are red with an error
icon, warnings are shown in blue and display a warning sign, informational messages are
black and carry a file icon and debugging messages are black and prepended by a bug icon.

LOG WINDOW 326

Figure 8.4. Jalopy Log Window

Fie Edit View Search Waagate Bun DOebug Source Fefactor Verssioning Tools Wedow Help

=09 -9 90 JOh 4 28 da- - -bEAWA

packags clisnt:

ERnuhlic class Foo !
= pebklic Foall §
H

Foo 200 = mesr ool

H

E_:_ DA e - STt s

L -EW, man[stnnell) : voud

Clicking on a file name will open that file, clicking on a message that contains location

information will open the file containing the message and move the caret to the nominated
location.

327 CHAPTER 8 JDEVELOPER EXTENSION

Figure 8.5. Jalopy Log Window Context Menu

Eie Edit View Zearch Haagate Bun Oebug Refpcbor Vemigmamg Tools Window Help
FeE9 0-¢- 90 YXEK J4 L2 e - 3-bEA9N

O packags clisnt:

public Class Foo
E public Fool)

public static wodld e2in(String[] azgs) [
Too foo = mesr Faclir

E_I_ DA e - STt s

5 - BB B : [leer
] Clee Ml

Lelect A1

8 o comtriempothHujawed I T)
- E al comd rrma] bl jawaeFTS)

:- ﬂ at comutriemmcocs xS javsH)
--E3 at comiriemmezd.alz3java)

The window provides a context menu with some useful actions.

Copy Copies the textual contents of the selected messages into the System clipboard. If a
message contains children, the contents of all children are copied as well

Clear Removes all selected messages

Clear All Removes all messages currently being displayed in the window

Select All Selects all messages currently being displayed in the window

8.25 Keyboard Accelerator

The extension adds a new category to the JDeveloper accelerator preferences:
* Tools > Preferences... > Accelerators

Select the “Jalopy” category and specify your preferred keyboard accelerator for the pro-
vided actions. The “Format” action is by default associated with St r g+Shi f t +F10.

KEYBOARD ACCELERATOR 328

8.3

329

Figure 8.6. JDeveloper accelerator preferences

-~k
- fwdit
[0 Code Edtor
= = Ceihe Sydn
- - Compsrne
k- Debugper
- - Deploement
DecumEncatian
F st preazie
- ~File Typen
-~ idobal Igrore List
- = Aslogry
iz Visual Eciber
Pralies
[- Tades
AE]. 44]
- = 'hab Dramser and Proxy
- — 4L Schemas

| ippcdmesloper-10, 1,3, Jlydevimyea kD emalchert| srfdimntiloa, java | Line | Coburen 4 et | | wndess: © Edking

Please note that the accelerators are global and the “Format” action considers the current
application context, i.e. if the editor view has the focus, the accelerator triggers the format-
ting of the active editor. If the System Navigator contains the focus, the accelerator triggers
the formatting of all selected nodes in the Navigator.

Configuration

Although Jalopy ships with sensible default settings (mimicking the Sun Java coding con-
vention), you most likely want to configure the formatter to match your needs (adding
copyright headers, tune Javadoc handling and the like). For such, Jalopy comes with a
graphical configuration tool that lets you interactively customize the settings. See Chapter 2,
Configuration for an in-depth discussion of the available options to configure formatting
output. Please refer to Section 8.2.1, “Preferences dialog” for information on how to display
the configuration tool from within JDeveloper.

CHAPTER 8 JDEVELOPER EXTENSION

Chapter 9. jEdit Plug-in

9.1

9.1.1

9.1.2

9.2

Describes the installation and usage of the Jalopy jEdit Plug-in. jEdit [Link] is a mature
programmer’s text editor written in Java that provides auto indent and syntax highlighting
for more than 130 languages and is easily extensible with its Plug-in architecture.

Installation
Explains the steps involved to install the jEdit Plug-in.

System requirements

The Jalopy jEdit Plug-in requires jEdit 4.1 or later. See Section 1.1, “System requirements”
for the basic requirements to run Jalopy.

Installation

The Plug-in comes as an executable Jar Archive (JAR) that contains a graphical setup wizard
to let you easily install the software. Wizard installation is recommended and explained in
detail in Section 1.3, “Wizard Installation”.

If you would rather install the Plug-in manually, you have to decompress and copy the
appropriate files into the different application and/or settings folders. To decompress the
contents of the installer JAR, you can often use the build-in support of your file manager
(e.g. Nautilus) or any other software that can handle the ZIP compression format (e.g. 7Zip,
WinZip or Stuffit Expander). If you don’t have access to one of the convenience tools, you
might resort to the jar command-line application that ships with your Java distribution.

If youre upgrading from a prior version and want to keep your settings, first copy or
rename the current Jalopy settings directory to match the version number of the new release.
For instance, if your current settings directory is C: \ Docunent s and Set t i ngs\ John Doo
\ . j al opy\ 1. 9 and you're about to install Jalopy 1.9.3, either copy the directory contents
or rename it to C:\ Docunents and Settings\.jal opy\John Doo\1.9.3. Wizard
installation can perform this step automatically.

Make sure jEdit is not running and remove any prior Jalopy JAR files in your jEdit
Plugin folder. The jEdit Plugin folder is located under the root directory of your jEdit
installation, e.g. C:\ Program Files\jEdit\jars. Remove all JAR files whose names
start with j al opy- . Now decompress the contents of the installer JAR file into a temporary
directory and copy the two JAR filesj al opy-1.9. 3. j ar andj al opy-jedit-1.9.3.jar
from the temporary directory into the jEdit Plugin folder.

Integration

Describes how the Plug-in integrates into jEdit.

331

http://projects.gnome.org/nautilus/
http://www.7-zip.org/
http://www.winzip.com/
http://my.smithmicro.com/mac/stuffit/expander.html
http://java.sun.com/docs/books/tutorial/deployment/jar/unpack.html

9.2.1

9.2.2

MENU BAR

Menu bar

The software adds a new menu item group into the Plugins menu of the main view. Available
are two new menu items:

Figure 9.1. jEdit menu bar items

Bl [Eidil - LinkTagTesl java _IEIEI
Eie Edil Searth Marsers Folding Yiss Lhlides Wagpos Elug;n3| Help
s B i Yy 7 G5 s ml O e el Slugn Managar =1t
X\ Cormimands "'l Tz 'I Fasrles - [LinkTapTesliass o Flugn Galions.. hlriprargestl.. =
[[Palh. lerdorghbripasediags w0 | cr=azeFy CrorLizl ¥ =i
@ [= Filler. 1'% Fommatacie Buflar &30 | Jalopy O
b = ar = ~ vlann, node
& i I: I Jalopy Oplians SrT10 = eIEL £l s [0] 5.
E I' a1 e | wreprpls SIEEICE b ;s v, mope]
E‘ s : Iﬂi ey 2zzeztTy TaskLis » Class, maods
- Harng [Twna LiTed | pitespane P
= B ApplelTsg s Fila 7= e2gar TRy Ml p |- i
Bl essebreMaglavs Flla 2 ¢
E EathTar) |ava Fila 7 | |
|| Euletjawa File " —|
&l EulellisLjana Fila 2 F I ; =
ol ComposileTagsva Tila 7 =
i 1 | [+ L | - | Acdvily Log [HyparSaan:h Rasiks | mETT
6751 [0 Bl Forrrest sunceden Foomat toos 80 milisecords, (aea,nore Cpl3si- - - - LEEENES |

* Plugins > Jalopy > Format active Buffer

Formats the contents of the active text area. Note that this menu item reflects the state
of the text area: it will only be enabled if the current edit mode is supported by Jalopy.

* Plugins > Jalopy > Jalopy Options....

Displays the Jalopy options dialog. Use this item if you want to change your settings to
control the layout of any formatted code.

Please note thatall options are available under jEdit’s Plugins > Plugin Options... dialog as
well, but the Jalopy dialog provides the advantage of a live-preview that makes editing the
options somewhat easier. You find the Jalopy settings system and options dialog described
in detail in Chapter 2, Configuration.

Dockable window

Jalopy displays all runtime messages in its own dockable window that works similar like to
the ErrorList Plug-in, but is not limited to just display errors and warnings. Messages are
shown in a tree control, with each branch containing the messages for a specific file, and
individual messages displayed as leafs. File messages display the number of leaves and the
warning and error count.

The message types are differentiated with icons and by color: Errors are red with an error
icon, warnings are shown in blue and display a warning sign, informational messages are
black and carry a file icon and debugging messages are black and prepended by a bug icon.

332

333

Figure 9.2. jEdit dockable window
mﬂ:'llil Link Tty Toms b jeivwaa o imasadaled) _ID|EI

Eie Edil Search Marsers Falding Yisw' Llildes Msiioz: Slugns Help

el o=l +% (5
B LinkTagTasl 5va e Lesihlm parsensmiongirnlparsenlestzilag a5 | -

I."I_

T Hug repoct oy Locy Hesferth,

® [ichzcos ExcspTion.

Ly

pubilic snid _reatliwEWiraIaTY bheows Becopriom .
wrembePar=er (CCn hrel="<k=dpplicalion("8lRFLy 12 7 o+,

mAliberatice sindes, by LiTe T atuT el sar Tt)i,

parsafndhissertlodeCommz (L1,
agaercTyEs | "aloald be lips tay™, linkTed.class, mode[0])).

| Fila System Browser | 4 | % |

[4] [i

I LinkTan | onkTem = flhinkTaqd rode 01
L k

IT]

&0 Wdnstidininarsersrennyidmniparsertestsitag Tesis'] inkTan Tesd jaes (0 neessages, 9 wsnming
A1 Package “orgdilmiparger desls g Tesle® does pol sdiene W psming comerdon ciolalas *[a-2
S 215 onsl warmala "LInkTag" dnes rof soqane b raing converdon sialaias "2
M 235 joczl warmsle "LunkTag® does rod adhens o pEmInG coneeracn falmss a2
B 908: Hever deckne hal 8 redod "theres Excaplion’ (10, Bem L
A anh: Waver declam that a rmediod "throves Freapdinn C10, hern £4)
"i';. 956 public melhod *_lesILinkndER* does nol schze W narming comenlion cadi=ies |6 o
a4 A5R; Maver daciame thata mathod “throess Excaplian® (10, hem 44

B 9E: I " - 100, berm £33
1 | I 3

[[= | activry Log | Hyparssarcr Rasuns | aony |

|55 17 [37] 83% Format suzceded Fommat ook 203 miligesonds. daeanore Cpl3s- - - - Um‘_lr:l |

Clicking on a file name will open that file, clicking on a message that contains location
information will open the file containing the message and move the caret to the nominated
location.

CHAPTER 9 JEDIT PLUG-IN

9.23

Figure 9.3. jEdit dockable window

iEdil - Lk TagTest jawa {imadalied) ;IEIEI
Ele Edil Searth Marsers Folding Wiss' Llldes Wacs: Slegns Help
_ el 54l % 55 EHE
|3 |88 LinkTagTaslsva by MesthlimparsensionghimiparseneststagTasls) - |
; Y [ichzcos ExcoepTion. |
— s
E publae: wued Leat] ookl UnJ3E LY R Bacephion {.
= rEskelarssr (UEs hreb=yCE=applicstiong TEURLY IR T o+,
E "wdlitrratuce dindex, b rLiteracurad a1,
= parsehndissestlodeComz (i) .
E A EETYES | Vakonld Be Like o™, liskTad.closs, Rode[0]h-
e
- LinkTag Linklzqg = (Linklsg) code L]:
assercitIingEcasla (™ sxpeaciced Link" .,
Chelpalicacian |y aCRLY " | A sliTeraTure Mlndex . bew', . [=]
linkTag.cechink i) s, 1
. -1
3

1|

e | e Ww

7 E e e pecied
@ yenasfiminar) SORE
B3 cteominemak pgar
st iemas
&b eom nermas et
sleomliernas SalaclAll
st o ernas CAETiA

a
@
]
@

/. JawaFarsar acd feaEeprasslond syaFanse

o ep

B Ardnsibdiniparsersroonybdviiparserteststan Tesds D inkTan Tesd. jaea (1 nmsﬂmnwms-*
IpasermaststayTasts L IrkTagTast Java B 38 unesna e io I—

e dmeaFarzerposhebErpressionilava-orser (o FHaE)

18 davaParsarurayCepressionMolT L sinusdsalarser e

|adaraFarsaruravEepressinnilava=arsar (ava 10987
e dmsaParsanimabiplicalveSpres o davaP arsen i, §900]

a3

[[= | activry Log | Hyparssarcr Rasuns | aony |
962,935 95%

Forirest falled. Farastiook 33 willizacands.

dava,none Cpl 357 - - - - L IR |

The window provides a context menu with some useful actions.

Copy Copies the textual contents of the selected messages into the System clipboard. If a
message contains children, the contents of all children are copied as well

Clear Removes all selected messages

Clear All Removes all messages currently being displayed in the window

Select All Selects all messages currently being displayed in the window

Keyboard shortcuts

You can define keyboard shortcuts for the different menu and dockable window actions via
the jEdit Shortcut options: Utilities > Global Options... > jEdit > Shortcuts. In the Edir
Shortcuts combo box, select Plugin: Jalopy Source Code Formatter to display the available

actions.

KEYBOARD SHORTCUTS

334

Figure 9.4. Define keyboard shortcuts

EI'.||||H|||'-|: jFuli: Slusridiilis EI
7 |Fodw |7 Edr Bhorcuts: |F'Iu;|r|: Jalops Bource Code Formatier |"l"
Abbrewiglons P
Appeararcd ; Commani Frimsre sharzut &ternattés shariut |
fulosave & Bacwn s Feprpat aofiya Sufer (G5
Caried Wenu :J:I:ln'\-' ez sages
Oackng T Halapy Meszages (..
silng “alape Mezsagas (T
Baradal “alops Opluns... C5+F10
Guter 3
WoLEa i
Frimlinig *
Pl Mansgar ;i
Frivew Bamers ¥
Eronleuls :
Stahs Bar i
=yria: Highhighling -
Ted Ares i
Tnnol Bar :
Wigre i
& Flle Sywhami Rrnwsar 3
Bereal g
Calorz i
p
[—— T
| cous || acan

9.24 Context menu
You can add the different menu and dockable window actions to the context menu of the
text area via the jEdit Context Menu options: Utilities > Global Options... > jEdit > Context
Menu. Press the + button and, select the Command or macro option and choose Plugin:
Jalopy Source Code Formatter to display the available actions.

Figure 9.5. Add actions to context menu

thll Lo Conlaet MiEnie EI

Aod o conlest menu:

=)
(L} E=parmo
W Carnreand o mac.

Fhagin: Jalopy Sovree Code FormEies -

Famial ache Euafe:

Julopy Kessapes

Jalopy kazsages e Tlosling Inlance)
lalnpy Wasaaces Toagis)

Jalopy Cpacns

 Caneel

335 CHAPTER 9 JEDIT PLUG-IN

9.2.5

File System Browser Plugins menu

Jalopy registers an action in the File System Browser Plugins menu to let you bulk format
files and/or directories selected in the browser. Please note that if nothing is selected in
the browser table component, the contents of the currently selected parent directory are

formatted.

Figure 9.6. File System Browser Plugins menu

&l (il

Linh T Tk java

=1

Ele Edil Searth Marsers Folding Wiss' Llldes Wacs: Slegns Help
* K= E !ILII l_ = i = _.:.- r i |.-| .:_l .: _..I- fs = -.;:“ l’-\.l" E. :. EI
X || Cornirandgs "l"l Plugires | Fawirbes - | LinkTapTesliavs dnashinmnlparsers dorphlmipamedl..| =
; Path. l=rclol Flugie Mansger... assprtEquals [Uplain Texc™, “Cities”, |&|
E ¥ Filler 1 By Gptinns b
= r
E ‘I—_ |:-|| Fanmat sRlAcial TIes sor
< ilmipar s =
= " | T Ges g F90ZL75 Falss Fositiwes oo sxreg
& I lngs - i
E'-'-"“ : : : : : : il lic wold cestThos rerfeference TRl inde !
= HNare [Tvam I : =5, eeTeLink!)
) & SpplellTegeea File 7 = [- o)
£ Cazel reiMagises Tile 2 Etring atal |- L S TR
= " hrefoh"hitip: f e, momeplace . oo
B Tag [avs Flla %
g HJ:H:;H S creazeParser (hiollr.
= N paeschndbascecNodeCouse (2])
r=| Buletlistjaa |‘!|E '|: gpe Tomde™ . Lk Tag, class, ninds
'_"I CurnpuzileTagava File - Link=g linkTag = (LickTag oode[d] s,
=l Db jatia Milz 2 axmprtDquals (ULlink", Thotps S OeTm. sons]
1 DockipeTaglava Flla 2L 1 ammerrType (Taode”, LimtTag. class, nads
M FomTac|we Flle & LixdTay = {(LinkTaginod=[17:.
Fremesetlzgiza File 4 amAr s tEquals (ULiak", Thope S aoes)
&l FrarmeTag e File 2 1
o HesdTag a3 Filz 2
Bl Hiw Jawa Flla
El
Bl maosTan java Filz F =]
53] 'r.lull;.'-.: |awe l!I.' dr]] v
ol JepaTag. jaes Filz 2=
i 1 | ¥ :| % | - | Acdvily Log [Hypargaanh Resits [_-:i.;.rr
475,10 Bol Fierret falled. Formstioak 33 millizeconds dava,none Cpl 357 - - - - L IEEEE: |
9.3 Configuration

Although Jalopy ships with sensible default settings (mimicking the Sun Java coding con-
vention), you most likely want to configure the formatter to match your needs (adding
copyright headers, tune Javadoc handling and the like). For such, Jalopy comes with a
graphical configuration tool that lets you interactively customize the settings. See Chapter 2,
Configuration for an in-depth discussion of the available options to configure formatting
output. Please refer to Section 9.2, “Integration” for information on how to display the

configuration tool from within jEdit.

FILE SYSTEM BROWSER PLUGINS MENU

336

Chapter 10. Maven 1 Plug-in

10.1

10.1.1

10.1.2

Describes the installation and usage of the Jalopy Maven 1 Plug-in. Maven [Link] is a
software project management and comprehension tool. Based on the concept of a project
object model (POM), Maven can manage a project’s build, reporting and documentation
from a central piece of information.

NOTE Maven 1 is in maintenance mode, i.e. development is restricted to sup-
port and bug fixes. You might be better of with the current release. Please
refer to the main Maven site for further information

Installation

Explains the steps involved in getting the Maven 1 Plug-in up and running.

System requirements

The Plug-in requires Maven 1.0 - 1.1. See Section 1.1, “System requirements” for the basic
requirements to run Jalopy. Please note that it won’t work with later versions. A different
Plug-in is available for more recent Maven versions (see Chapter 11, Maven 2 Plug-in).

Setup

The Plug-in comes as an executable Jar Archive (JAR) that contains a graphical setup wizard
to let you easily install the software. Wizard installation is recommended and explained in
detail in Section 1.3, “Wizard Installation”.

If you would rather install the Plug-in manually, you have to decompress and copy the
appropriate files into the different application and/or settings folders. To decompress the
contents of the installer JAR, you can often use the build-in support of your file manager
(e.g. Nautilus) or any other software that can handle the ZIP compression format (e.g. 7Zip,
WinZip or Stuffit Expander). If you don’t have access to one of the convenience tools, you
might resort to the jar command-line application that ships with your Java distribution.

If you're upgrading from a prior version and want to keep your settings, first copy or
rename the current Jalopy settings directory to match the version number of the new release.
For instance, if your current settings directory is C: \ Docunent s and Set ti ngs\ John Doo
\ . j al opy\ 1. 9 and you're about to install Jalopy 1.9.3, either copy the directory contents
or rename it to C:\ Documents and Settings\.jal opy\John Doo\1.9. 3. Wizard
installation can perform this step automatically.

Remove anyj al opy- 1. 9. 3. j ar files from the /i b and/ pl ugi ns directories of your
Maven installation, e.g from / home/ John Doo/ apps/ maven-1.0.2/1ib/ and / hone/
John Doo/ apps/ maven- 1. 0. 2/ pl ugi ns/.

Copy the filesj al opy-1.9.3.jar andjal opy-ant-1.9. 3.jar from the temporary
directory into the /I i b folder of your Maven installation. If you don’t have the Console
Plug-in installed and want to be able to configure Jalopy from the command-line, copy
the contents of the / bi n folder from the temporary directory to the / bi n folder of your
Maven installation.

337

http://maven.apache.org/reference/glossary.html#POM
http://projects.gnome.org/nautilus/
http://www.7-zip.org/
http://www.winzip.com/
http://my.smithmicro.com/mac/stuffit/expander.html
http://java.sun.com/docs/books/tutorial/deployment/jar/unpack.html

As a last step, copy the file j al opy- maven-1.9. 3. j ar from the temporary directory
into the / pl ugi ns folder of your Maven installation.

10.2 Configuration

Although Jalopy ships with sensible default settings (mimicking the Sun Java coding con-
vention), you most likely want to configure the formatter to match your needs (adding
copyright headers, tune Javadoc handling and the like). For such, Jalopy comes with a
graphical configuration tool that lets you interactively customize the settings. See Chap-
ter 2, Configuration for an in-depth discussion of the available options.

To display the configuration tool, you should use the matching wrapper script for your
platform. The wrapper scripts are called j al opy. xxx . Invoke the script with the - - con-
fi gur e option.

% j al opy --configure

If you don’t want to install the Console Plug-in, you can make use of the -jar option of the
Java launcher, as Jalopy comes as an executable JAR file:

%java -jar <path_to>\jalopy-1.9.3.jar --configure

Or you give the class path directly to the launcher

%java -cp <path_to>\jalopy-1.9.3.jar Jalopy --configure

When you're done configuring the settings, you should export the code convention as de-
scribed in Section 2.1.1.8, “Export code convention”. The exported settings file is typically
used as part of the Jalopy task configuration in the build script.

10.2.1 Properties

The Plug-in allows some optional properties to control how formatting is applied.

Table 10.1. Jalopy Maven Plug-in properties

Property Type Description Since Required

maven.jalopy.backup Boolean Sets whether backup copies of all processed 1.5 No
source files should be kept. If omitted, the
corresponding code convention setting will
be used (see Section 2.2.2.2, “Backup”).

maven.jalopy.convention String Sets the location to the code convention file 1.5 No

to use - given either relative to the project’s
base directory or as an absolute local path or
Internet address (refer to Section 2.1.1.7. “Im-
port code convention” for information how to
export your settings). If omitted, the current
settings are used, if available. Otherwise the
Jalopy build-in defaults will be used.

maven.jalopy.destdir String Sets the destination directory to create/copy 1.5 No
all formatting output into. It can either be giv-
en as an absolute path, or relative to the work-
ing directory. If the directory does not exist,
it will be created. If omitted, all input files will
be overridden.

maven.jalopy.encoding String Sets the encoding that controls how Jalopy 1.5 No
interprets text files containing characters be-

CONFIGURATION 338

Property Type Description Since Required

yond the ASCII character set. Defaults to the
platform default encoding.

maven.jalopy.failOnError Boolean Sets whether a run should be held if errors 1.5 No
occurred. Defaults to “true”
maven.jalopy.fileFormat String Sets the file format of the output files. The 1.5 No

file format controls what end of line charac-
ter is used. Either one of “UNIX” “"DOS" "DE-
FAULT"” or "AUTO" can be used (case insen-
sitive). Defaults to "AUTO"

maven.jalopy.filesetInclude String Comma- or space-separated list of patterns 1.5 No
of source files that should be formatted. De-
faults to “**/*.java”

maven.jalopy.filesetExclude String Comma- or space-separated list of patterns of 1.5 No
source files that should be excluded from for-
matting; no files (except default excludes) are
excluded when omitted. The default is to for-
mat all source files.

maven.jalopy.force Boolean Sets whether the formatting of files should 1.5 No
be forced, even if a file is up-to-date. Defaults
to “false”

maven.jalopy.fork Boolean Sets whether the processing should be per- 1.5 No

formed in a separate VM. Defaults to “false”

maven.jalopy.history String Sets the history policy to use. Either one 1.5 No
of "ADLER32"7 “CRC32" or “NONE" can be
used (case insensitive). If omitted, the corre-
sponding code convention setting will used
(see Section 2.2.2.1, “History").

maven.jalopy.inputEncoding String Sets the encoding that controls how Jalopy 1.6 No
interprets text files containing characters be-
yond the ASCII character set. Defaults to the
platform default encoding. Please note that
this setting always overrides encoding.

maven.jalopy.javadoc String Indicates whether Javadoc related messages 1.5 No
should be printed. Defaults to “true”

maven.jalopy.logLevel String Specifies the logging level for message out- 1.5 No
put. Either one of “ERROR" "WARN" “INFO"
or "DEBUG" can be used (case insensitive).
If omitted, the current code convention set-
tings will be used (see Section 2.6.1, “Cate-
gories”).

maven.jalopy.log String Specifies the log file to use for logging out- 1.5 No

put. The format of the logging output is deter-
mined by the extension of the given file. Valid
extensions are “. | og” for a custom plain text
format, “. xm " for a plain XML format and
“.htm” for an hierarchical HTML report. If
omitted, the current code convention setting
will be used (see Section 2.6.2, “Logging”).

maven.jalopy.outputEncoding String Sets the character encoding Jalopy uses to 1.6 No
write files. Defaults to the platform default
encoding. Please note that this setting always
overrides encoding.

maven.jalopy.profile String Sets the Jalopy profile that should be ac- 1.5 No
tivated during the formatting run (refer to
Section 2.1.1.1, “Main window" for more in-
formation about profiles). The currently ac-
tive profile will be restored after formatting.
Please note that the profile must exist!

339 CHAPTER 10 MAVEN 1 PLUG-IN

10.3

10.3.1

USAGE

Property

Type

Description

Since Required

maven.jalopy.repository Boolean

Indicates whether the type repository should 1.6

be used for type lookup. When disabled, this
currently means that all dependent features
despite the import optimization will be dis-
abled! You may want to use this option if you
commonly format a single file or only a small
sets of files in order to avoid the maintenance
overhead of the type repository. Defaults to
“true”

No

maven.jalopy.src.filesetinclude Boolean

For “src/java” directory. Comma- or space-
separated list of patterns of source files
that should be formatted. Defaults to
“${maven.jalopy.filesetinclude}’

No

maven.jalopy.src.filesetExcludeBoolean

For “src/java” directory. Comma- or space-
separated list of patterns of source files that
should be excluded from formatting. Defaults
to “{maven.jalopy.filesetExclude}"

No

maven.jalopy.test

Boolean

Sets whether formatting output should actu-
ally be written to disk. If set to “true” no
output will be written to disk. The default is
“false”

No

maven.jalopy.test.filesetincludeBoolean

maven.jalopy.test.filesetExclud&@oolean

For “src/test” directory. Comma- or space-
separated list of patterns of source files
that should be formatted. Defaults to
“${maven.jalopy.filesetinclude}’

For “src/test” directory. Comma- or space-
separated list of patterns of source files that
should be excluded from formatting. Defaults
to “${maven.jalopy.filesetExclude}”

No

No

maven.jalopy.threads

Usage

Integer

Specifies the number of processing threads
to use. Integer between 1 - 8. Defaults to '1".

No

The Jalopy Plug-in provides a standard goal to format your sources. For example, to format
all source files from the current project, run:

% maven trienax-j al opy

You'll notice that all of the code is compiled before any formatting is applied. This is good

practice in order to ensure valid input. If you want to bypass the compilation, you can use

another goal:

% maven tri enmax-j al opy: f or mat

Goals

Table 10.2. Jalopy Maven Jelly goals

Goal

Description

triemax-jalopy

Formats the source files according to coding convention. The source files will be
compiled before formatting takes place.

triemax-jalopy:format

Formats the source files according to coding convention.

triemax-jalopy:taskdef Defines the Jalopy task to Ant and Jelly.

340

Chapter 11. Maven 2 Plug-in

11.1

11.1.1

11.1.2

Describes the installation and usage of the Jalopy Maven 2 Plug-in. Maven [Link] is a
software project management and comprehension tool. Based on the concept of a project
object model (POM), Maven can manage a project’s build, reporting and documentation
from a central piece of information.

Installation

Explains the steps involved in getting the Maven 2 Plug-in up and running.

System requirements

The Plug-in requires Maven 2.0 or later. See Section 1.1, “System requirements” for the
basic requirements to run Jalopy. Please note that a different Plug-in is available for older
Maven releases (see Chapter 10, Maven 1 Plug-in).

Setup

The Plug-in comes as an executable Jar Archive (JAR) that contains a graphical setup wizard
to let you easily install the software. Wizard installation is recommended and explained in
detail in Section 1.3, “Wizard Installation”.

If you would rather install the Plug-in manually, you have to decompress and copy the
appropriate files into the different application and/or settings folders. To decompress the
contents of the installer JAR, you can often use the build-in support of your file manager
(e.g. Nautilus) or any other software that can handle the ZIP compression format (e.g. 7Zip,
WinZip or Stuffit Expander). If you don’t have access to one of the convenience tools, you
might resort to the jar command-line application that ships with your Java distribution.

If you're upgrading from a prior version and want to keep your settings, first copy or
rename the current Jalopy settings directory to match the version number of the new release.
For instance, if your current settings directory is C: \ Docunent s and Set t i ngs\ John Doo
\ . j al opy\ 1. 9 and you're about to install Jalopy 1.9.3, either copy the directory contents
or rename it to C:\ Docunents and Settings\.jal opy\John Doo\1.9.3. Wizard
installation can perform this step automatically.

First copy the Jalopy Maven Plug-in folder t ri emax from the temporary directory into
the Maven 2 repository directory. This might either be the local repository (e.g. C: \ Docu-
ments And Settings\John Doo\.n2\repository\ ona Windows XP system) or the
repository directory of your internal repository in case youre using a shared repository for
your organization.

Copy the file j al opy-1. 9. 3. j ar below thetri emax/j al opy/ 1. 9. 3/ folder in your
Maven repository, and j al opy- maven-1. 9. 3. j ar from the temporary directory into the
triemax/j al opy- maven/ 1. 9. 3/ folder of your Maven 2 repository. After all steps have
been performed, you should have a folder structure like the following:

341

http://maven.apache.org/guides/introduction/introduction-to-the-pom.html
http://projects.gnome.org/nautilus/
http://www.7-zip.org/
http://www.winzip.com/
http://my.smithmicro.com/mac/stuffit/expander.html
http://java.sun.com/docs/books/tutorial/deployment/jar/unpack.html

repository

[...]

tri emax
j al opy
1.9.3-156
jalopy-1.9.3-156.jar
j al opy-1.9. 3-156. pom
j al opy- maven
1.9.3-156
j al opy-maven-1. 9. 3-156. j ar
j al opy-maven- 1. 9. 3- 156. pom
maven- net adat a- | ocal . xn
maven- net adat a- central . xn

[...]

11.2 Configuration

Although Jalopy ships with sensible default settings (mimicking the Sun Java coding con-
vention), you most likely want to configure the formatter to match your needs (adding
copyright headers, tune Javadoc handling and the like). For such, Jalopy comes with a
graphical configuration tool that lets you interactively customize the settings. See Chap-
ter 2, Configuration for an in-depth discussion of the available options.

To display the configuration tool, you can use the configure goal from within Maven.
Either using the complete notation

% nmvn triemax:jal opy-maven: confi gure

or just the shorthand

% nmvn j al opy: confi gure

When you're done configuring the settings, you should export the code convention as de-
scribed in Section 2.1.1.8, “Export code convention”. The exported settings file is typically
used as part of the Jalopy plugin configuration in the build script.

11.3 Usage

In order to integrate Jalopy into your build process, you need to edit your pom xn under
the plugins section:

CONFIGURATION 342

343

<proj ect >
[...]
<pl ugi ns>
<pl ugi n>
<groupl d>tri enax</ groupl d>
<artifactld>jal opy-maven</artifactld>
<configurati on>
[...]
</ configuration>
<executi ons>
<executi on>
<phase>process- cl asses</ phase>
<goal s>
<goal >f or nat </ goal >
</ goal s>
</ executi on>
</ executi ons>
</ pl ugi n>
[...]
</ pl ugi ns>
</ proj ect >

This would execute Jalopy during the process-classes phase. Please note that you should al-
ways apply formatting after the compile phase has finished in order to ensure that the project
is clean, but youre otherwise free to choose the phase that best suits your needs. For more
information about the Maven build lifecycle, please refer to the “Maven Build Lifecycle
Guide”. It contains a reference of the available build phases. If you don’t want to have the
format goal execute during the build, you simply don’t bind the goal to a specific phase:

<proj ect >
[-..]
<pl ugi ns>
<pl ugi n>
<gr oupl d>t ri emax</ gr oupl d>
<artifactld>jal opy-maven</artifactld>
<configuration>

[...]
</ confi guration>
</ pl ugi n>

[-..]
</ pl ugi ns>
</ proj ect >

Formatting can be manually triggered from the command-line using either

% mvn triemax:jal opy-maven: f or mat

or the shorthand

% nmvn j al opy: f or mat

Configuration

Naturally the Plug-in provides a few parameters to configure its behavior.

Table 11.1. Jalopy Maven Plug-in parameters

Property Type Description Since

backup Boolean Sets whether backup copies of all processed source files should 1.7
be kept. When omitted, the corresponding code convention set-
ting will be used (see Section 2.2.2.2, “Backup”)

CHAPTER 11 MAVEN 2 PLUG-IN

http://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html
http://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html

Property Type Description Since

classpathElements List Defines the class path to use for type lookup. By default, the 1.7
project class path ${project.compileClasspathElements} is used

convention String Sets the location of the code convention file to use - given either 1.7
relative to the project’s base directory or as an absolute local
path or Internet address (refer to Section 2.1.1.7 “Import code
convention” for information how to export your settings). When
omitted and not specified otherwise (see “profile” below), the
settings of the current profile are used

Since Jalopy 1.9.3, it's also possible to load conventions
from the class path. This can be achieved with the follow-
ing syntax: <convention>classpath:[path]<convention> where
[path] denotes the relative path to the resource in the artifact,
e.g. jalopy.xml if the settings file can be found at the root level,
or config/jalopy/sonar.xml when located in a nested folder

destDir String Sets the destination directory to create/copy all formatting out- 1.7
put into. If the given directory does not exist, it will be created.
When omitted, all input files will simply be overridden

encoding String Sets the encoding that controls how Jalopy interprets text files 1.7
containing characters beyond the ASCII character set. Defaults
to the platform default encoding

environment Map Defines temporary environment variables overrides 1.7

excludes List A list of exclusion filters. Uses the standard Maven pattern syn- 1.7
tax. Please note that Jalopy ignores all files it cannot format by
default, so exclusions are only necessary if you want to omit
formatting for certain files, like e.g. test data files etc.

failOnError Boolean Sets whether a run should be held if errors occurred. Defaults 1.7
to “true”
fileFormat String Sets the file format of the output files. The file format controls 1.7

what end of line character is used. Either one of “UNIX” “DOS"
"DEFAULT" or "AUTQO" can be used (case insensitive). Defaults

to "AUTO"

force Boolean Sets whether the formatting of files should be forced, evenifa 1.7
file is up-to-date. Defaults to “false”

fork Boolean Sets whether the processing should be performed in a separate 1.7
VM. Defaults to “false”

history String Sets the history policy to use. Either one of "ADLER32) 17

“CRC32" or “NONE" can be used (case insensitive). If omitted,
the corresponding code convention setting will used (see Sec-
tion 2.2.2.1, “History")

includes List Alist of inclusion filters for formatting. Uses the standard Maven 1.7
pattern syntax. Please note that Jalopy ignores all files it cannot
format by default, so inclusions are only necessary if you want
to omit formatting for certain files, like e.g. test data files etc.

inputEncoding String Sets the encoding that controls how Jalopy interprets text files 1.7
containing characters beyond the ASCII character set. Defaults
to the platform default encoding. Please note that this setting
always overrides encoding

javadoc String Indicates whether Javadoc related messages should be printed. 1.7
Defaults to “true”

logLevel String Specifies the logging level for message output. Either one of 1.7
“"ERROR" "WARN" “INFO" or “DEBUG" can be used (case in-
sensitive). When omitted, the current code convention settings
will be used (see Section 2.6.1, “Categories”)

logFile String Specifies the log file to use for logging output. The format of 1.7
the logging output is determined by the extension of the given
file. Valid extensions are “. | og” for a custom plain text format,
“.xm” for a plain XML format and “. html ” for a hierarchical

CONFIGURATION 344

Property Type Description Since

HTML report. When omitted, the current code convention set-
ting will be used (see Section 2.6.2, “Logging”)

outputEncoding String Sets the character encoding Jalopy uses to write files. Defaults 1.7
to the platform default encoding. Please note that this setting
always overrides encoding

profile String Sets the Jalopy profile that should be used during the formatting 1.7
run (refer to Section 2.1.1.1, “Main window" for more informa-
tion about profiles). The currently active profile will be restored
after formatting. Please note that if no convention is specified,
the profile must exist!

repository Boolean Indicates whether the disk-based type repository should be 1.7
used for type lookup. You may want to disable the disk-based
type repository if you commonly format a single file or only a
small set of files in order to avoid the maintenance overhead of
the type repository. Defaults to “true”

sources List The source directories containing the sources to be formatted. 1.7
When omitted, uses the directories defined for the compiler
(${project.compileSourceRoots}) instead

test Boolean Sets whether formatting output should actually be written to 1.7
disk. If set to “true” no output will be written to disk. The default
is “false”

threads Integer Specifies the number of processing threads to use. Integer be- 1.7

tween 1 - 8. Defaults to '1";

To configure the Plug-in, you specify elements named after the available parameters where
the contents of an element is the value to be assigned to the parameter.

<pl ugi n>
<gr oupl d>tri emax</ groupl d>
<artifactld>jal opy-maven</artifactld>
<configuration>
<t hr eads>4</t hr eads>
<profile>test</profile>
</ confi guration>
[--]

</ pl ugi n>

For parameters of type List you would use multiple element tags to add the different values
to the list.

<pl ugi n>
<gr oupl d>t ri emax</ groupl d>
<artifactld>jal opy-maven</artifactld>
<configuration>
<i ncl udes>
<i ncl ude>conf foo/siri/**</include>
<i ncl ude>cont f oo/ | ana/ **</i ncl ude>
</incl udes>
<excl udes>
<excl ude>**/* sql j </ excl ude>
<excl ude>**/*Test / **</ excl ude>
</ excl udes>
[...]
</ configuration>
</ pl ugi n>

Configuring Maps works similar: elements are named after the keys and the element con-
tents is the value to be assigned to the key.

345 CHAPTER 11 MAVEN 2 PLUG-IN

11.4

EXAMPLE

<pl ugi n>
<groupl d>tri enax</ groupl d>
<artifactld>jal opy-maven</artifactld>
<configurati on>
<envi ronnent >
<l ead>John Doo</| ead>
<of fice>Al ta Nova</office>
</ envi ronnent >
[...]
</ configuration>
</ pl ugi n>

For a complete example, please refer to Section 11.4, “Example” below.

Example

Below you find a complete POM that performs formatting after each compile run finished
successfully, disables logging of Javadoc related messages, only displays messages with warn-
ing severity or higher, activates the profile “test” during formatting and imports the code
convention jalopy.xml from the build-config artifact. Formatting is applied to all Java source
files of the project that are not located below the “testdata” folder.

<proj ect >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<gr oupl d>t est i ng</ gr oupl d>
<artifactld>test</artifactld>
<packagi ng>j ar </ packagi ng>
<versi on>1. 0- SNAPSHOT</ ver si on>
<name>Maven Qui ck Start Archetype</nane>
<url >http:// maven. apache. org</url >

<bui | d>
<pl ugi ns>
<pl ugi n>

<gr oupl d>or g. apache. maven. pl ugi ns</ gr oupl d>
<artifactld>maven-conpil er-plugin</artifactld>
<confi gurati on>
<sour ce>1. 5</ sour ce>
<target>1.5</target>
</ confi guration>
</ pl ugi n>
<pl ugi n>
<gr oupl d>t ri emax</ gr oupl d>
<artifactld>jal opy-maven</artifactld>
<configuration>
<j avadoc>f al se</j avadoc>
<l ogLevel >war n</ | ogLevel >
<conventi on>cl asspat h: j al opy. xm </ conventi on>
<sour ces>
<sour ce>/ wor k/ f oo/ mai n/ src/ j ava</ sour ce>
<sour ce>/wor k/f oo/ test/src/java</source>
</ sour ces>
<i ncl udes>
<i ncl ude>**/*_ java</incl ude>
</incl udes>
<excl udes>
<excl ude>**/t est dat a/ ** </ excl ude>
</ excl udes>
<envi ronment >
<l ead>John Doo</| ead>
<of fi ce>Al ta Nova</office>
</ envi r onment >

346

</ configuration>
<dependenci es>
<l-- Inport the artifact that provides the code convention -->
<dependency>
<gr oupl d>com nyconpany</ gr oupl d>
<artifactld>build-config</artifactld>
<versi on>1. 0. 2</ ver si on>
</ dependency>
</ dependenci es>
<executi ons>
<executi on>
<phase>process- cl asses</ phase>
<goal s>
<goal >f or nat </ goal >
</ goal s>
</ executi on>
</ executi ons>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>
<dependenci es>
<dependency>
<groupl d>j uni t </ gr oupl d>
<artifactld>unit</artifactld>
<versi on>3. 8. 1</ ver si on>
<scope>t est </ scope>
</ dependency>
</ dependenci es>
</ pr oj ect >

347 CHAPTER 11 MAVEN 2 PLUG-IN

Chapter 12. NetBeans Module

12.1

12.1.1

12.1.2

12.2

12.2.1

Describes the installation and usage of the Jalopy NetBeans Plug-in module. NetBeans
[Link] is the original full-featured, free and open source IDE for Java software developers
to create cross-platform desktop, mobile and web applications based on industry standards
utilizing the latest technologies.

Installation

Explains the steps involved to install the NetBeans Plug-in module.

System requirements

The Plug-in works with NetBeans releases 4.0 - 6.5 or the corresponding Sun ONE Stu-
dio or Java Studio Creator versions. See Section 1.1, “System requirements” for the basic
requirements to run Jalopy.

Setup

The Plug-in comes as an executable Jar Archive (JAR) that contains a graphical setup wizard
to let you easily install the software. Wizard installation is mandatory and explained in detail
in Section 1.3, “Wizard Installation”.

Integration

Describes how the Plug-in integrates into NetBeans.

Editor pop-up menu

The Plug-in adds a new menu item into the context pop-up menu of Java code editors:

Format with Jalopy

Formats the contents of the editor. When currently some text is selected in the editor,
only the selected text will be formatted (selective formarting). This can be especially helpful
when editing portions of very large files, as selective formatting can speed up processing
considerably. But comes especially when you want to limit formatting to a specific file
portion in order to avoid unnecessary differences when editing a file that has not (yet) been
formatted according to the active code convention.

349

Figure 12.1. Jalopy editor pop-up menu item

§ | AnagramGame = NetBeans IDE (.5
File Edit View HNawigata Source Fefactor Bun Oetug Profile Versioning Tools Window Halp
P v Gl B W P [cdefaulrconfize [v] F W P EQ-
L —
| Frapects al | H-'-" Staricorzlizranyjava Hl I|-£|5"'I.'i:hn;|l,_i|:|r..-.|ru|.-_j,;-.-5| = |4 | ® |_1- | _|:|
I & Anagramaime 1
b W FopusFis BE-E- o9l P oo oe
1 E -\'_I £l - m
-1 Mawgate ¥ =
in thow rvados alr=T1
7l
— g Find Usages AlteFT
EE Call Hisranchy
M 3
s |_ Inzarr Code. ., AlT=Iirzarr
6 Fiw Imoores Crrl = Shifr+l
?',r Formar with |alopy
B
e Pefactor ¥ L
‘E Forrat
[SaticWordLibrary jave -, a0 x| O Fun Fite Shife+Fs
[I'-El‘r‘ Lol s W e b 43 Diebieg “SramcW@ordlibramyjava™ Corl+ 5hifi+FS
i Ii.- StaticWardLibrary - Word Li :; =
B savcondLibrand) 46 Flew Watch... Curl=Shift+F7
@ pecviendiing idx; Srina || 47 i)
@ :_.;r:-_l. ramibledsrdiics id 4E |_'§'.IQQ|E L& Beskpoing Crrl=F3
@ petSize(): int 45 Frafiling ¥
@ isCorrectlint idx, tring | 0 Cut Cirle¥
£ | -
= Copy Ctrl#C
23 Pasi= Crrl =¥
54 .
- Code Folds » [~
o] L Sewecrir » Bl
- 1:1 1T
3

12.2.2 Explorer pop-up menu

Formatting can also be triggered via the pop-up menu of several views, like the Projects or
Files window. Note that the item only appears for folder nodes or Java source files.

EXPLORER POP-UP MENU 350

12.2.3

351

Figure 12.2. Jalopy Format pop-up menu item

k| AnagramGame = NetBeans IDE (.5 + X
File Edit View HNawigata Source Fefactor Bun Oetug Profile Versioning Tools Window Halp
P v Gl B W P [cdefaulrconfize [v] F W P EQ-
[Frojecrs al % TOT Staticevors Liorany java :-:| #* WordLibrary.java 2[4 = [*] 2|
= & Anagramiaime — |
o i@ Source Packages B E- 0 g, % é?'l'ﬂ + & % ! L =
b B com.iovanagrams.lib 1) Il ~lw
L -
B TAbouLjave I * jAeplication ”
™ snagrams, Find.. Cerl+F) .
B 0@ TestFackages gy Cril+ panagrase. [1b;
[@ Libraries N . -
b 0@ Test Libraries -OPE Ll i o the Tooic for the Anaara
I g PopupFis A 5Te r
Dclata Dalera EichordLibrary s<teqds Wordlibr
armat with flopy 1 String[] WORD_LIST -
Falactor » ETICA,
[Craticiiord Library javs. Comoile Fackage F3 ;“_‘_‘_.'.
|IrE|'r’ Lesis Vi Local History * msh",
= [y StaticWordlibran, Tools i ___:_l___
¥ T SRR ;
& StavcwordLibrand) " rcopbination” .
O perWediinT idx): Srrian 47 e AREERLIANT 1'
@ oetforamblediiordiic id 4B '‘consorziom”,
[5] ;:I:"'.-l::!:l:l'l'. 45 'ZECTENSNTTAY
@ isCorrectlint idx, tring | =0 ‘aapendancy ,
L ‘disanzigualse”,
52 ‘oynanic’,
23 ‘encapsulatian”,
c4 ‘eguiwalent”,
s (<)
T TS
O 0 [s
K

If it happens that a file has an open editor, this editor will be updated, not the actual file.
You have to save the editor first, to see the physical file updated.

Workspace main menu

The module adds a new menu item into the main menu of the current workspace to seam-
lessly integrate with NetBeans:

Source > Format with Jalopy

Formats the currently selected node(s) or the currently active editor. Only available if there
are indeed nodes selected which represents or contains Java source files or an editor is fo-
cused.

CHAPTER 12 NETBEANS MODULE

Figure 12.3. Jalopy Format menu bar item
k| AnagramGame = NetBeans IDE (.5 + X
File Edit View HNavigate@E=ll==l Fcfactor Bun DOetug Profile Versioning Tools Window Halp
AR D a Format with klopy Ale+Ehifr=F

Formar I
||:T\"_“-.|'E|:|:5 l:r! 4 = .'Il |_-|

. Famowve Trailing Spaces
I & Anagiramiaime Ak

b @ PopupFix Skift Laft Alr+-Shifr= Laft | e o o =
Shift Eight AlteShifte Bighs alm
behowe Lz Alt+5hiTL=Up -
e Llowin A5+ Down
Cuplicars Up Crrl+5nifr=Up
Duplicate Cown CtrlaSnifr= Down
Toggle Commeant Ctrl+5hift+C Ir Tha Anagra
Complere Code... T+ Eoaoe feds WordLibr
Insem Loge,. Alr+Inssr
Fiz Coeda,., Alr+FErres WOFED LIST =

e = Fix Imports... Ctrla-Zhift=|
SraticWord Librarg jave -, .,
I!” = Show Iethod Parameters Ll P
|IrE|'r' Lesps W e i - .
— - - Sk DOCuMentanion Crrl+3niti=5peae
= i StaticWordLibrary ;2 .
& SwncwordLibrand Irserr Mesr Marching Word Crrl+Enifr=F
@ cerinndiing idx): S Inser Prewions Elercking Word Crrlak
@ oecicramblediord(ing id | ag| CansorTiumt,
[5] E..I:"'.-l::!:l:l'l'. 45 'ZECTENSNTTAY
@ isCorrectlint idx, tring | =0 ‘mapandancy’,
L ‘disanzigualse”,
52 ‘oynanic’,
23 ‘encapsulatian”,
Sd ‘eguiwalent”,
s (<)
B o
O 0 [s

12.2.4 Message window

Jalopy displays all runtime messages in its own dockable window. Messages are shown in
a tree control, with each branch containing the messages for a specific file, and individual
messages displayed as leafs. File messages display the number of leaves and the warning and
error count.

The message types are differentiated with icons and by color: Errors are red with an error
icon, warnings are shown in blue and display a warning sign, informational messages are
black and carry a file icon and debugging messages are black and prepended by a bug icon.

MESSAGE WINDOW 352

Figure 12.4. Jalopy dockable window

AnagramGame = NetBeans IDE (.5

File Edit View HNawigata Source Fefactor Bun Oetug Profile Versioning Tools Window Halp
P v o B W P [ccefaulrconfipe [v] F @ P EO- Ctrla
E'-! SraticWord Libirarg jave Kl@E‘ Wiordlibrany, ava [4][=/[*][=]
BE-E oy e aule s &g
HE LBTS Trd WOkl dr 4 gTWar e, =
ag I:.
a0 * dparam i ndex o7 reguired mord
gl :
g2 * @retwrn word at that ind in 1ts natural f B
az :
i pubTic String getWerd(int G
a5 =] i
a6 raturn WERD_LTSTIH d«] ;
a7 K
3E
ag
136 =1 :
131 racks whathar a usar's guess for a ward a7 the qiven indax 15 cor e
10z :
193 * Epar A 10 e 0T The WoPd gQuessad .
104 Jpar am uszriue t usar's guass Tor the tual mwor
145 :
136 Aratwrn true it the quass was carrect; false otharwise [~
4)
Jeidh IS
[Jalopy LJE]
o & LG L2 Missing Javadoc tag "@author °, added £
A& 1013 Missing Javadoc tag "dversion |, added
| & 73:40: Farameter “idx” does not adhere to raming conwvention {violates “rlA-Z)[a1
A Bz Paramerer “dxC doss not adhers 1o raming convention (viclates Trla-Z) el
w2 | b 109:16: Farametar "idx" does not adbare 1o naming conwension (walates “rla-T]0]
=3 A, 110:16: Fararneter userGusss” doss pol adbers 1o nairing conenion doolanes “iTa-Zwl -|:
LF] =
2

Clicking on a file name will open that file, clicking on a message that contains location
information will open the file containing the message and move the caret to the nominated
location.

353 CHAPTER 12 NETBEANS MODULE

12.2.5

Figure 12.5. Jalopy dockable window

b | Anagramame - MetBeans IDE b.5 * M
Film Edit View MNavigate Source Fefactor Bun Detug Profila Versioning Tools Window Help
P v Gl B " P [cdefaulrconfize [v] F W OB EQ-
P p——] 2 WordLibraryava al»][]
@ B- 8- ety Fee aule s &
HiE JBTE L WOFD 4T 4 O7veE e (- o
ar [~w
a0 2 - ; noex o rege
g1 |
ks dreturn i
93
i aublic String gethord(int Gd)
351 {
o ragyrn WERR L TST k]
g7 h
3B
a9
196 -1
191 hacks whathar 3 usar's == For a3 2 tha O E -
1z
103 [IELg: - [-1 |
104 Jpar am u F 1
145
106 return tria if the =1 rrect; false otherwise [~
q [5]
A6:30 M5
dell\."."r' L
w| P B 975 expecting SEML Teumd ') -
[& 108:% Unexpeoed token: public
| b B LOE20: expeding DOT, found 'isCorrect’
[B 101 expecung SEML tound)
e | BB 11025 expecting SEML found
- | BB 11751 expecting ROUELY, Teumd "oull .
i 3|
K

The window provides a context menu with some useful actions.

Copy Copies the textual contents of the selected messages into the System clipboard. If a
message contains children, the contents of all children are copied as well

Clear Removes all selected messages

Clear All Removes all messages currently being displayed in the window

Select All Selects all messages currently being displayed in the window

Keyboard shortcuts
You can define keyboard shortcuts for the different Jalopy actions via the NetBeans Keymap
dialog. Open the options dialog via Tools > Options (NetBeans > Preferences... on Mac OS
X) and select the Keymap item.

Jalopy provides two actions. The “Format with Jalopy” action in the “Source” section
and the “Jalopy Options” action to invoke the configuration dialog in the “Tools” section.

KEYBOARD SHORTCUTS 354

12.2.6

355

Figure 12.6. Keyboard shortcuts

& | =3 "I
w B 5 a g

neral Sdoar Jalegy Fonls B Colors TREwMER| Miscellznesus

Profila: | FMetBaans

Actions:

B Crher

[Profle

[* Project

[Refacto

T Lourece
Araly2e Javadod
Comiment
Fix Code... [Alt+ENTEFR]
Pl Impesrts [l = shifr+l]
Farmat

Farmraal with Blopy [AIT+5hilt+F]
It Error in Eddizor

Meat Batching Word [Cerl+55ift= K]

Frewicuas Mamching Word [CTrl+k,

Shift Lira Laft [At+ Shift+ LEFT Alt=Shift+ KP_LEFT]
Shir Lire Right [Sle+3hift+ B GHT A 3hift+KP_RIGHT]

| | Duplicata ... Eestore

Shortcuts:

Alt+Shift+F Add .. |

Rami |

ot | |carcet | Heip |

To configure a keyboard shortcut, select an action and either press the Add... button to
add a keyboard shortcut. Or use the Remove button to remove an existing shortcut. For
compatibility reasons, the default keyboard shortcut for the “Format with Jalopy” action is
Strg+Shift+F10, but it is recommended to adjust the shortcut to something more accessible,

like Ale+Shife+FE

Options dialog

The Jalopy options are available through the NetBeans options dialog. In order to display
the options dialog, on Mac OS X you use NetBeans > Preferences... and select the “Jalopy”
item in the top pane. On other platforms the dialog is available through Tools > Options.
Please note that the options dialog is only available since NetBeans 5.0. With earlier ver-
sions, Jalopy adds a new menu item to the menu bar to display the Jalopy options.

CHAPTER 12 NETBEANS MODULE

12.3

Figure 12.7. Jalopy options dialog

b Oprions * X

'L:-l,' £
'

weneral B iwar

deymap Mscellaneous

Avzilable Frofiles:

| ARC AL, .,
B CorrmenticnTesta

il debug Ackd
P - =
Tl delaulr

B LairarmbEamplas
Bl Immakilianscout
B amba! falopy 1.9.1
T Mebilcom

T o ilier

1= 583

Bl Tachniker

=5 Eriemax

T unittest

M3,

Expaorr.,

| Dk Cance

The main options page lets you manage your Jalopy profiles. A profile stores the actual code
convention to define formatting output, as well as user-specific data like file and dialog his-
tories. You can add, remove, activate, map and configure any number of profiles. For a de-
tailed explanation of the available options, please refer to Section 2.1.1.1, “Main window”.

Configuration

Although Jalopy ships with sensible default settings (mimicking the Sun Java coding con-
vention), you most likely want to configure the formatter to match your needs (adding
copyright headers, tune Javadoc handling and the like). For such, Jalopy comes with a
graphical configuration tool that lets you interactively customize the settings. See Chap-
ter 2, Configuration for an in-depth discussion of the available options. Please refer to Sec-
tion 12.2, “Integration” for information on how to display the configuration dialog from
within NetBeans.

CONFIGURATION 356

Part lll. Appendices

357

Appendix A. Library Dependencies

Jalopy depends on the following freely available libraries:
Table A.1. Library dependencies

Name: ANTLR Parser Generator 2.7.2
Author: jGuru.com (Magelang Institute), project lead by Dr. Terence Parr
License: Custom (Public Domain)

Info: Contains some minor patches to make it work with Jalopy
URL: http://www.antlr.org/

Name: Apache Harmony

Author: Apache Software Foundation

License: Apache License 2.0
Info: Jalopy incorporates their java.util.Formatter implementation backported to Java 1.4
URL: http://harmony.apache.org/

Name: ASM 1.4.1
Author: Object Web Consortium, project lead by Eric Bruneton

License: BSD

Info: Jalopy incorporates only the minimal required functionality to read and perform basic analysis of Java class
files

URL: http://asm.objectweb.org/

Name: Jakarta Commons CLI 1.0

Author: Apache Software Foundation

License: Apache License 1.1

URL: http://jakarta.apache.org/commons/

Name: JGoodies Forms Framework 1.0.3

Author: JGoodies Karsten Lentzsch

License: BSD

Info: Contains a small patch to allow customization of paragraph separator
URL: http://www.jgoodies.com/

Name: JDBM 0.20

Author: Cees de Groot, Alex Boisvert

License: BSD

Info: Contains a small patch to not include the serializers in the database files upon serialization
URL: http://jdbm.sourceforge.net/

Name: JDOM XML API 1.0

Author: JDOM Group, lead by Jason Hunter and Brett McLaughlin
License: BSD/Apache style

URL: http://www.jdom.org/

Name: JSyntaxPane

359

http://www.antlr.org/
http://harmony.apache.org/
http://asm.objectweb.org/
http://jakarta.apache.org/commons/
http://www.jgoodies.com/
http://jdbm.sourceforge.net/
http://www.jdom.org/

Author:

License:

Info:
URL:

Name:
Author:

License:

URL:

Name:
Author:

License:

Info:

URL:

Name:
Author:

License:

URL:

Name:
Author:

License:

Info:
URL:

Name:
Author:

License:

URL:

Name:
Author:

License:

URL:

Ayman Al-Sairafi

Apache License 2.0

Jalopy incorporates a patched version that uses ANTLR based lexers
http://code.google.com/p/jsyntaxpane/

log4j logging toolkit 1.2.8
Apache Software Foundation
Apache License 1.1
http://logging.apache.org/log4j/

Maven Jalopy Plugin 1.3.1
Apache Software Foundation
Apache License 2.0

Jalopy incorporates the version of the Jalopy Plug-in that ships with Maven updated to use the commercial

Jalopy formatting engine
http://maven.apache.org/

One-JAR 0.95

Simon Tuffs

BSD
http://one-jar.sourceforge.net/

Progress 1.2

Bernhard Picher

Creative Commons Attribution
Backported to Java 1.4
http://www.repher.at/

SoftHashMap

Dr. Heinz M. Kabutz

Unknown—used with express permission of the author
http://www.javaspecialists.co.za/archive/lssue098.html

TreeTable
Sun Microsystems, Inc.
BSD

http://java.sun.com/products/jfc/tsc/articles/bookmarks/

All libraries have been repackaged to avoid class path issues.

360

http://code.google.com/p/jsyntaxpane/
http://logging.apache.org/log4j/
http://maven.apache.org/
http://one-jar.sourceforge.net/
http://www.repher.at/pages/index.php?show=coding
http://www.javaspecialists.co.za/archive/Issue098.html
http://java.sun.com/products/jfc/tsc/articles/treetable2/index.html

Appendix B. Build-in XDoclet tags

The Javadoc formatter recognizes the following tags as XDoclet-tags.

Table B.1. Build-in XDoclet tags

@actionscript.class
@ant.attribute

@ant.ignore

@ant.required
@axis.service
@bes.cross-table
@bes.ejb-local-ref
@bes.property
@bes.resource-env-ref
@castor.class
@castor.field-sql
@contrib.checkbox-group
@contrib.control-checkbox
@contrib.date-field
@contrib.form-conditional
@contrib.inspector-button
@contrib.multiple-property-selection
@contrib.otherwise
@contrib.selector
@contrib.show-engine
@contrib.show-specification
@contrib.simple-table-column-component
@contrib.table
@contrib.table-form-pages
@contrib.table-pages
@contrib.table-values
@contrib.timeout
@contrib.tree-data-view
@contrib.tree-table
@contrib.tree-table-node-view-delegator
@contrib.validating-text-field
@contrib.when

@dao.call

@doc.tag
@easerver.resource-ref
@ejb.aggregate
@ejb.create-method
@ejb.data-object
@ejb.ejb-external-ref
@ejb.ejb-service-ref
@ejb.facade

@ejb.finder

@actionscript.property
@ant.element
@ant.not-required
@axis.method
@bes.bean
@bes.datasource
@bes.ejb-ref
@bes.relation
@bes.resource-ref
@castor.field
@castor.field-xml
@contrib.choose
@contrib.controlled-checkbox
@contrib.dump-object
@contrib.form-table
@contrib.mask-edit
@contrib.numeric-field
@contrib.palette
@contrib.show-description
@contrib.show-properties
@contrib.show-template

@contrib.simple-table-column-form-component

@contrib.table-columns
@contrib.table-form-rows
@contrib.table-rows
@contrib.table-view
@contrib.tree
@contrib.tree-node-view
@contrib.tree-table-data-view
@contrib.tree-view
@contrib.view-tabs
@contrib.x-tile

@doc.param
@easerver.ejb-ref
@ejb.activation-config-property
@ejb.bean

@ejb.dao
@ejb.destination-ref
@ejb.ejb-ref

@ejb.env-entry
@ejb.facade-method
@ejb.home

361

@ejb.home-method
@ejb.interface-method
@ejb.permission
@ejb.persistence-field

@ejb.pk

@ejb.relation
@ejb.resource-env-ref
@ejb.security-identity
@ejb.security-roles
@ejb.transaction

@ejb.util

@ejb.value-object-field
@generama.property
@hibernate.any-column
@hibernate.bag
@hibernate.class
@hibernate.collection-composite-element
@hibernate.collection-id
@hibernate.collection-jcs-cache
@hibernate.collection-key-column
@hibernate.collection-one-to-many
@hibernate.comment
@hibernate.composite-element
@hibernate.composite-index
@hibernate.composite-map-key
@hibernate.discriminator-column
@hibernate. filter
@hibernate.filter-param
@hibernate.generator-param
@hibernate.idbag
@hibernate.index
@hibernate.index-many-to-any
@hibernate.jcs-cache
@hibernate.join-key
@hibernate.joined-subclass-key
@hibernate.key-column
@hibernate.key-property
@hibernate.list-index
@hibernate.many-to-any
@hibernate.many-to-many
@hibernate.map
@hibernate.map-key-many-to-many
@hibernate.meta
@hibernate.natural-id
@hibernate.one-to-one
@hibernate.primitive-array
@hibernate.property
@hibernate.query-list

@ejb.interface
@ejb.message-destination
@ejb.persistence
@ejb.persistent-field
@ejb.pk-field
@ejb.remote-facade
@ejb.resource-ref
@ejb.security-role-ref
@ejb.select
@ejb.transaction-method
@ejb.value-object

@foo:bar

@hibernate.any
@hibernate.array
@hibernate.cache
@hibernate.collection-cache
@hibernate.collection-element
@hibernate.collection-index
@hibernate.collection-key
@hibernate.collection-many-to-many
@hibernate.column
@hibernate.component
@hibernate.composite-id
@hibernate.composite-key
@hibernate.discriminator
@hibernate.element
@hibernate.filter-def
@hibernate.formula
@hibernate.id
@hibernate.import
@hibernate.index-column
@hibernate.index-many-to-many
@hibernate.join
@hibernate.joined-subclass
@hibernate.key
@hibernate.key-many-to-one
@hibernate.list
@hibernate.loader
@hibernate.many-to-any-column
@hibernate.many-to-one
@hibernate.map-key
@hibernate.mapping
@hibernate.meta-value
@hibernate.one-to-many
@hibernate.parent
@hibernate.properties
@hibernate.query
@hibernate.set

362

@hibernate.sqgl-delete
@hibernate.sqgl-insert
@hibernate.sgl-update
@hibernate.subselect
@hibernate.timestamp
@hibernate.type
@hibernate.typedef
@hibernate.union-subclass
@hpas.bean

@hpas.pool

@javabean.class
@javabean.method
@javabean.parameter
@jboss.audit
@jboss.audit-created-time
@jboss.audit-updated-time
@jboss.cache-invalidation-config
@jboss.clustered
@jboss.column-name
@jboss.create-table
@jboss.depends
@jboss.dvc-property
@jboss.ejb-ref-jndi
@jboss.entity-command-attribute
@jboss.jdbc-type
@jboss.not-persisted-field
@jboss.port-component
@jboss.read-ahead
@jboss.relation
@jboss.relation-read-ahead
@jboss.remove-table
@jboss.resource-env-ref
@jboss.resource-ref
@jboss.service
@jboss.subscriber
@jboss.unknown-pk
@jdo.fetchgroup
@jdo.persistence-capable
@jmx.managed-attribute
@jmx.managed-operation
@jmx.mbean

@jmx.notification
@jonas.cmp-field-jdbc-mapping
@jonas.finder-method-jdbc-mapping
@jonas.jdbc-mapping
@jonas.message-driven-destination
@jonas.passivation-timeout

@jonas.resource-env

363

@hibernate.sqgl-delete-all
@hibernate.sql-query
@hibernate.subclass
@hibernate.synchronize
@hibernate.tuplizer
@hibernate.type-param
@hibernate.typedef-param
@hibernate.version
@hpas.ejb-ref
@javabean.attribute
@javabean.icons
@javabean.param
@javabean.property
@jboss.audit-created-by
@jboss.audit-updated-by
@jboss.cache-invalidation
@jboss.cluster-config
@jboss.cmp-field
@jboss.container-configuration
@jboss.declared-sql
@jboss.destination-jndi-name
@jboss.ejb-local-ref
@jboss.entity-command
@jboss.finder-query
@jboss.method-attributes
@jboss.persistence
@jboss.query
@jboss.read-only
@jboss.relation-mapping
@jboss.relation-table
@jboss.resource-adapter
@jboss.resource-manager
@jboss.security-proxy
@jboss.sqgl-type
@jboss.target-relation
@jdo.class

@jdo.field

@jdo.query
@jmx.managed-constructor
@jmx.managed-parameter
@jmx.mlet-entry
@jonas.bean
@jonas.ejb-ref
@jonas.is-modified-method-name
@jonas.max-cache-size
@jonas.min-pool-size
@jonas.resource
@jonas.session-timeout

APPENDIX B BUILD-IN XDOCLET TAGS

@jonas.shared
@jrun.cluster-home
@jrun.commit-option
@jrun.ejb-ref
@jrun.jdbc-mappings
@jrun.message-driven-destination
@jrun.resource-env-ref
@jrun.timeout

@jsf.bean
@jsf.managed-property
@jsf.render-kit
@jsf.validator-attribute
@jsp.tag

@jsp.variable

@lido.future

@msg.bundle
@mvcsoft.col-name
@mvcsoft.exclude-from-optimistic-lock
@mvcsoft.high-low-key
@mvcsoft.lightweight
@mvcsoft.relation
@mvcsoft.unknown-key
@mvcsoft.wrap
@oc4j.field-persistence-manager
@oc4j.persistence
@orion.field-persistence-manager-property
@portlet.portlet
@portlet.portlet-init-param
@portlet.preferences-validator
@portlet.supports
@pramati.destination-mapping
@pramati.ejb-ref
@pramati.resource-env-ref
@pramati.server-session
@qtags.alias

@qtags.default

@qtags.ignore
@qtags.location
@qtags.required
@resin-ejb.cmp-field
@resin-ejb.entity-method
@resin-ejb.relation
@soap.service
@spring.constructor-arg
@spring.validator
@spring.validator-var
@struts.action
@struts.action-forward

@jrun.always-dirty
@jrun.cluster-object
@jrun.ejb-local-ref
@jrun.instance-pool
@jrun.jndi-name
@jrun.message-driven-subscription
@jrun.resource-ref
@jrun.tx-domain
@jsf.converter
@jsf.navigation
@jsf.validator
@jsp.attribute
@jsp.validator-init-param
@kodo.table
@mock.generate
@msg.message
@mvcsoft.entity
@mvcsoft.fault-group
@mvcsoft.jdbc-type
@mvcsoft.query
@mvcsoft.sqgl-type
@mvcsoft.uuid-key
@oc4j.bean
@oc4|.field-persistence-manager-property
@orion.bean
@orion.persistence
@portlet.portlet-info
@portlet.preference
@portlet.security-role-ref
@pramati.bean
@pramati.ejb-local-ref
@pramati.persistence
@pramati.resource-mapping
@pramati.thread-pool
@qtags.allowed-value
@qtags.deprecated
@qtags.list-token
@qtags.once
@qtags.verbatim
@resin-ejb.entity-bean
@resin-ejb.message-bean
@soap.method
@spring.bean
@spring.property
@spring.validator-args
@sql.table
@struts.action-exception
@struts.action-set-property

364

@struts.dynaform
@struts.form
@struts.tiles
@struts.validator
@struts.validator-var
@sunone.bean-cache
@sunone.consistency
@sunone.finder
@sunone.pool-manager
@tacos.ajax-direct-link
@tacos.ajax-form
@tacos.ajax-submit
@tacos.date-picker
@tacos.dirty-form-warning
@tacos.editor
@tacos.floating-pane
@tacos.palette
@tacos.progress-bar
@tacos.site-map
@tapestry.action-link
@tapestry.asset
@tapestry.binding
@tapestry.body
@tapestry.card
@tapestry.component
@tapestry.conditional
@tapestry.date-picker
@tapestry.describe
@tapestry.do
@tapestry.exception-display
@tapestry.external-link
@tapestry.for
@tapestry.form
@tapestry.generic-link
@tapestry.hidden
@tapestry.image
@tapestry.inherited-binding
@tapestry.inject-meta
@tapestry.inject-page
@tapestry.inject-state
@tapestry.insert
@tapestry.invoke-listener
@tapestry.list-edit
@tapestry.message-binding
@tapestry.on-event
@tapestry.page-link
@tapestry.parameter
@tapestry.private-asset

365

@struts.dynaform-field
@struts.form-field
@struts.tiles-put
@struts.validator-args
@sunone.bean
@sunone.bean-pool
@sunone.fetched-with
@sunone.persistence-manager
@sunone.relation
@tacos.ajax-field-observer
@tacos.ajax-link-submit
@tacos.autocompleter
@tacos.dialog
@tacos.drop-target
@tacos.fisheye-list
@tacos.inline-edit-box
@tacos.partial-for
@tacos.refresh
@tacos.tree
@tapestry.any
@tapestry.bean
@tapestry.block
@tapestry.button
@tapestry.checkbox
@tapestry.component-specification
@tapestry.context-asset
@tapestry.delegator
@tapestry.direct-link
@tapestry.else
@tapestry.external-asset
@tapestry.field-label
@tapestry.foreach
@tapestry.frame
@tapestry.go

@tapestry.if
@tapestry.image-submit
@tapestry.inject
@tapestry.inject-object
@tapestry.inject-script
@tapestry.input
@tapestry.insert-text
@tapestry.link-submit
@tapestry.listener-binding
@tapestry.meta
@tapestry.option
@tapestry.page-specification
@tapestry.postfield
@tapestry.property

APPENDIX B BUILD-IN XDOCLET TAGS

@tapestry.property-selection
@tapestry.radio
@tapestry.render-block
@tapestry.request-display
@tapestry.rollover

@tapestry.select
@tapestry.service-link
@tapestry.set-message-property
@tapestry.setvar
@tapestry.static-binding
@tapestry.text-area

@tapestry.timer
@tapestry.valid-field

@web.ejb-ref

@web. filter

@web filter-mapping

@web.listener

@web.resource-ref
@web.security-role-ref
@web.servlet-init-param
@weblogic.allow-concurrent-calls
@weblogic.automatic-key-generation
@weblogic.cache-ref
@weblogic.clustering
@weblogic.create-as-principal-name
@weblogic.dbms-column-type
@weblogic.dispatch-policy
@weblogic.ejb-reference-description
@weblogic.enable-bean-class-redeploy
@weblogic.enable-dynamic-queries
@weblogic.field-group
@weblogic.idempotent-methods
@weblogic.instance-lock-order
@weblogic.lifecycle
@weblogic.message-driven
@weblogic.passivate-as-principal-name
@weblogic.pool

@weblogic.relation
@weblogic.resource-description
@weblogic.run-as-identity-principal
@weblogic.select
@weblogic.transaction-descriptor
@weblogic.use-select-for-update
@websphere.bean
@websphere.cmp
@websphere.local-transaction
@websphere.mapping-constraint
@websphere.resource-ref

@tapestry.property-specification
@tapestry.radio-group
@tapestry.render-body
@tapestry.reserved-parameter
@tapestry.script
@tapestry.selection-field
@tapestry.set
@tapestry.set-property
@tapestry.shell
@tapestry.submit
@tapestry.text-field
@tapestry.upload
@web.ejb-local-ref
@web.env-entry

@web filter-init-param
@web.interface-method
@web.resource-env-ref
@web.security-role
@web.servlet
@web.serviet-mapping

@weblogic.allow-remove-during-transaction

@weblogic.cache
@weblogic.clients-on-same-server
@weblogic.column-map
@weblogic.data-source-name
@weblogic.delay-database-insert-until

@weblogic.ejb-local-reference-description

@weblogic.enable-batch-operations
@weblogic.enable-call-by-reference
@weblogic.enable-tuned-updates
@weblogic.finder
@weblogic.iiop-security-descriptor
@weblogic.invalidation-target
@weblogic.lock-order
@weblogic.order-database-operations
@weblogic.persistence
@weblogic.pool-name
@weblogic.remove-as-principal-name
@weblogic.resource-env-description
@weblogic.run-as-principal-name
@weblogic.target-column-map
@weblogic.transaction-isolation
@weblogic.verify-rows
@websphere.bean-cache
@websphere.finder-query
@websphere.mapping
@websphere.mdb
@webwork.action

366

@webwork.command @wsee.handler

@wsee.jaxrpc-mapping @wsee.port-component
@wsee.variable-mapping @xdoclet.merge-file
@xdoclet.taghandler @xwork.action
@xwork.exception-mapping @xwork.interceptor-ref
@xwork.param @xwork.result

367 APPENDIX B BUILD-IN XDOCLET TAGS

Appendix C. ANTLR Software License

ANTLR 1989-2003 Developed by jGuru.com (MageLang Institute), http://www.ANTLR.org and
heep://www.jGuru.com

We reserve no legal rights to the ANTLR—it is fully in the public domain. An individual or company
may do whatever they wish with source code distributed with ANTLR or the code generated by ANTLR,
including the incorporation of ANTLR, or its output, into commercial software.

We encourage users to develop software with ANTLR. However, we do ask that credit is given to us for
developing ANTLR. By “credit”, we mean that if you use ANTLR or incorporate any source code into
one of your programs (commercial product, research project, or otherwise) that you acknowledge this
fact somewhere in the documentation, research report, etc... If you like ANTLR and have developed a
nice tool with the output, please mention that you developed it using ANTLR. In addition, we ask that
the headers remain intact in our source code. As long as these guidelines are kept, we expect to continue
enhancing this system and expect to make other tools available as they are completed.

369

http://www.antlr.org
http://www.jguru.com

Appendix D. Apache Software License
1.1

Copyright (C) 1999 The Apache Software Foundation. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the following
acknowledgment: “This product includes software developed by the Apache Software Foundation
(http://www.apache.org/)“. Alternately, this acknowledgment may appear in the software itself, if
and wherever such third-party acknowledgments normally appear.

4. The names “Ant” and “Apache Software Foundation” must not be used to endorse or promote prod-
ucts derived from this software without prior written permission. For written permission, please
contact apache@apache.org.

5. Products derived from this software may not be called “Apache”, nor may “Apache” appear in their
name, without prior written permission of the Apache Software Foundation.

THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESSED OR IMPLIED WAR-
RANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSE-
QUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUB-
STITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS IN-
TERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHER-
WISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

This software consists of voluntary contributions made by many individuals on behalf of the Apache
Software Foundation. For more information on the Apache Software Foundation, please see http://
www.apache.org.

371

http://www.apache.org/
http://www.apache.org/
http://www.apache.org/

Appendix E. Apache Software License
2.0

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.

“License” shall mean the terms and conditions for use, reproduction, and distribution as defined by
Sections 1 through 9 of this document.

“Licensor” shall mean the copyright owner or entity authorized by the copyright owner that is grant-
ing the License.

“Legal Entity” shall mean the union of the acting entity and all other entities that control, are con-
trolled by, or are under common control with that entity. For the purposes of this definition, “control”
means (i) the power, direct or indirect, to cause the direction or management of such entity, whether
by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares,
or (iii) beneficial ownership of such entity.

“You” (or “Your”) shall mean an individual or Legal Entity exercising permissions granted by this
License.

“Source” form shall mean the preferred form for making modifications, including but not limited
to software source code, documentation source, and configuration files.

“Object” form shall mean any form resulting from mechanical transformation or translation of a
Source form, including but not limited to compiled object code, generated documentation, and con-
versions to other media types.

“Work” shall mean the work of authorship, whether in Source or Object form, made available under
the License, as indicated by a copyright notice that is included in or attached to the work (an example
is provided in the Appendix below).

“Derivative Works” shall mean any work, whether in Source or Object form, that is based on (or
derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modi-
fications represent, as a whole, an original work of authorship. For the purposes of this License, Deriva-
tive Works shall not include works that remain separable from, or merely link (or bind by name) to the
interfaces of, the Work and Derivative Works thereof.

“Contribution” shall mean any work of authorship, including the original version of the Work and
any modifications or additions to that Work or Derivative Works thereof, that is intentionally submit-
ted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity
authorized to submit on behalf of the copyright owner. For the purposes of this definition, “submitted”
means any form of electronic, verbal, or written communication sent to the Licensor or its represen-
tatives, including but not limited to communication on electronic mailing lists, source code control
systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose
of discussing and improving the Work, but excluding communication that is conspicuously marked or
otherwise designated in writing by the copyright owner as "Not a Contribution.”

“Contributor” shall mean Licensor and any individual or Legal Entity on behalf of whom a Contri-
bution has been received by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License.

Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare

373

Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such
Derivative Works in Source or Object form.

3. Grant of Patent License.

Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent
license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such
license applies only to those patent claims licensable by such Contributor that are necessarily infringed
by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such
Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-
claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the
Work constitutes direct or contributory patent infringement, then any patent licenses granted to You
under this License for that Work shall terminate as of the date such litigation is filed.

4. Redistribution.

You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium,
with or without modifications, and in Source or Object form, provided that You meet the following
conditions:

a. You must give any other recipients of the Work or Derivative Works a copy of this License; and
b. You must cause any modified files to carry prominent notices stating that You changed the files; and

c. You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent,
trademark, and attribution notices from the Source form of the Work, excluding those notices that
do not pertain to any part of the Derivative Works; and

d. If the Work includes a “NOTICE” text file as part of its distribution, then any Derivative Works
that You distribute must include a readable copy of the attribution notices contained within such
NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in
at least one of the following places: within a NOTICE text file distributed as part of the Derivative
Works; within the Source form or documentation, if provided along with the Derivative Works;
or, within a display generated by the Derivative Works, if and wherever such third-party notices
normally appear. The contents of the NOTICE file are for informational purposes only and do not
modify the License. You may add Your own attribution notices within Derivative Works that You
distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such
additional attribution notices cannot be construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide additional or dif-
ferent license terms and conditions for use, reproduction, or distribution of Your modifications, or for
any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work
otherwise complies with the conditions stated in this License.

5. Submission of Contributions.

Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the
Work by You to the Licensor shall be under the terms and conditions of this License, without any
additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed with Licensor regarding such Con-
tributions.

374

6. Trademarks.

This License does not grant permission to use the trade names, trademarks, service marks, or product
names of the Licensor, except as required for reasonable and customary use in describing the origin of

the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty.

Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Con-
tributor provides its Contributions) on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or
conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PAR-
TICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redis-

tributing the Work and assume any risks associated with Your exercise of permissions under this License.
8. Limitation of Liability.

In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or
consequential damages of any character arising as a result of this License or out of the use or inability
to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer
failure or malfunction, or any and all other commercial damages or losses), even if such Contributor

has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability.

While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee
for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent
with this License. However, in accepting such obligations, You may act only on Your own behalf and
on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against,
such Contributor by reason of your accepting any such warranty or additional liability.

375 APPENDIX E APACHE SOFTWARE LICENSE 2 0

Appendix F. ASM Software License

ASM: a very small and fast Java bytecode manipulation framework
Copyright (c) 2000, 2002, 2003 INRIA, France Telecom. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holders nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
“AS 1S” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMIT-
ED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROF-
ITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LI-
ABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLI-
GENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

377

Appendix G. Common Public License
1.0

THE ACCOMPANYING PROGRAM IS PROVIDED UNDER THE TERMS OF THIS COM-
MON PUBLIC LICENSE (“AGREEMENT”). ANY USE, REPRODUCTION OR DISTRIBU-
TION OF THE PROGRAM CONSTITUTES RECIPIENT’S ACCEPTANCE OF THIS AGREE-
MENT.

1. DEFINITIONS
“Contribution” means:

a. in the case of the initial Contributor, the initial code and documentation distributed
under this Agreement, and

b. in the case of each subsequent Contributor:
i. changes to the Program, and

ii. additions to the Program;

where such changes and/or additions to the Program originate from and are distributed
by that particular Contributor. A Contribution 'originates' from a Contributor if it was
added to the Program by such Contributor itself or anyone acting on such Contributor’s
behalf. Contributions do not include additions to the Program which: (i) are separate
modules of software distributed in conjunction with the Program under their own li-
cense agreement, and (ii) are not derivative works of the Program.

“Contributor” means any person or entity that distributes the Program.

"Licensed Patents” mean patent claims licensable by a Contributor which are necessarily infringed by
the use or sale of its Contribution alone or when combined with the Program.

“Program” means the Contributions distributed in accordance with this Agreement.

“Recipient” means anyone who receives the Program under this Agreement, including all Contributors.
2. GRANT OF RIGHTS

a. Subject to the terms of this Agreement, each Contributor hereby grants Recipient a non-exclusive,
worldwide, royalty-free copyright license to reproduce, prepare derivative works of, publicly display,
publicly perform, distribute and sublicense the Contribution of such Contributor, if any, and such
derivative works, in source code and object code form.

b. Subject to the terms of this Agreement, each Contributor hereby grants Recipient a non-exclusive,
worldwide, royalty-free patent license under Licensed Patents to make, use, sell, offer to sell, import
and otherwise transfer the Contribution of such Contributor, if any, in source code and object code
form. This patent license shall apply to the combination of the Contribution and the Program if, at
the time the Contribution is added by the Contributor, such addition of the Contribution causes
such combination to be covered by the Licensed Patents. The patent license shall not apply to any
other combinations which include the Contribution. No hardware per se is licensed hereunder.

379

c. Recipient understands that although each Contributor grants the licenses to its Contributions set
forth herein, no assurances are provided by any Contributor that the Program does not infringe
the patent or other intellectual property rights of any other entity. Each Contributor disclaims any
liability to Recipient for claims brought by any other entity based on infringement of intellectual
property rights or otherwise. As a condition to exercising the rights and licenses granted hereunder,
each Recipient hereby assumes sole responsibility to secure any other intellectual property rights
needed, if any. For example, if a third party patent license is required to allow Recipient to distribute
the Program, it is Recipient’s responsibility to acquire that license before distributing the Program.

d. Each Contributor represents that to its knowledge it has sufficient copyright rights in its Contribu-
tion, if any, to grant the copyright license set forth in this Agreement.

3. REQUIREMENTS

A Contributor may choose to distribute the Program in object code form under its own license agree-
ment, provided that:

a. it complies with the terms and conditions of this Agreement; and
b. its license agreement:

i. effectively disclaims on behalf of all Contributors all warranties and conditions,
express and implied, including warranties or conditions of title and non-infringe-
ment, and implied warranties or conditions of merchantability and fitness for a
particular purpose;

ii. effectively excludes on behalf of all Contributors all liability for damages, includ-
ing direct, indirect, special, incidental and consequential damages, such as lost
profits;

iii. states that any provisions which differ from this Agreement are offered by that
Contributor alone and not by any other party; and

iv. states that source code for the Program is available from such Contributor, and
informs licensees how to obtain it in a reasonable manner on or through a medium
customarily used for software exchange.

When the Program is made available in source code form:

a. it must be made available under this Agreement; and

b. a copy of this Agreement must be included with each copy of the Program.

Contributors may not remove or alter any copyright notices contained within the Program.
Each Contributor must identify itself as the originator of its Contribution, if any, in a manner that
reasonably allows subsequent Recipients to identify the originator of the Contribution.

4. COMMERCIAL DISTRIBUTION

Commercial distributors of software may accept certain responsibilities with respect to end users, busi-
ness partners and the like. While this license is intended to facilitate the commercial use of the Pro-
gram, the Contributor who includes the Program in a commercial product offering should do so in
a manner which does not create potential liability for other Contributors. Therefore, if a Contributor
includes the Program in a commercial product offering, such Contributor (“Commercial Contributor”)

380

hereby agrees to defend and indemnify every other Contributor (“Indemnified Contributor”) against
any losses, damages and costs (collectively “Losses”) arising from claims, lawsuits and other legal ac-
tions brought by a third party against the Indemnified Contributor to the extent caused by the acts
or omissions of such Commercial Contributor in connection with its distribution of the Program in
a commercial product offering. The obligations in this section do not apply to any claims or Losses
relating to any actual or alleged intellectual property infringement. In order to qualify, an Indemnified
Contributor must: a) promptly notify the Commercial Contributor in writing of such claim, and b)
allow the Commercial Contributor to control, and cooperate with the Commercial Contributor in, the
defense and any related settlement negotiations. The Indemnified Contributor may participate in any
such claim at its own expense.

For example, a Contributor might include the Program in a commercial product offering, Product
X. That Contributor is then a Commercial Contributor. If that Commercial Contributor then makes
performance claims, or offers warranties related to Product X, those performance claims and warranties
are such Commercial Contributor’s responsibility alone. Under this section, the Commercial Contrib-
utor would have to defend claims against the other Contributors related to those performance claims
and warranties, and if a court requires any other Contributor to pay any damages as a result, the Com-
mercial Contributor must pay those damages.

5. NO WARRANTY

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, THE PROGRAM IS PROVID-
ED ON AN “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, EI-
THER EXPRESS OR IMPLIED INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES
OR CONDITIONS OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Each Recipient is solely responsible for determining the appropri-
ateness of using and distributing the Program and assumes all risks associated with its exercise of rights
under this Agreement, including but not limited to the risks and costs of program errors, compliance
with applicable laws, damage to or loss of data, programs or equipment, and unavailability or interrup-
tion of operations.

6. DISCLAIMER OF LIABILITY

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, NEITHER RECIPIENT NOR
ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY DIRECT, INDIRECT, INCI-
DENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING WITH-
OUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND ON ANY THEORY OF LIA-
BILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLI-
GENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OR DISTRIBUTION
OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED HEREUNDER, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. GENERAL

If any provision of this Agreement is invalid or unenforceable under applicable law, it shall not affect the
validity or enforceability of the remainder of the terms of this Agreement, and without further action
by the parties hereto, such provision shall be reformed to the minimum extent necessary to make such
provision valid and enforceable.

If Recipient institutes patent litigation against a Contributor with respect to a patent applicable to
software (including a cross-claim or counterclaim in a lawsuit), then any patent licenses granted by that
Contributor to such Recipient under this Agreement shall terminate as of the date such litigation is
filed. In addition, if Recipient institutes patent litigation against any entity (including a cross-claim or

381 APPENDIX G COMMON PUBLIC LICENSE 1 0

counterclaim in a lawsuit) alleging that the Program itself (excluding combinations of the Program with
other software or hardware) infringes such Recipient’s patent(s), then such Recipient’s rights granted
under Section 2(b) shall terminate as of the date such litigation is filed.

All Recipient’s rights under this Agreement shall terminate if it fails to comply with any of the ma-
terial terms or conditions of this Agreement and does not cure such failure in a reasonable period of
time after becoming aware of such noncompliance. If all Recipient’s rights under this Agreement ter-
minate, Recipient agrees to cease use and distribution of the Program as soon as reasonably practicable.
However, Recipient’s obligations under this Agreement and any licenses granted by Recipient relating
to the Program shall continue and survive.

Everyone is permitted to copy and distribute copies of this Agreement, but in order to avoid incon-
sistency the Agreement is copyrighted and may only be modified in the following manner. The Agree-
ment Steward reserves the right to publish new versions (including revisions) of this Agreement from
time to time. No one other than the Agreement Steward has the right to modify this Agreement. IBM
is the initial Agreement Steward. IBM may assign the responsibility to serve as the Agreement Steward
to a suitable separate entity. Each new version of the Agreement will be given a distinguishing version
number. The Program (including Contributions) may always be distributed subject to the version of the
Agreement under which it was received. In addition, after a new version of the Agreement is published,
Contributor may elect to distribute the Program (including its Contributions) under the new version.
Except as expressly stated in Sections 2(a) and 2(b) above, Recipient receives no rights or licenses to
the intellectual property of any Contributor under this Agreement, whether expressly, by implication,
estoppel or otherwise. All rights in the Program not expressly granted under this Agreement are reserved.

This Agreement is governed by the laws of the State of New York and the intellectual property laws of
the United States of America. No party to this Agreement will bring a legal action under this Agreement
more than one year after the cause of action arose. Each party waives its rights to a jury trial in any
resulting litigation.

382

Appendix H. Creative Commons
Attribution License

CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE
LEGAL SERVICES. DISTRIBUTION OF THIS LICENSE DOES NOT CREATE AN ATTOR-
NEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS INFORMATION
ON AN "AS-IS" BASIS. CREATIVE COMMONS MAKES NO WARRANTIES REGARDING
THE INFORMATION PROVIDED, AND DISCLAIMS LIABILITY FOR DAMAGES RESULT-
ING FROM ITS USE.

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CRE-
ATIVE COMMONS PUBLIC LICENSE (“CCPL” OR “LICENSE”). THE WORK IS PROTECT-
ED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER
THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND
AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. THE LICENSOR GRANTS
YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE
OF SUCH TERMS AND CONDITIONS

1. Definitions

a. “Collective Work” means a work, such as a periodical issue, anthology or encyclopedia, in which the
Work in its entirety in unmodified form, along with a number of other contributions, constituting
separate and independent works in themselves, are assembled into a collective whole. A work that
constitutes a Collective Work will not be considered a Derivative Work (as defined below) for the
purposes of this License.

b. “Derivative Work” means a work based upon the Work or upon the Work and other pre-existing
works, such as a translation, musical arrangement, dramatization, fictionalization, motion picture
version, sound recording, art reproduction, abridgment, condensation, or any other form in which
the Work may be recast, transformed, or adapted, except that a work that constitutes a Collective
Work will not be considered a Derivative Work for the purpose of this License. For the avoidance
of doubt, where the Work is a musical composition or sound recording, the synchronization of the
Work in timed-relation with a moving image (“synching”) will be considered a Derivative Work for
the purpose of this License.

c. “Licensor” means the individual or entity that offers the Work under the terms of this License.
d. “Original Author” means the individual or entity who created the Work.
e. “Work” means the copyrightable work of authorship offered under the terms of this License.

f. “You” means an individual or entity exercising rights under this License who has not previously
violated the terms of this License with respect to the Work, or who has received express permission
rom the Licensor to exercise rights under this License despite a previous violation.
from the L t ghts under this L despit lat

2. Fair Use Rights. Nothing in this license is intended to reduce, limit, or restrict any rights arising from

fair use, first sale or other limitations on the exclusive rights of the copyright owner under copyright
law or other applicable laws.

383

3. License Grant. Subject to the terms and conditions of this License, Licensor hereby grants You a
worldwide, royalty-free, non-exclusive, perpetual (for the duration of the applicable copyright) license
to exercise the rights in the Work as stated below:

a. to reproduce the Work, to incorporate the Work into one or more Collective Works, and to reproduce
the Work as incorporated in the Collective Works;

b. to create and reproduce Derivative Works;

c. to distribute copies or phonorecords of, display publicly, perform publicly, and perform publicly by
means of a digital audio transmission the Work including as incorporated in Collective Works;

d. to distribute copies or phonorecords of, display publicly, perform publicly, and perform publicly by
means of a digital audio transmission Derivative Works.

e. For the avoidance of doubt, where the work is a musical composition:

i. Performance Royalties Under Blanket Licenses. Licensor waives the exclusive right to collect,
whether individually or via a performance rights society (e.g. ASCAP, BMI, SESAC), royalties for
the public performance or public digital performance (e.g. webcast) of the Work.

ii. Mechanical Rights and Statutory Royalties. Licensor waives the exclusive right to collect, whether
individually or via a music rights agency or designated agent (e.g. Harry Fox Agency), royalties
for any phonorecord You create from the Work ("cover version”) and distribute, subject to the
compulsory license created by 17 USC Section 115 of the US Copyright Act (or the equivalent
in other jurisdictions).

f. Webcasting Rights and Statutory Royalties. For the avoidance of doubt, where the Work is a
sound recording, Licensor waives the exclusive right to collect, whether individually or via a perfor-
mance-rights society (e.g. SoundExchange), royalties for the public digital performance (e.g. webcast)
of the Work, subject to the compulsory license created by 17 USC Section 114 of the US Copyright

Act (or the equivalent in other jurisdictions).

The above rights may be exercised in all media and formats whether now known or hereafter devised.
The above rights include the right to make such modifications as are technically necessary to exercise
the rights in other media and formats. All rights not expressly granted by Licensor are hereby reserved.

4. Restrictions. The license granted in Section 3 above is expressly made subject to and limited by the
following restrictions:

a. You may distribute, publicly display, publicly perform, or publicly digitally perform the Work only
under the terms of this License, and You must include a copy of, or the Uniform Resource Identifier
for, this License with every copy or phonorecord of the Work You distribute, publicly display, publicly
perform, or publicly digitally perform. You may not offer or impose any terms on the Work that
alter or restrict the terms of this License or the recipients' exercise of the rights granted hereunder.
You may not sublicense the Work. You must keep intact all notices that refer to this License and to
the disclaimer of warranties. You may not distribute, publicly display, publicly perform, or publicly
digitally perform the Work with any technological measures that control access or use of the Work
in a manner inconsistent with the terms of this License Agreement. The above applies to the Work
as incorporated in a Collective Work, but this does not require the Collective Work apart from the
Work itself to be made subject to the terms of this License. If You create a Collective Work, upon
notice from any Licensor You must, to the extent practicable, remove from the Collective Work any
credit as required by clause 4(b), as requested. If You create a Derivative Work, upon notice from

384

any Licensor You must, to the extent practicable, remove from the Derivative Work any credit as
required by clause 4(b), as requested.

b. If you distribute, publicly display, publicly perform, or publicly digitally perform the Work or any
Derivative Works or Collective Works, You must keep intact all copyright notices for the Work
and provide, reasonable to the medium or means You are utilizing: (i) the name of the Original
Author (or pseudonym, if applicable) if supplied, and/or (ii) if the Original Author and/or Licensor
designate another party or parties (e.g. a sponsor institute, publishing entity, journal) for attribution
in Licensor’s copyright notice, terms of service or by other reasonable means, the name of such party
or parties; the title of the Work if supplied; to the extent reasonably practicable, the Uniform Resource
Identifier, if any, that Licensor specifies to be associated with the Work, unless such URI does not refer
to the copyright notice or licensing information for the Work; and in the case of a Derivative Work,
a credit identifying the use of the Work in the Derivative Work (e.g. “French translation of the Work
by Original Author” or “Screenplay based on original Work by Original Author”). Such credit may
be implemented in any reasonable manner; provided, however, that in the case of a Derivative Work
or Collective Work, at a minimum such credit will appear where any other comparable authorship
credit appears and in a manner at least as prominent as such other comparable authorship credit.

5. Representations, Warranties and Disclaimer UNLESS OTHERWISE MUTUALLY AGREED TO
BY THE PARTIES IN WRITING, LICENSOR OFFERS THE WORK AS-IS AND MAKES NO
REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE WORK, EX-
PRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION,
WARRANTIES OF TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR PURPOSE,
NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURA-
CY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER ORNOT DISCOVERABLE.
SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES,
SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN
NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPE-
CIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES ARISING
OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate automatically upon any breach by You
of the terms of this License. Individuals or entities who have received Derivative Works or Collective
Works from You under this License, however, will not have their licenses terminated provided such
individuals or entities remain in full compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8 will
survive any termination of this License.

b. Subject to the above terms and conditions, the license granted here is perpetual (for the duration
of the applicable copyright in the Work). Notwithstanding the above, Licensor reserves the right to
release the Work under different license terms or to stop distributing the Work at any time; provided,
however that any such election will not serve to withdraw this License (or any other license that has
been, or is required to be, granted under the terms of this License), and this License will continue
in full force and effect unless terminated as stated above.

8. Miscellaneous

385 APPENDIX H CREATIVE COMMONS ATTRIBUTION LICENSE

a. Each time You distribute or publicly digitally perform the Work or a Collective Work, the Licensor
offers to the recipient a license to the Work on the same terms and conditions as the license granted
to You under this License.

b. Each time You distribute or publicly digitally perform a Derivative Work, Licensor offers to the
recipient a license to the original Work on the same terms and conditions as the license granted to
You under this License.

c. Ifany provision of this License is invalid or unenforceable under applicable law, it shall not affect the
validity or enforceability of the remainder of the terms of this License, and without further action
by the parties to this agreement, such provision shall be reformed to the minimum extent necessary
to make such provision valid and enforceable.

d. No term or provision of this License shall be deemed waived and no breach consented to unless
such waiver or consent shall be in writing and signed by the party to be charged with such waiver
or consent.

e. This License constitutes the entire agreement between the parties with respect to the Work licensed
here. There are no understandings, agreements or representations with respect to the Work not spec-
ified here. Licensor shall not be bound by any additional provisions that may appear in any com-
munication from You. This License may not be modified without the mutual written agreement of
the Licensor and You.

Creative Commons is not a party to this License, and makes no warranty whatsoever in connection with
the Work. Creative Commons will not be liable to You or any party on any legal theory for any damages
whatsoever, including without limitation any general, special, incidental or consequential damages aris-
ing in connection to this license. Notwithstanding the foregoing two (2) sentences, if Creative Com-
mons has expressly identified itself as the Licensor hereunder, it shall have all rights and obligations
of Licensor.

Except for the limited purpose of indicating to the public that the Work is licensed under the CCPL,
neither party will use the trademark “Creative Commons” or any related trademark or logo of Creative
Commons without the prior written consent of Creative Commons. Any permitted use will be in com-
pliance with Creative Commons' then-current trademark usage guidelines, as may be published on its
website or otherwise made available upon request from time to time.

Creative Commons may be contacted at http://creativecommons.org/.

386

http://creativecommons.org/

Appendix |. JDBM Software License

JDBM LICENSE v1.0

Redistribution and use of this software and associated documentation (“Software”), with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain copyright statements and notices. Redistributions must
also contain a copy of this document.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

3. The name “JDBM” must not be used to endorse or promote products derived from this Software
without prior written permission of Cees de Groot.

4. Products derived from this Software may not be called “JDBM” nor may “JDBM” appear in their
names without prior written permission of Cees de Groot.

5. Due credit should be given to the JDBM Project (http://jdbm.sourceforge.net/).

THIS SOFTWARE IS PROVIDED BY THE JDBM PROJECT AND CONTRIBUTORS “AS IS”
AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL CEES DE GROOT OR ANY CON-
TRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEM-
PLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROF-
ITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LI-
ABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLI-
GENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright 2000 (C) Cees de Groot. All Rights Reserved. Contributions are Copyright (C) 2000 by

their associated contributors.

387

http://jdbm.sourceforge.net/

Appendix J. JDOM Software License

Copyright (c) 2000-2003 Jason Hunter & Brett McLaughlin. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions, and
the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and
the disclaimer that follows these conditions in the documentation and/or other materials provided
with the distribution.

* The name “JDOM” must not be used to endorse or promote products derived from this software
without prior written permission. For written permission, please contact <license AT jdom DOT
org<.

* Products derived from this software may not be called “J/DOM?”, nor may “JDOM” appear in their
name, without prior written permission from the JDOM Project Management <pm AT jdom DOT
org>.

In addition, we request (but do not require) that you include in the end-user documentation provided
with the redistribution and/or in the software itself an acknowledgment equivalent to the following:

“This product includes software developed by the JDOM Project (http://

www.jdom.org/)”.

Alternatively, the acknowledgment may be graphical using the logos available at http://www.jdom.org/
pdf-images/logos/.

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WAR-
RANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE JDOM AUTHORS OR THE PROJECT CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUEN-
TIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTI-
TUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTER-
RUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

This software consists of voluntary contributions made by many individuals on behalf of the JDOM
Project and was originally created by Jason Hunter <jhunter AT jdom DOT org> and Brett McLaughlin
<brett AT jdom DOT org>.

For more information on the JDOM Project, please see http://www.jdom.org/.

389

http://www.jdom.org/
http://www.jdom.org/
http://www.jdom.org/pdf-images/logos/
http://www.jdom.org/pdf-images/logos/
http://www.jdom.org/

Appendix K. JGoodies Software
License

Copyright (c) 2003 JGoodies Karsten Lentzsch. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

* Neither the name of JGoodies Karsten Lentzsch nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMIT-
ED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROF-
ITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LI-
ABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLI-
GENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

391

Appendix L. One-JAR Software License

Copyright (c) 2004, P. Simon Tuffs (http://www.simontuffs.com/). All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

* Neither the name of P. Simon Tuffs nor the names of any contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
“AS 1S” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMIT-
ED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROF-
ITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LI-
ABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLI-
GENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

393

http://www.simontuffs.com/

Appendix M. TreeTable Software
License

Copyright 1997-1999 Sun Microsystems, Inc. All Rights Reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

* Redistribution in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

* Neither the name of Sun Microsystems, Inc. or the names of contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

This software is provided “AS IS”, without a warranty of any kind. ALL EXPRESS ORIMPLIED CON-
DITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WAR-
RANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-IN-
FRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE LI-
ABLE FOR ANY DAMAGES OR LIABILITIES SUFFERED BY LICENSEE AS A RESULT OF OR
RELATING TO USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE OR ITS
DERIVATIVES. IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY LOST
REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL,
INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE
THEORY OF LIABILITY, ARISING OUT OF THE USE OF OR INABILITY TO USE THIS
SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.

You acknowledge that this software is not designed, licensed or intended for use in the design, construc-
tion, operation or maintenance of any nuclear facility.

395

Resources

Apache Software Foundation, Ant. http://ant.apache.org/

Eclipse Foundation, Eclipse. http://www.eclipse.org/

Oracle, Inc., JDeveloper. http://www.oracle.com/technology/products/jdev
jEdit community, jEdit. http://www.jedit.org

JetBrains s.r.o., Intelli] IDEA. http://www.jetbrains.com/idea/

Apache Software Foundation, Maven. http://maven.apache.org/

Sun Microsystems, Inc., NetBeans. http://www.netbeans.org/

397

http://ant.apache.org/
http://www.eclipse.org/
http://www.oracle.com/technology/products/jdev
http://www.jedit.org
http://www.jetbrains.com/idea/
http://maven.apache.org/
http://www.netbeans.org/

Bibliography

[Bloch01]
Joshua Bloch. Effective Java . Programming Language Guide. Addison-Wesley, 2001. ISBN:
0-201-31005-8.

[Friedl97]
Mastering Regular Expressions . O'Reilly, 1997. ISBN: 1-56592-257-3.

[Kernighan88]
Brian Kernighan. Dennis Ritchie. 7he C Programming Language . Prentice-Hall, 1988. ISBN:
0-13-110362-8.

399

http://java.sun.com/docs/books/effective/
http://www.oreilly.com/catalog/regex/
http://vig.prenhall.com/catalog/academic/product/1,4096,0131103628,00.html

Index

Symbols
11]- 1]+, 221
//J:KEEP+, 222
/JDOC-, 222
<classpath>, 302
<variable>, 302
@Override

Insert missing, 59
@return

Use description, 261

A
Accelerator
Keyboard, 328
Activate
Profile, 24
Add
Collection comment, 289
[18N comment for string literals, 289
Profile, 22
Adhere to custom naming conventions
Code Inspector, 288
Alias
Profile, 24
Wildcard, 25
Align
Anonymous inner class, 128
Array, 127
assert, 127
Assignments, 125
Chained method call, 125, 126
Declaration parameter, 125
Endline comment, 128
Enum constant, 124
Identifiers, 125
Right parenthesis, 127
Ternary, 126
Variables
Assignments, 125
Identifiers, 125
Always overwrite
hashCode(), 287
toString(), 287
Ampersand
Space after
Type parameter, 149

Space before
Type parameter, 149

Annotation, 280

Add pattern, 281

Blank lines, 185

Change pattern, 282

Insert, 281

Move pattern down, 282

Move pattern up, 282

Remove pattern, 282

Sort, 207

Space after assignment operator, 133

Space after left curly brace, 165

Space before assignment operator, 131

Space before right curly brace, 165

Werap after left parenthesis, 100

Werap after members, 101

Wrap before right parenthesis, 102

Wrap marker annotation, 99, 100
Annotation array

Space after comma, 140

Space before comma, 136
Annotation member argument

Space after comma, 140

Space before comma, 136
Anonymous inner class

Align, 128
Ant, 297, 397

<classpath>, 302

<variable>, 302

taskdef, 299
Apache Software License, 371, 373
Apply button, 21
Array

Align, 127

Brackets, 57

Keep line breaks, 84

Werap after element, 111

Werap all elements when exceed, 110

Werap as needed, 110
Array access

Space after left bracket, 167, 167

Space before right bracket, 168
Array creator

Space after left bracket, 167

Space before left bracket, 167

Space before right bracket, 168

Space between empty bracket, 168
Array declaration

401

Space between empty bracket, 166, 168

Array initializer
Compact braces, 74
Space after comma, 143
Space after left curly brace, 165
Space before, 164
Space before comma, 139

Space before right curly brace, 166
Space between empty braces, 166

ASM Software License, 377
assert

Align, 127

Space after colon, 146

Space before colon, 144
Assignment operator

Blank lines, 191

Prefer wrap after, 105

Space after, 133, 133

Space before, 131, 131
Attribute

compact, 240
Auto-correct

Javadoc, 251

Block tags, 256
Description, 253

Auto-format

On code generation, 37

On commit, 37

On save, 37
Auto-generation, 244

disable for, 249

enable for, 249
Auto-switch

Profiles, 38
Avoid empty finally blocks

Code Inspector, 289
Avoid thread groups

Code Inspector, 288

B
Backup, 35
Directory, 35
Level, 35
Bitwise operator
Space after, 134
Space before, 132
Blank lines, 183
After left curly brace, 186, 187

After left curly brace endline, 187

After left curly brace newline, 188
Annotation, 185
Assignment, 191

Before right curly brace, 188
break, 189

Case block, 189

Class, 184

continue, 189

Control statement, 189
Declaration section, 183
Enum, 185

Footer, 191

Header, 191

Ignore block in switch, 195
Ignore break in switch, 195
Interface, 185

Javadoc, 190

keep, 192, 192

Last Import statement, 184
Method/Constructor, 186
Multi-line comment, 190
Package statement, 184
remove, 194

return, 189

Separator, 190

Single-line comment, 190
SQLJ clause, 191
Statement block, 189
Variable, 186

Bloch, Joshua, 399
Block

Blank lines, 189
Continuation, 123
indent, 120
Remove braces, 72

Block tag

add missing description, 262
Align attributes, 234

Align name/description, 234
compact comment, 239
configure order, 237

define custom, 271

format, 232

group, 233

indent description, 232

sort, 235

sort attributes, 235

Braces, 61

Choose common style, 62

402

Comments, 77 G, 62

Class, 77 Choose common, 62
Constructor, 78 Global, 61
for, 79 GNU, 63
if-else, 78 K&R, 63
Interface, 78 Sun, 63
Method, 78 Synchronize, 64
switch, 79 Styles, 61
synchronized, 80 Treat different, 65
Threshold, 80 Treat different if wrapped, 65
try/catch, 79 Treat statement blocks different if wrapped, 65
while, 79 White Space, 66
Compact braces, 72 After right curly brace, 66
All statements, 75 Before left curly brace, 66
Array initializer, 74 Before right curly brace, 66
else if, 73, 74 Wrap after right brace, 64
Enum constant, 75 Werap before left brace, 64
Enum declaration, 75 Wrapping, 64
if, 73 Brackets
Methods, 73 Array, 57
Narrow scope, 75 break
Only throw and return, 76 Blank lines, 189
Single if, 73 Ignore blank lines in switch, 195
Cuddle, 76
Obey brace style, 76 C
Empty braces, 76 Call after assignment
Empty statement, 77 Prefer wrap within when exceed, 87
Global style, 61 Call argument
Insert, 68 Keep line breaks, 83
do...while, 69 Call arguments
for, 69 Prefer wrap when exceed, 88
if, 68, 68 Werap after, 98
switch, 69 Wrap after when nested, 99
while, 69 Cancel button, 21
Insert braces case
Only when statement takes more than one Blank lines, 189
line, 70 indent, 120
Layout, 61 Space before colon, 145
Remove, 70 catch
Block, 72 Space after left parenthesis, 156
do...while, 72 Space before left parenthesis, 152
for, 71 Space before right parenthesis, 160
if, 71,71 Chained method call
switch, 72 Align, 125, 126
while, 71 Check-in
Strictly obey brace style, 66 Format during check-in, 37
Style, 62 Checkout read-only files, 33
Allman, 62 Checkstyle
BSD, 62 Import configuration, 26

403 INDEX

Checksum, 34
Chunks, 193
By blank lines, 193
by comments, 193
By line wrap, 194
Class
Blank lines, 184
indent, 118
Wrap after, 92
Code Convention, 31
Export, 27
Import, 25
Synchronization, 38
Code generation

Indent, 122
Javadoc, 221
Format, 231
Generate, 244
Remove, 224
Keep first column as-is, 230
Move after block brace, 230
Multi-line, 220, 223, 227, 228
Reflow, 228
Pragma, 221
Separator, 208, 221
Line length, 214
Single-line, 220, 223, 226, 227
Reflow, 227

Format, 37 Trailing, 116
Code Inspector, 285 Use existing, 247
Checks, 286 Use tabs in comments, 130
Add collection comment, 289 Wrap
Add 118N comment for string literals, 289 Line length, 229

Adhere to custom naming conventions, 288

Space threshold, 229

Always overwrite hashCode, 287
Always overwrite toString, 287
Avoid empty finally blocks, 289

Commit
Format during commit, 37
Common brace style, 62

Avoid thread groups, 288 Common Public License, 379
Don't check line length limit within pragma Compact

comments, 290 Javadoc elements, 238
Don't ignore exceptions, 288 Compact braces, 72

Don't substitute another type, 286 Array initializer, 74

Never declare throws Exception, 288 else if, 73, 74

Never declare throws Throwable, 288 Enum constant, 75

Never invoke wait outside a loop, 288 Enum declaration, 75
Obey contract when overriding equals, 286 if, 73

Obey line length limit, 290 Methods, 73

Refer to objects by their interfaces, 288 Single if, 73

Replace structures with classes, 287
Use interfaces only to define types, 287
Use zero-length arrays, 287

Compact declaration
Space after left curly brace, 165
Space before, 164

Enable, 286 Space before right curly brace, 166
Naming, 290 Space between empty braces, 166
Change constraints, 291 Complement operator
Pattern, 291 Space after, 134
Command line, 305, 306 Compliance, 54
Arguments, 307 Concat operator
Options, 307 Keep line breaks, 84
Comment Space after, 135
Braces, 77 Space before, 133

Create @see tags, 245 Conditional operator
Exclude overridden/implemented, 244 Space after colon, 146, 146, 146
Header, 274 Space after question mark, 148

404

Space before colon, 145, 145, 145
Space before question mark, 147
Configuration, 19
Configuration driver, 15
Configuration window, 28
Console, 305
Constructor
Blank lines, 186
Constructor call
Space after comma, 143
Space after left parenthesis, 156
Space before comma, 138
Space before left parenthesis, 153
Space before right parenthesis, 161
Space between empty parentheses, 163
Constructor declaration
Space after comma, 142
Space after left parenthesis, 154
Space before comma, 137
Space before left parenthesis, 150
Space before right parenthesis, 158
Space between empty parentheses, 163
Constructor declaration throws clause
Space after comma, 142
Space before comma, 138
Content view, 31
Context menu
jEdit, 335
Continuation, 123
Block, 123
Declaration parameter, 123
Operator, 123
return, 124
continue
Blank lines, 189
Control statement
Blank lines, 189
Convention
Name, 32, 32
Correct
first sentence punctuation, 252

HTML tags, 251

Creative Commons Attribution License, 383

Creator call
Space after comma, 143
Space after left parenthesis, 157
Space before comma, 139
Space before left parenthesis, 153
Space before right parenthesis, 161

405

Space between empty parentheses, 164
Cuddled braces, 76, 117

Object brace style, 76
Custom Environment variable, 41
Custom ordering, 202
Custom tags, 273

Javadoc, 271

XDoclet, 273

D
Declaration
Sort, 196
Declaration parameter
Align, 125
Continuation, 123
Keep line breaks, 82
Wrap after, 97
Declaration section
blank lines, 183
Description section
Correction, 253
do...while
Insert braces, 69
Remove braces, 72
Dockable windows, 332
Don't check line length limit within pragma com-
ments
Code Inspector, 290
Don't ignore exceptions
Code Inspector, 288
Don't substitute another type
Code Inspector, 286
Dotted expression
indent, 121
Never wrap, 105

E
Eclipse, 311, 397
Edit
Profile, 21
Editor pop-up
NetBeans, 349
else
Keep on same line, 56
else if
Keep on same line, 55
Empty braces, 76
Empty statement, 77
Encoding

INDEX

Force, 36
Endline comment
Align, 128
Endline indent
Strictly obey 'Keep line breaks', 85
Endline indentation, 113
enum
Blank lines, 185
Compact braces, 75
Compact comments, 238
Javadoc template, 264
Enum constant
Align, 124
Space after comma, 140, 141
Space before comma, 136, 136
Werap after, 95
Environment
Date pattern, 46
Time pattern, 46
Variable, 40
Environment variable
Custom, 41
Interpolation, 40
Local, 43
System, 43
Exclusion
Move pattern down, 48
Exclusions, 47
Add pattern, 47
Change pattern, 48
Move pattern up, 48
Remove pattern, 48
Explorer pop-up
NetBeans, 350
Export
Code Convention, 27
Expression
Disable wrapping for complex expression, 86
Insert parentheses, 56
Space after left parenthesis, 157
Space before right parenthesis, 161
extends
Space after comma, 141
Space before comma, 136
Wrap before, 92
Wrap types, 93
Extension, 323

F

Favorites view, 31
Field name
Werap before, 95
File extension, 39
Add, 39
Remove, 40
File System Browser, 336
File Type, 38
Add, 39
File extension, 39
Remove, 39
Fill character, 213
First column comment
Keep as-is, 230
Footer, 279
Blank lines, 191
for
Insert braces, 69
Remove braces, 71
Space after left parenthesis, 155
Space after semi, 147
Space before left parenthesis, 151
Space before right parenthesis, 159
Space before semi, 146
for incrementor
Space after comma, 144
Space before comma, 139
for initializer
Space after comma, 144
Space before comma, 139
Force formatting, 32
Format
Comments
Javadoc, 231
Multi-line, 227
Single-line, 226
portion, 313
Format only Javadoc, 57
Friedl, Jeffrey E. E, 399

G

Getter/Setter
Generate comments, 244
Regex Pattern, 206
Global style
Braces, 61
Grouping, 216
Imports, 216

406

GUI
Apply button, 21
Cancel button, 21

Configuration window, 28

Help button, 21
Main window, 20
Preferences, 20
Save button, 21

H
hashCode
Always overwrite, 287
Header, 274
Blank lines, 191
Detection, 277
Key Mode, 278
Smart Mode, 277
Identify key, 278
Insert, 275
Keep tags, 276
Key Mode, 278
Override, 276
Smart Mode, 277
Template, 279
Help, 30
Content view, 31
Favorites view, 31
Index view, 31
Help browser, 30
Help button, 21
History
Checksum, 34
Directory, 35
View, 35
HTML
correct tags, 251
define custom tags, 273
indent tags, 243

|
IDEA, 317
Identify key, 278
Add, 278
Change, 278
Remove, 279
Identifying comments, 77
if
Insert braces, 68, 68
Keep on same line, 55

407

Remove braces, 71, 71

Space after left parenthesis, 155
Space before left parenthesis, 151
Space before right parenthesis, 159
implements

Space after comma, 141
Space before comma, 137
Werap before, 93

Wrap types, 94

Implicit constructor

Insert, 60

Import
Checkstyle configuration, 26

Code Convention, 25

Imports, 214

Blank lines, 184
Grouping, 216, 216
On-demand import
Expand, 218
Expand custom, 219
Optimize, 218
Single-type
Collapse, 219
Sort, 215
Sort order, 215
static
Grouping, 217
Wrap when exceed, 91

In-line tag

define custom, 272
disable wrapping, 242

Indentation, 111

Alignment, 124

block, 120

case, 120

Class declaration, 118
Continuation, 123
Dotted expression, 121
Endline

Strictly obey 'Keep line breaks', 85

first-column comment, 122
HTML tags, 243
Increase on hotspots, 115
Label, 121
Method declaration, 119
Policy

Endline, 113

Increase on all hotspots, 115

Mixed endline, 113

INDEX

Standard, 112, 114
Size, 115
Sizes
Continuation, 116
Cuddled braces, 117
extends, 117
General, 115
implements, 117
Leading, 116
Tabular, 115
throws, 117
Trailing comment, 116
Strategies, 112
switch, 119
Tabs, 129
Ternary operands, 122
Index operator
Never wrap chained, 103
Index view, 31
Inner classes, 244
Insert
@OQOverride, 59
Annotation, 281
Implicit constructor, 60
Logging conditional, 60
Separator comment, 208
Serial version UID, 59
Trailing Newline, 33
Installation, 3
Ant, 297
Console Plug-in, 305
Driver file, 15
Eclipse Plug-in, 311
IDEA Plug-in, 317
JDeveloper Plug-in, 323
jEdit Plug-in, 331
Manual installation, 17
Maven 1, 337
Maven 2, 341
NetBeans Module, 349
Setup Wizard, 4
Silent installation, 15
Sun ONE Studio Module, 349
Intelli] IDEA, 397
interface
Blank lines, 185
Interpolation, 40
Introduction, ix

J

JavaBeans

format property, 248

Require property field, 206

Sort methods
By bean pattern, 198

Javadoc, 231

Blank lines, 190

Block tag, 232, 271
add from template, 259
add missing description, 262
add type parameter tags for methods, 260
Align attributes, 234
Align name/description, 234
Auto-correct, 256
Auto-correction when @param or @return,
257
Auto-correction when generation, 256
Auto-correction when no @see, 258
Auto-correction when no runtime exception
or error, 259
configure order, 237
group, 233
include body, 258
indent description, 232
keep tags, 259
mispelled tags, 258
remove misused, 261
sort, 235
sort attributes, 235
use description for @return, 261

Compact attributes, 240

Compact block tag comments, 239

Compact class comments, 238

Compact elements, 238

Compact enum comments, 238

Compact field comments, 238

Compact method comments, 239

correct first sentence punctuation, 252

correct HTML, 251

Correction, 251
add description only when @param or @re-
turn, 254
add description only when generation, 253
add description only when no @see, 255, 255
add missing description, 262
add missing tag, 259
add tags only when @param or @return, 257
add tags only when generation, 256

408

add tags only when no @see, 258
add tags only when no runtime exception or
error, 259
add type parameter tags for methods, 260
Description section, 253
include body, 258
keep tags, 259
misspelled tags, 258
remove misused, 261
Tag section, 256
use description for @return, 261
Custom tags, 271
Definition, 221
Description section
Auto-correct, 253, 253
Auto-correct when @param or @return, 254
Auto-correct when generation, 253
Auto-correction when no @see, 255
Use text from @return tag, 255
Format, 231, 232
Format JavaBeans property, 248
format only, 57
Generation, 244, 244
Create @see tags, 245
disable for, 249
enable for, 249
Exclude overridden/implemented, 244
Getter/Setter, 244
Inner classes, 244
Use existing comments, 247
HTML tags, 273
In-line tag, 272
indent HTML tags, 243
Inner space, 242
Line length, 242
Normalize white space, 241
Remove, 224
Remove leading stars, 240
Separate multi-line XDoclet tags, 241
Tag section
Auto-correct, 256
Template, 262
wrapping
In-line tags, 242
XDoclet tag, 273
sort, 236
Javadoc comment
Search & Replace, 283
JDBM Software License, 387

409

JDeveloper, 323, 397

JDOM Software License, 389
jEdit, 331, 397

JGoodies Software License, 391

K
Keep
Blank lines, 192, 192
On same line
else, 56
else if, 55
if, 55
Options, 56
Single if, 54
Keep editor state, 33
Keep line breaks
Array, 84
Call argument, 83
Declaration parameter, 82
Operators, 83
String concats, 84
Keep tags
Header, 276
Kernighan, Brian, 399
Key Mode, 278
Keyboard
Accelerator
JDeveloper, 328
Shortcut
JDeveloper, 328
Keyboard shortcuts
jEdit, 334
NetBeans, 354
Keyword
Werap before, 91

L
Label
indent, 121
Wrap, 108
Leading stars
remove, 240
Leading tabs, 130
Licenses
ANTLR, 369
Apache Software License, 371, 373
ASM, 377
Common Public License, 379
Creative Commons Attribution, 383

INDEX

JDBM, 387
JDOM, 389
JGoodies, 391
One-JAR, 393
TreeTable, 395

Line breaks
Keep, 82

Line length, 81
Comments, 229
Javadoc, 242
Separator comment, 214

Line separator, 36

Line wrap, 80
Chunks, 193

Local Environment variable, 43

Logfile, 50

Logging, 48, 50
Categories, 49
Logfile, 50
Show messages, 51
Show stacktrace, 51

Logging conditional
Insert, 60

Logical operator
Space after, 134
Space before, 132

M
Main window, 20
Manual installation, 17
Mathematical operator
Space after, 134
Space before, 132
Maven, 397
Plug-in
1.0, 337
2.0, 341
Parameters, 343
Message window
NetBeans, 352
Method
Blank lines, 186
Method call
Align chained, 125, 126
Space after comma, 143
Space after left parenthesis, 157
Space before comma, 139
Space before left parenthesis, 153
Space before right parenthesis, 161

Space between empty parentheses, 163

Wrap chained, 97

Wrap nested chained, 98
Method declaration

indent, 119

Space after comma, 142

Space after left parenthesis, 154

Space before comma, 138

Space before left parenthesis, 151

Space before right parenthesis, 158

Space between empty parentheses, 163
Method declaration throws clause

Space after comma, 143

Space before comma, 138
Method name

Werap before, 96
Mixed endline indentation, 113
Modifier

Order, 208

remove redundant, 58

Sort, 207
Module

NetBeans, 349

Sun ONE Studio, 349
Move comment after brace, 230
Multi-field

Space after comma, 141

Space before comma, 137
Multi-line comment

Blank lines, 190

Definition, 220

Format, 227

Remove, 223

Search & Replace, 283

Wrap, 228
Multi-Threading, 36
Multi-variable

Space after comma, 142

Space before comma, 137

Wrap after declarators, 96

Werap after type, 96
Multi-vars

split, 58

N
Naming, 290
Naming convention
Change code inspector, 291
Naming pattern

410

Code Inspector, 291

Nested Profile, 23

NetBeans, 349, 397
Editor pop-up, 349
Explorer pop-up, 350
Keyboard shortcuts, 354
Message window, 352
Options, 355

Never declare throws Exception
Code Inspector, 288

Never declare throws Throwable
Code Inspector, 288

Never invoke wait outside a loop
Code Inspector, 288

Normalize white space
Javadoc, 241

(o)
Obey contract when overriding equals
Code Inspector, 286
Obey line length limit
Code Inspector, 290
On-demand import
Expand, 218
Use custom implementation, 219
One-jar Software License, 393
Online Help, 30
Operator
Bitwise
Space after, 134
Space before, 132
Complement
Space after, 134
Concat
Space after, 135
Space before, 133
Continuation, 123
Index
Never wrap chained, 103
Logical
Space after, 134
Space before, 132
Mathematical
Space after, 134
Space before, 132
Postfix
Space before, 133
Prefix
Space after, 135

411

Relational
Space after, 134
Space before, 132
Shift
Space after, 135
Space before, 132
Ternary, 126
Unary
Space after, 135
Wrap, 103
Operators
Assignment
Space after, 133, 133
Space before, 131, 131
Werap after, 82
Werap before, 81
Order
Declarations, 197
Custom, 202
Imports, 215
Modifier, 208
Override
Header, 276

P
package
blank lines, 184
Parameters
Werap all when first wrapped, 109
Parentheses
Avoid bare left parenthesis, 87
Insert for expression, 56
Insert for return, 57
Insert for throw, 57
Space after left
Annotation argument list, 153
Enum constant argument list, 154
Space before left
Annotation argument list, 149
Annotation type member, 150
Enum constant argument list, 150
Space before right
Annotation argument list, 158
Enum constant argument list, 158
Space between empty
Annotation type member, 162
Enum constant argument list, 162
Parenthesis

Align right, 127

INDEX

Prefer wrap after left, 106
Prefer wrap before right, 106
Wrap grouping, 107

Pattern

Date, 46

Time, 46
Plug-in

Ant, 297

Console, 305

Eclipse, 311

IDEA, 317

JDeveloper, 323

jEdit, 331

Maven

1.0, 337
2.0, 341

NetBeans, 349
Plug-ins, 295
Policy

Wrapping, 81
Postfix operator

Space before, 133
Pragma comment

Definition, 221
Preferences GUI, 20
Prefix operator

Space after, 135
Preview, 29

Use current file, 33
Profile

Activate, 24

Add, 22

Alias, 24

Auto-switch, 38

Description, 23

Edit, 21

Name, 22

Nested, 23

Remove, 23
Property field

JavaBeans, 206

Q
Qualifier
Never wrap, 104

R
RCS tags
Keep, 276

Read-only

Automatically checkout, 33
Refer to objects by their interfaces

Code Inspector, 288

Reflow

Multi-line comment, 228
Single-line comment, 227

Registry keys

Regular expression, 200, 201, 202, 202, 307

Wrap, 109

Code Inspector, 291
Getter/Setter, 206
Tester, 225

Relational operator

Space after, 134
Space before, 132

Remove

Blank lines, 194
Profile, 23

Redundant modifier, 58

Replace structures with classes

Code Inspector, 287

Repository, 51
return

Blank lines, 189

Continuation indent, 124

Insert parentheses, 57
Prefer wrap after, 106

Space after left parenthesis, 156
Space before left parenthesis, 152
Space before right parenthesis, 160

Right parenthesis

S

Align, 127

Save

Button, 21

Format during save, 37

SCM

Format during check-in, 37

Scope

Search & Replace, 283

Search & Replace, 282

Add pattern, 284

Change pattern, 284

Javadoc comment, 283
Move pattern down, 285

Move pattern up, 285

Multi-line comment, 283

412

Remove pattern, 285
Scope, 283
Single-line comment, 283
String literal, 283
Selective formatting, 313
Separate multi-line XDoclet tags, 241
Separation, 183
Separator
Blank lines, 190
Separator comment, 208
Definition, 221
Descriptions, 213
Fill character, 213
Insert, 209
Between inner class sections, 210
Between medthods of inner classes, 212
Between methods, 211
Between sections, 209
Line Length, 214
Style, 213
Configure, 213
Serial version UID, 59, 59, 59
Settings, 19
Files, 31
Settings directory, 19
Setup Wizard, 4
Shift operator
Space after, 135
Space before, 132
Shortcut
Keyboard, 328
Silent installation, 15
Single if
Keep on same line, 54
Single-line comment
Blank lines, 190
Definition, 220
Format, 226
Remove, 223
Search & Replace, 283
Wrap, 227
Single-type import
Collapse, 219
Smart Mode, 277
Software License
ANTLR, 369
Apache Software License, 371, 373
ASM, 377

Common Public License, 379

413

Creative Commons Attribution, 383
JDBM, 387
JDOM, 389
JGoodies, 391
One-JAR, 393
TreeTable, 395
Sort
Annotation, 207
Declaration, 196
Declarations, 196
Group similar methods, 198
Keep bean methods together, 199
Order, 197, 202
Imports, 215
Order, 215
Methods
By bean pattern, 198
Modifier
Order, 208
Modifiers, 207
Source level, 54
Space
After ampersand
Type parameter, 149
After colon
assert, 146

Conditional operator, 146, 146, 146

After comma
Annotation array, 140

Annotation member argument, 140

Array initializer, 143
Constructor call, 143

Constructor declaration parameter, 142

Constructor declaration throws clause, 142

Creator call, 143

Enum constant, 140, 141
extends clause, 141

for incrementor, 144

for initializer, 144
implements clause, 141

Method call, 143

Method declaration parameter, 142

Method declaration throws clause, 143

Multi-field, 141

Multi-variable, 142

Type argument, 144

Type parameter, 144
After ellipsis

Varargs, 149

INDEX

After left angle bracket
Type argument, 169
Type parameter, 169
After left bracket
Array access, 167, 167
Array creator, 167
After left curly brace
Annotation, 165
Array initializer, 165
Compact declaration, 165
After left parenthesis
Annotation argument list, 153
catch, 156
Constructor call, 156
Constructor declaration, 154
Creator call, 157
Enum constant argument list, 154
Expression, 157
for, 155
if, 155
Method call, 157
Method declaration, 154
return, 156
switch, 155
synchronized, 156
throw, 155
Type cast, 157
while, 155
After question mark
Conditional operator, 148
Type argument, 148
Type parameter, 148
After right parenthesis
Type cast, 162
After semi
for, 147
Before ampersand
Type parameter, 149
Before colon
assert, 144
case, 145
Conditional operator, 145, 145, 145
Before comma
Annotation array, 136
Annotation member argument, 136
Array initializer, 139
Constructor call, 138
Constructor declaration parameter, 137
Constructor declaration throws clause, 138

Creator call, 139
Enum constant, 136, 136
extends clause, 136
for incrementor, 139
for initializer, 139
implements clause, 137
Method call, 139
Method declaration parameter, 138
Method declaration throws clause, 138
Multi-field, 137
Multi-variable, 137
Type argument, 140
Type parameter, 140
Before ellipsis
Varargs, 148
Before left angle bracket
Type argument, 169
Type parameter, 168
Before left bracket
Array creator, 167
Before left curly brace
Array initializer, 164
Compact declaration, 164
Before left parenthesis
Annotation argument list, 149, 150
catch, 152
Constructor call, 153
Constructor declaration, 150
Creator call, 153
Enum constant argument list, 150
for, 151
if, 151
Method call, 153
Method declaration, 151
return, 152
switch, 152
synchronized, 152
throw, 152
while, 151
Before operator
Assignment operator, 131, 131
Concat operator, 133
Logical operator, 132
Mathematical operator, 132
Postfix operator, 133
Relational operator, 132
Shift operator, 132
Before question mark
Conditional operator, 147

414

Type argument, 147
Type parameter, 147
Before right angle bracket
Type argument, 170
Type parameter, 169
Before right bracket
Array access, 168
Array creator, 168
Before right curly brace
Annotation, 165
Array initializer, 166
Compact declaration, 166
Before right parenthesis
Annotation argument list, 158
catch, 160
Constructor call, 161
Constructor declaration, 158
Creator call, 161
Enum constant argument list, 158
Expression, 161
for, 159
if, 159
Method call, 161
Method declaration, 158
return, 160
switch, 159
synchronized, 160
throw, 160
Type cast, 161
while, 159
Before semi
for, 146
between empty braces
Array initializer, 166
Compact declaration, 166
between empty parentheses
Annotation argument list, 162
Constructor call, 163
Constructor declaration, 163
Creator call, 164
Enum constant argument list, 162
Method call, 163
Method declaration, 163
compact
Same direction parentheses, 164
empty brackets
Array creator, 168
Array declaration, 166, 168
Split

415

Multi-vars, 58
SQLJ clause
Blank lines, 191
Stacktrace
Show when logging, 51
Standard indentation, 112
Array initializer, 114
Stars
Remove leading, 240
static imports
Grouping, 217
Strategy
Indentation, 112
Strictly obey brace style, 66
String concatenation, 86
String concats, 84
String literal
Search & Replace, 283
Sun ONE Studio, 349
switch
indent, 119
Insert braces, 69
Remove braces, 72
Space after left parenthesis, 155
Space before left parenthesis, 152
Space before right parenthesis, 159
Synchronization
Code Convention, 38
synchronized
Comments, 80
Space after left parenthesis, 156
Space before left parenthesis, 152
Space before right parenthesis, 160
Synopsis, 306
System Environment variable, 43
System requirements, 3

T
Tabs, 129

leading, 130

size, 115

use, 129

Use in comments, 130
Tag section

Correction, 256
Tags

HTML, 273

Javadoc, 271

XDoclet, 273

INDEX

Task
Ant, 297
taskdef, 299
Template, 262
Header, 279
Templates
Javadoc class, 263
Javadoc constructor, 266
Javadoc enum, 264
Javadoc field, 265
Javadoc getter, 269
Javadoc interface, 263
Javadoc method, 267
Javadoc setter, 268
Ternary operator
Align, 126
indent operands, 122
Werap after colon, 104
Wrap after question, 104
Test, 33
Test Mode, 33
Threads, 36
throw
Insert parentheses, 57
Space after left parenthesis, 155
Space before left parenthesis, 152
Space before right parenthesis, 160
throws
Wrap after, 94
Wrap before, 94
Wrap types, 95
Trailing Comment, 116
Trailing Newline
Insert, 33
Treat two string literals as string concatenation, 86
TreeTable Software License, 395
Type argument
Space after comma, 144
Space after left angle bracket, 169
Space after question mark, 148
Space before comma, 140
Space before left angle bracket, 169
Space before question mark, 147
Space before right angle bracket, 170
Type cast
Space after left parenthesis, 157
Space after right parenthesis, 162
Space before right parenthesis, 161
Type parameter

Space after ampersand, 149
Space after comma, 144
Space after left bracket, 169
Space after question mark, 148
Space before ampersand, 149
Space before comma, 140
Space before left bracket, 168
Space before question mark, 147
Space before right angle bracket, 169
Wrap when exceed, 108

Type Repository, 51
Fail on error, 53
Log warning on error, 53

U

Unary operator
Space after, 135
Unattended installation, 15
Usage, 293
Examples, 309
Synopsis, 306
Use current file in preview, 33
Use interfaces only to define types
Code Inspector, 287
Use zero-length arrays
Code Inspector, 287

Vv

Varargs
Space after ellipsis, 149
Space before ellipsis, 148
Variable
Blank lines, 186
Environment, 40

w

while
Insert braces, 69
Remove braces, 71
Space after left parenthesis, 155
Space before left parenthesis, 151
Space before right parenthesis, 159
White Space, 130
After ampersand
Type parameter, 149
After colon
assert, 146
Condtional operator, 146, 146, 146
After comma
Annotation array, 140

416

Annotation member argument, 140
Array initializer, 143
Constructor call, 143
Constructor declaration parameter, 142
Constructor declaration throws clause, 142
Creator call, 143
Enum constant, 140, 141
extends clause, 141
for incrementor, 144
for initializer, 144
implements clause, 141
Method call, 143
Method declaration parameter, 142
Method declaration throws clause, 143
Multi-field, 141
Multi-variable, 142
Type argument, 144
Type parameter, 144
After ellipsis
Varargs, 149
After left angle bracket
Type argument, 169
Type parameter, 169
After left bracket
Array access, 167, 167
Array creator, 167
After left curly brace
Annotation, 165
Array initializer, 165
Compact declaration, 165
After left parenthesis
Annotation argument list, 153
catch, 156
Constructor call, 156
Constructor declaration, 154
Creator call, 157
Enum constant argument list, 154
Expression, 157
for, 155
if, 155
Method call, 157
Method declaration, 154
return, 156
switch, 155
synchronized, 156
throw, 155
Type cast, 157
while, 155
After operator

417

Assignment operator, 133, 133
Bitwise operator, 134
Complement, 134

Concat operator, 135

Logical operator, 134
Mathematical operator, 134
Prefix, 135

Relational operator, 134

Shift operator, 135

Unary, 135

After question mark

Conditional operator, 148
Type argument, 148
Type parameter, 148

After right parenthesis

Type cast, 162

After semi

for, 147

Before ampersand

Type parameter, 149

Before colon

assert, 144
case, 145
Condtional operator, 145, 145, 145

Before comma

Annotation array, 136

Annotation member argument, 136
Array initializer, 139

Constructor call, 138

Constructor declaration parameter, 137

Constructor declaration throws clause, 138

Creator call, 139

Enum constant, 136, 136

extends clause, 136

for incrementor, 139

for initializer, 139

implements clause, 137

Method call, 139

Method declaration parameter, 138
Method declaration throws clause, 138
Multi-field, 137

Multi-variable, 137

Type argument, 140

Type parameter, 140

Before ellipsis

Varargs, 148

Before left angle bracket

Type argument, 169
Type parameter, 168

INDEX

Before left bracket
Array creator, 167
Before left curly brace
Array initializer, 164
Compact declaration, 164
Before left parenthesis
Annotation argument list, 149, 150
catch, 152
Constructor call, 153
Constructor declaration, 150
Creator call, 153
Enum constant argument list, 150
for, 151
if, 151
Method call, 153
Method declaration, 151
return, 152
switch, 152
synchronized, 152
throw, 152
while, 151
Before operator
Assignment operator, 131, 131
Bitwise operator, 132
Concat operator, 133
Logical operator, 132
Mathematical operator, 132
Postfix operator, 133
Relational operator, 132
Shift operator, 132
Before question mark
Conditional operator, 147
Type argument, 147
Type parameter, 147
Before right angle bracket
Type argument, 170
Type parameter, 169
Before right bracket
Array access, 168
Array creator, 168
Before right curly brace
Annotation, 165
Array initializer, 166
Compact declaration, 166
Before right parenthesis
Annotation argument list, 158
catch, 160
Constructor call, 161
Constructor declaration, 158

Creator call, 161
Enum constant argument list, 158
Expression, 161
for, 159
if, 159
Method call, 161
Method declaration, 158
return, 160
switch, 159
synchronized, 160
throw, 160
Type cast, 161
while, 159
Before semi
for, 146
between empty braces
Array initializer, 166
Compact declaration, 166
between empty parentheses
Annotation argument list, 162
Constructor call, 163
Constructor declaration, 163
Creator call, 164
Enum constant argument list, 162
Method call, 163
Method declaration, 163
empty brackets
Array creator, 168
Array declaration, 166, 168

White space

Arrays, 180
Accessor, 181
Allocation, 180
Declaration, 180
Initializer, 181
Between empty parentheses
Declaration parameter, 162
Choose view, 130
compact
Same direction parentheses, 164
Control Statements, 174
assert, 176
catch, 176
if, 174
return, 177
switch, 176
synchronized, 176
throw, 177
while, 175, 175

418

Declarations, 170
Annotations, 171
Class, 170
Constructor, 172
Enum, 171
Field, 172
Interface, 171
Labels, 174
Local variable, 174
Method, 173

Expressions, 177
Constructor call, 177
Creator call, 178
Method call, 178
Operator, 178
Parenthesized expressions, 180
Type cast, 180

normalize, 241

Parameterized types, 181
Type argument, 182
Type parameter, 181

Space after comma
Call arguments, 143
Declaration parameter, 142
extends/implements, 141
for, 144
Multi-declaration, 141
Parameterized types, 144
Throws clauses, 142

Space after left parenthesis
Call arguments, 156
Declaration parameter, 154
Statement expressions, 154

Space after right parenthesis, 162

Space before comma
Call arguments, 138
Declaration parameter, 137
extends/implements, 136
for, 139
Multi-declaration, 137
Parameterized types, 140
Throws clauses, 138

Space before left parenthesis
Call arguments, 153
Declaration parameter, 150
Statement expressions, 151

Space before right parenthesis
Call arguments, 161
Declaration parameter, 158

419

Statement expressions, 159

Space between empty parentheses, 162

Call arguments, 163

Wildcard alias, 25
Wrapping, 80, 88

Always
After annotation members, 101
After class keyword, 92
After extends types, 93
After implements types, 94
After label, 108
After method call arguments, 98
After multi-variable declarators, 96
After multi-variable type, 96
After nested call arguments, 99
After registry keys, 109
After throws keyword, 94
After throws types, 95
Before declaration keyword, 91
Before declaration parameter, 97
Before extends keyword, 92
Before implements keyword, 93
Before method name, 96
Before throws keyword, 94
Enum constant, 95
Field name, 95
Ternary colon, 104
Ternary question, 104

Always when exceed
Grouping parentheses, 107
import, 91
Type parameter, 108

Array
As needed, 110
Werap after element, 111

Werap all elements when exceed, 110

Automatic line wrapping, 81
Avoid bare left parenthesis, 87
Call arguments, 88
Disable for complex expressions, 86
In-line tags, 242
Keep line breaks, 82
Array, 84
Call argument, 83
Declaration parameter, 82
Operators, 83
String concats, 84
Line length, 81

Never

Chained index operator, 103
Dotted expression, 105
Qualifier, 104
Policy, 81
Prefer wrap
After assignment, 105
After left parenthesis, 106
After return, 106
Before right parenthesis, 106
Strategies, 89
Never Wrap, 89
Wrap all when exceed, 90
Werap all when first wrapped, 90
Wrap always, 91
Wrap only when necessary, 89
Wrap when exceed, 90
Strictly obey 'Keep line breaks', 85
Treat two string literals as string concatenation,
86
Within call after assignment, 87
Wrap all if first wrapped

Parameter/expression, 109

X

XDoclet
build-in tags, 361
define custom tag, 273

Separate multi-line Javadoc tags, 241
sort, 236

420

	Jalopy - User’s Guide v. 1.9.3
	Contents
	Acknowledgments
	Introduction
	Part I. Core
	Chapter 1. Installation
	1.1. System requirements
	1.2. Prerequisites
	1.3. Wizard Installation
	1.4. Silent Installation
	1.5. Manual Installation

	Chapter 2. Configuration
	2.1. Overview
	2.1.1. Preferences GUI
	2.1.1.1. Main window
	2.1.1.2. Editing profiles
	2.1.1.3. Adding profiles
	2.1.1.4. Removing profiles
	2.1.1.5. Activating profiles
	2.1.1.6. Defining aliases
	2.1.1.7. Import code convention
	2.1.1.8. Export code convention

	2.1.2. Settings files

	2.2. Global
	2.2.1. General
	2.2.1.1. Miscellaneous

	2.2.2. Misc
	2.2.2.1. History
	2.2.2.2. Backup
	2.2.2.3. Threads
	2.2.2.4. Force separator
	2.2.2.5. Force Encoding

	2.2.3. Auto

	2.3. File Types
	2.3.1. File types
	2.3.2. File extensions

	2.4. Environment
	2.4.1. Custom environment variables
	2.4.2. System environment variables
	2.4.3. Local environment variables
	2.4.4. Usage
	2.4.5. Date & Time settings

	2.5. Exclusions
	2.5.1. Exclusion patterns

	2.6. Messages
	2.6.1. Categories
	2.6.2. Logging
	2.6.3. Misc

	2.7. Repository
	2.7.1. Searching the repository
	2.7.2. Displaying info about the repository
	2.7.3. Adding libraries to the repository
	2.7.4. Removing the repository
	2.7.5. Initialization

	2.8. Java
	2.8.1. Source compatibility
	2.8.2. Keep on same line
	2.8.3. Insert parentheses
	2.8.4. Miscellaneous
	2.8.5. Code Generation
	2.8.6. Braces
	2.8.6.1. Layout
	2.8.6.1.1. Line Wrapping
	2.8.6.1.2. White Space

	2.8.6.2. Misc
	2.8.6.2.1. Insert braces for
	2.8.6.2.2. Remove braces
	2.8.6.2.3. Compact braces
	2.8.6.2.4. Empty braces

	2.8.6.3. Comments
	2.8.6.3.1. Insert identifying comments for

	2.8.7. Line Wrapping
	2.8.7.1. General
	2.8.7.1.1. Policy
	2.8.7.1.2. Keep line breaks
	2.8.7.1.3. Miscellaneous

	2.8.7.2. Options
	2.8.7.3. Arrays

	2.8.8. Indentation
	2.8.8.1. General
	2.8.8.1.1. Strategies
	2.8.8.1.2. Sizes

	2.8.8.2. Misc
	2.8.8.2.1. Indent
	2.8.8.2.2. Continuation indent
	2.8.8.2.3. Align

	2.8.8.3. Tabs

	2.8.9. White Space
	2.8.9.1. Token view
	2.8.9.1.1. Before operator
	2.8.9.1.2. After operator
	2.8.9.1.3. Before comma
	2.8.9.1.4. After comma
	2.8.9.1.5. Before colon
	2.8.9.1.6. After colon
	2.8.9.1.7. Before semicolon
	2.8.9.1.8. After semicolon
	2.8.9.1.9. Before question mark
	2.8.9.1.10. After question mark
	2.8.9.1.11. Before ellipsis
	2.8.9.1.12. After ellipsis
	2.8.9.1.13. Before ampersand
	2.8.9.1.14. After ampersand
	2.8.9.1.15. Before left parenthesis
	2.8.9.1.16. After left parenthesis
	2.8.9.1.17. Before right parenthesis
	2.8.9.1.18. After right parenthesis
	2.8.9.1.19. Between empty parentheses
	2.8.9.1.20. Other parentheses
	2.8.9.1.21. Before left brace
	2.8.9.1.22. After left brace
	2.8.9.1.23. Before right brace
	2.8.9.1.24. Between empty braces
	2.8.9.1.25. Before left bracket
	2.8.9.1.26. After left bracket
	2.8.9.1.27. Before right bracket
	2.8.9.1.28. Between empty brackets
	2.8.9.1.29. Before left angle bracket
	2.8.9.1.30. After left angle bracket
	2.8.9.1.31. Before right angle bracket

	2.8.9.2. Element view
	2.8.9.2.1. Declarations
	2.8.9.2.1.1. Classes
	2.8.9.2.1.2. Interfaces
	2.8.9.2.1.3. Enums
	2.8.9.2.1.4. Annotations
	2.8.9.2.1.5. Fields
	2.8.9.2.1.6. Constructors
	2.8.9.2.1.7. Methods
	2.8.9.2.1.8. Local variables
	2.8.9.2.1.9. Labels

	2.8.9.2.2. Control Statements
	2.8.9.2.2.1. if
	2.8.9.2.2.2. for
	2.8.9.2.2.3. while/do-while
	2.8.9.2.2.4. switch
	2.8.9.2.2.5. synchronized
	2.8.9.2.2.6. catch
	2.8.9.2.2.7. assert
	2.8.9.2.2.8. throw
	2.8.9.2.2.9. return

	2.8.9.2.3. Expressions
	2.8.9.2.3.1. Constructor call
	2.8.9.2.3.2. Creator call
	2.8.9.2.3.3. Method call
	2.8.9.2.3.4. Operators
	2.8.9.2.3.5. Parenthesized expression
	2.8.9.2.3.6. Type cast

	2.8.9.2.4. Arrays
	2.8.9.2.4.1. Declaration
	2.8.9.2.4.2. Allocation
	2.8.9.2.4.3. Initializer
	2.8.9.2.4.4. Accessor

	2.8.9.2.5. Parameterized types
	2.8.9.2.5.1. Type parameter
	2.8.9.2.5.2. Type argument

	2.8.10. Separation
	2.8.10.1. General
	2.8.10.2. Misc
	2.8.10.2.1. Chunks

	2.8.11. Sorting
	2.8.11.1. Declarations
	2.8.11.1.1. Methods
	2.8.11.1.2. Classes, Interfaces, Enums
	2.8.11.1.3. Access Modifier

	2.8.11.2. Modifiers
	2.8.11.2.1. Sort Order

	2.8.11.3. Comments
	2.8.11.3.1. Insert
	2.8.11.3.2. Descriptions
	2.8.11.3.3. Style

	2.8.12. Imports
	2.8.12.1. General
	2.8.12.2. Optimization

	2.8.13. Comments
	2.8.13.1. Comment types
	2.8.13.2. Comment association
	2.8.13.3. Remove
	2.8.13.3.1. Regular expression tester

	2.8.13.4. Format
	2.8.13.5. Wrap
	2.8.13.6. Misc

	2.8.14. Javadoc
	2.8.14.1. Format
	2.8.14.1.1. Format comments
	2.8.14.1.2. Block tags
	2.8.14.1.3. Compact elements

	2.8.14.2. Line Wrapping
	2.8.14.2.1. Wrapping
	2.8.14.2.2. Misc

	2.8.14.3. Generation
	2.8.14.4. Correction
	2.8.14.5. Templates
	2.8.14.5.1. Class template
	2.8.14.5.2. Interface template
	2.8.14.5.3. Enum template
	2.8.14.5.4. Field template
	2.8.14.5.5. Constructor template
	2.8.14.5.6. Method template
	2.8.14.5.7. Setter template
	2.8.14.5.8. Getter template

	2.8.14.6. Tags
	2.8.14.6.1. Javadoc
	2.8.14.6.1.1. Block tags
	2.8.14.6.1.2. In-line tags

	2.8.14.6.2. XDoclet
	2.8.14.6.3. HTML

	2.8.15. Header
	2.8.15.1. Options
	2.8.15.1.1. Detection

	2.8.15.2. Template

	2.8.16. Footer
	2.8.17. Annotations
	2.8.17.1. Annotation patterns

	2.8.18. Search & Replace
	2.8.18.1. Scope
	2.8.18.2. Patterns

	2.8.19. Code Inspector
	2.8.19.1. Checking
	2.8.19.1.1. Checks

	2.8.19.2. Naming
	2.8.19.2.1. Change Naming Pattern

	Chapter 3. Usage

	Part II. Plug-ins
	Chapter 4. Ant Task
	4.1. Installation
	4.1.1. System requirements
	4.1.2. Installation

	4.2. Configuration
	4.3. Usage
	4.3.1. Parameters
	4.3.2. Parameters specified as nested elements

	4.4. Example

	Chapter 5. Console Application
	5.1. Installation
	5.1.1. System requirements
	5.1.2. Installation

	5.2. Configuration
	5.3. Usage
	5.3.1. Synopsis

	5.4. Examples

	Chapter 6. Eclipse Plug-in
	6.1. Installation
	6.1.1. System requirements
	6.1.2. Setup

	6.2. Integration
	6.2.1. Preferences
	6.2.2. Java Editor pop-up menu
	6.2.3. Project, Folder, File pop-up menus

	6.3. Configuration

	Chapter 7. IDEA Plug-in
	7.1. Installation
	7.1.1. System requirements
	7.1.2. Setup

	7.2. Integration
	7.2.1. Settings
	7.2.2. Code Editor Pop-up Menu
	7.2.3. Tool Windows Popup Menu
	7.2.4. Tool window

	7.3. Configuration

	Chapter 8. JDeveloper Extension
	8.1. Installation
	8.1.1. System requirements
	8.1.2. Setup

	8.2. Integration
	8.2.1. Preferences dialog
	8.2.2. Navigator context menu
	8.2.3. Editor context menu
	8.2.4. Log window
	8.2.5. Keyboard Accelerator

	8.3. Configuration

	Chapter 9. jEdit Plug-in
	9.1. Installation
	9.1.1. System requirements
	9.1.2. Installation

	9.2. Integration
	9.2.1. Menu bar
	9.2.2. Dockable window
	9.2.3. Keyboard shortcuts
	9.2.4. Context menu
	9.2.5. File System Browser Plugins menu

	9.3. Configuration

	Chapter 10. Maven 1 Plug-in
	10.1. Installation
	10.1.1. System requirements
	10.1.2. Setup

	10.2. Configuration
	10.2.1. Properties

	10.3. Usage
	10.3.1. Goals

	Chapter 11. Maven 2 Plug-in
	11.1. Installation
	11.1.1. System requirements
	11.1.2. Setup

	11.2. Configuration
	11.3. Usage
	11.4. Example

	Chapter 12. NetBeans Module
	12.1. Installation
	12.1.1. System requirements
	12.1.2. Setup

	12.2. Integration
	12.2.1. Editor pop-up menu
	12.2.2. Explorer pop-up menu
	12.2.3. Workspace main menu
	12.2.4. Message window
	12.2.5. Keyboard shortcuts
	12.2.6. Options dialog

	12.3. Configuration

	Part III. Appendices
	Appendix A. Library Dependencies
	Appendix B. Build-in XDoclet tags
	Appendix C. ANTLR Software License
	Appendix D. Apache Software License 1.1
	Appendix E. Apache Software License 2.0
	Appendix F. ASM Software License
	Appendix G. Common Public License 1.0
	Appendix H. Creative Commons Attribution License
	Appendix I. JDBM Software License
	Appendix J. JDOM Software License
	Appendix K. JGoodies Software License
	Appendix L. One-JAR Software License
	Appendix M. TreeTable Software License
	Resources
	Bibliography

	Index

